summaryrefslogtreecommitdiff
path: root/lld/ELF/OutputSections.cpp
blob: 97f676f000fdc1d3572c41fcbc62361efa45811c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
//===- OutputSections.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "OutputSections.h"
#include "Config.h"
#include "InputFiles.h"
#include "LinkerScript.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/Arrays.h"
#include "lld/Common/Memory.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB
#include "llvm/Support/Compression.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TimeProfiler.h"
#if LLVM_ENABLE_ZLIB
#include <zlib.h>
#endif
#if LLVM_ENABLE_ZSTD
#include <zstd.h>
#endif

using namespace llvm;
using namespace llvm::dwarf;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;

uint8_t *Out::bufferStart;
PhdrEntry *Out::tlsPhdr;
OutputSection *Out::elfHeader;
OutputSection *Out::programHeaders;
OutputSection *Out::preinitArray;
OutputSection *Out::initArray;
OutputSection *Out::finiArray;

SmallVector<OutputSection *, 0> elf::outputSections;

uint32_t OutputSection::getPhdrFlags() const {
  uint32_t ret = 0;
  if (config->emachine != EM_ARM || !(flags & SHF_ARM_PURECODE))
    ret |= PF_R;
  if (flags & SHF_WRITE)
    ret |= PF_W;
  if (flags & SHF_EXECINSTR)
    ret |= PF_X;
  return ret;
}

template <class ELFT>
void OutputSection::writeHeaderTo(typename ELFT::Shdr *shdr) {
  shdr->sh_entsize = entsize;
  shdr->sh_addralign = addralign;
  shdr->sh_type = type;
  shdr->sh_offset = offset;
  shdr->sh_flags = flags;
  shdr->sh_info = info;
  shdr->sh_link = link;
  shdr->sh_addr = addr;
  shdr->sh_size = size;
  shdr->sh_name = shName;
}

OutputSection::OutputSection(StringRef name, uint32_t type, uint64_t flags)
    : SectionBase(Output, name, flags, /*Entsize*/ 0, /*Alignment*/ 1, type,
                  /*Info*/ 0, /*Link*/ 0) {}

// We allow sections of types listed below to merged into a
// single progbits section. This is typically done by linker
// scripts. Merging nobits and progbits will force disk space
// to be allocated for nobits sections. Other ones don't require
// any special treatment on top of progbits, so there doesn't
// seem to be a harm in merging them.
//
// NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow
// them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*).
static bool canMergeToProgbits(unsigned type) {
  return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY ||
         type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY ||
         type == SHT_NOTE ||
         (type == SHT_X86_64_UNWIND && config->emachine == EM_X86_64);
}

// Record that isec will be placed in the OutputSection. isec does not become
// permanent until finalizeInputSections() is called. The function should not be
// used after finalizeInputSections() is called. If you need to add an
// InputSection post finalizeInputSections(), then you must do the following:
//
// 1. Find or create an InputSectionDescription to hold InputSection.
// 2. Add the InputSection to the InputSectionDescription::sections.
// 3. Call commitSection(isec).
void OutputSection::recordSection(InputSectionBase *isec) {
  partition = isec->partition;
  isec->parent = this;
  if (commands.empty() || !isa<InputSectionDescription>(commands.back()))
    commands.push_back(make<InputSectionDescription>(""));
  auto *isd = cast<InputSectionDescription>(commands.back());
  isd->sectionBases.push_back(isec);
}

// Update fields (type, flags, alignment, etc) according to the InputSection
// isec. Also check whether the InputSection flags and type are consistent with
// other InputSections.
void OutputSection::commitSection(InputSection *isec) {
  if (LLVM_UNLIKELY(type != isec->type)) {
    if (hasInputSections || typeIsSet) {
      if (typeIsSet || !canMergeToProgbits(type) ||
          !canMergeToProgbits(isec->type)) {
        // Changing the type of a (NOLOAD) section is fishy, but some projects
        // (e.g. https://github.com/ClangBuiltLinux/linux/issues/1597)
        // traditionally rely on the behavior. Issue a warning to not break
        // them. Other types get an error.
        auto diagnose = type == SHT_NOBITS ? warn : errorOrWarn;
        diagnose("section type mismatch for " + isec->name + "\n>>> " +
                 toString(isec) + ": " +
                 getELFSectionTypeName(config->emachine, isec->type) +
                 "\n>>> output section " + name + ": " +
                 getELFSectionTypeName(config->emachine, type));
      }
      if (!typeIsSet)
        type = SHT_PROGBITS;
    } else {
      type = isec->type;
    }
  }
  if (!hasInputSections) {
    // If IS is the first section to be added to this section,
    // initialize type, entsize and flags from isec.
    hasInputSections = true;
    entsize = isec->entsize;
    flags = isec->flags;
  } else {
    // Otherwise, check if new type or flags are compatible with existing ones.
    if ((flags ^ isec->flags) & SHF_TLS)
      error("incompatible section flags for " + name + "\n>>> " +
            toString(isec) + ": 0x" + utohexstr(isec->flags) +
            "\n>>> output section " + name + ": 0x" + utohexstr(flags));
  }

  isec->parent = this;
  uint64_t andMask =
      config->emachine == EM_ARM ? (uint64_t)SHF_ARM_PURECODE : 0;
  uint64_t orMask = ~andMask;
  uint64_t andFlags = (flags & isec->flags) & andMask;
  uint64_t orFlags = (flags | isec->flags) & orMask;
  flags = andFlags | orFlags;
  if (nonAlloc)
    flags &= ~(uint64_t)SHF_ALLOC;

  addralign = std::max(addralign, isec->addralign);

  // If this section contains a table of fixed-size entries, sh_entsize
  // holds the element size. If it contains elements of different size we
  // set sh_entsize to 0.
  if (entsize != isec->entsize)
    entsize = 0;
}

static MergeSyntheticSection *createMergeSynthetic(StringRef name,
                                                   uint32_t type,
                                                   uint64_t flags,
                                                   uint32_t addralign) {
  if ((flags & SHF_STRINGS) && config->optimize >= 2)
    return make<MergeTailSection>(name, type, flags, addralign);
  return make<MergeNoTailSection>(name, type, flags, addralign);
}

// This function scans over the InputSectionBase list sectionBases to create
// InputSectionDescription::sections.
//
// It removes MergeInputSections from the input section array and adds
// new synthetic sections at the location of the first input section
// that it replaces. It then finalizes each synthetic section in order
// to compute an output offset for each piece of each input section.
void OutputSection::finalizeInputSections() {
  std::vector<MergeSyntheticSection *> mergeSections;
  for (SectionCommand *cmd : commands) {
    auto *isd = dyn_cast<InputSectionDescription>(cmd);
    if (!isd)
      continue;
    isd->sections.reserve(isd->sectionBases.size());
    for (InputSectionBase *s : isd->sectionBases) {
      MergeInputSection *ms = dyn_cast<MergeInputSection>(s);
      if (!ms) {
        isd->sections.push_back(cast<InputSection>(s));
        continue;
      }

      // We do not want to handle sections that are not alive, so just remove
      // them instead of trying to merge.
      if (!ms->isLive())
        continue;

      auto i = llvm::find_if(mergeSections, [=](MergeSyntheticSection *sec) {
        // While we could create a single synthetic section for two different
        // values of Entsize, it is better to take Entsize into consideration.
        //
        // With a single synthetic section no two pieces with different Entsize
        // could be equal, so we may as well have two sections.
        //
        // Using Entsize in here also allows us to propagate it to the synthetic
        // section.
        //
        // SHF_STRINGS section with different alignments should not be merged.
        return sec->flags == ms->flags && sec->entsize == ms->entsize &&
               (sec->addralign == ms->addralign || !(sec->flags & SHF_STRINGS));
      });
      if (i == mergeSections.end()) {
        MergeSyntheticSection *syn =
            createMergeSynthetic(s->name, ms->type, ms->flags, ms->addralign);
        mergeSections.push_back(syn);
        i = std::prev(mergeSections.end());
        syn->entsize = ms->entsize;
        isd->sections.push_back(syn);
      }
      (*i)->addSection(ms);
    }

    // sectionBases should not be used from this point onwards. Clear it to
    // catch misuses.
    isd->sectionBases.clear();

    // Some input sections may be removed from the list after ICF.
    for (InputSection *s : isd->sections)
      commitSection(s);
  }
  for (auto *ms : mergeSections)
    ms->finalizeContents();
}

static void sortByOrder(MutableArrayRef<InputSection *> in,
                        llvm::function_ref<int(InputSectionBase *s)> order) {
  std::vector<std::pair<int, InputSection *>> v;
  for (InputSection *s : in)
    v.emplace_back(order(s), s);
  llvm::stable_sort(v, less_first());

  for (size_t i = 0; i < v.size(); ++i)
    in[i] = v[i].second;
}

uint64_t elf::getHeaderSize() {
  if (config->oFormatBinary)
    return 0;
  return Out::elfHeader->size + Out::programHeaders->size;
}

void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) {
  assert(isLive());
  for (SectionCommand *b : commands)
    if (auto *isd = dyn_cast<InputSectionDescription>(b))
      sortByOrder(isd->sections, order);
}

static void nopInstrFill(uint8_t *buf, size_t size) {
  if (size == 0)
    return;
  unsigned i = 0;
  if (size == 0)
    return;
  std::vector<std::vector<uint8_t>> nopFiller = *target->nopInstrs;
  unsigned num = size / nopFiller.back().size();
  for (unsigned c = 0; c < num; ++c) {
    memcpy(buf + i, nopFiller.back().data(), nopFiller.back().size());
    i += nopFiller.back().size();
  }
  unsigned remaining = size - i;
  if (!remaining)
    return;
  assert(nopFiller[remaining - 1].size() == remaining);
  memcpy(buf + i, nopFiller[remaining - 1].data(), remaining);
}

// Fill [Buf, Buf + Size) with Filler.
// This is used for linker script "=fillexp" command.
static void fill(uint8_t *buf, size_t size,
                 const std::array<uint8_t, 4> &filler) {
  size_t i = 0;
  for (; i + 4 < size; i += 4)
    memcpy(buf + i, filler.data(), 4);
  memcpy(buf + i, filler.data(), size - i);
}

#if LLVM_ENABLE_ZLIB
static SmallVector<uint8_t, 0> deflateShard(ArrayRef<uint8_t> in, int level,
                                            int flush) {
  // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate
  // data with no zlib header or trailer.
  z_stream s = {};
  deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY);
  s.next_in = const_cast<uint8_t *>(in.data());
  s.avail_in = in.size();

  // Allocate a buffer of half of the input size, and grow it by 1.5x if
  // insufficient.
  SmallVector<uint8_t, 0> out;
  size_t pos = 0;
  out.resize_for_overwrite(std::max<size_t>(in.size() / 2, 64));
  do {
    if (pos == out.size())
      out.resize_for_overwrite(out.size() * 3 / 2);
    s.next_out = out.data() + pos;
    s.avail_out = out.size() - pos;
    (void)deflate(&s, flush);
    pos = s.next_out - out.data();
  } while (s.avail_out == 0);
  assert(s.avail_in == 0);

  out.truncate(pos);
  deflateEnd(&s);
  return out;
}
#endif

// Compress section contents if this section contains debug info.
template <class ELFT> void OutputSection::maybeCompress() {
  using Elf_Chdr = typename ELFT::Chdr;
  (void)sizeof(Elf_Chdr);

  // Compress only DWARF debug sections.
  if (config->compressDebugSections == DebugCompressionType::None ||
      (flags & SHF_ALLOC) || !name.startswith(".debug_") || size == 0)
    return;

  llvm::TimeTraceScope timeScope("Compress debug sections");
  compressed.uncompressedSize = size;
  auto buf = std::make_unique<uint8_t[]>(size);
  // Write uncompressed data to a temporary zero-initialized buffer.
  {
    parallel::TaskGroup tg;
    writeTo<ELFT>(buf.get(), tg);
  }

#if LLVM_ENABLE_ZSTD
  // Use ZSTD's streaming compression API which permits parallel workers working
  // on the stream. See http://facebook.github.io/zstd/zstd_manual.html
  // "Streaming compression - HowTo".
  if (config->compressDebugSections == DebugCompressionType::Zstd) {
    // Allocate a buffer of half of the input size, and grow it by 1.5x if
    // insufficient.
    compressed.shards = std::make_unique<SmallVector<uint8_t, 0>[]>(1);
    SmallVector<uint8_t, 0> &out = compressed.shards[0];
    out.resize_for_overwrite(std::max<size_t>(size / 2, 32));
    size_t pos = 0;

    ZSTD_CCtx *cctx = ZSTD_createCCtx();
    // Ignore error if zstd was not built with ZSTD_MULTITHREAD.
    (void)ZSTD_CCtx_setParameter(cctx, ZSTD_c_nbWorkers,
                                 parallel::strategy.compute_thread_count());
    ZSTD_outBuffer zob = {out.data(), out.size(), 0};
    ZSTD_EndDirective directive = ZSTD_e_continue;
    const size_t blockSize = ZSTD_CStreamInSize();
    do {
      const size_t n = std::min(static_cast<size_t>(size - pos), blockSize);
      if (n == size - pos)
        directive = ZSTD_e_end;
      ZSTD_inBuffer zib = {buf.get() + pos, n, 0};
      size_t bytesRemaining = 0;
      while (zib.pos != zib.size ||
             (directive == ZSTD_e_end && bytesRemaining != 0)) {
        if (zob.pos == zob.size) {
          out.resize_for_overwrite(out.size() * 3 / 2);
          zob.dst = out.data();
          zob.size = out.size();
        }
        bytesRemaining = ZSTD_compressStream2(cctx, &zob, &zib, directive);
        assert(!ZSTD_isError(bytesRemaining));
      }
      pos += n;
    } while (directive != ZSTD_e_end);
    out.resize(zob.pos);
    ZSTD_freeCCtx(cctx);

    size = sizeof(Elf_Chdr) + out.size();
    flags |= SHF_COMPRESSED;
    return;
  }
#endif

#if LLVM_ENABLE_ZLIB
  // We chose 1 (Z_BEST_SPEED) as the default compression level because it is
  // the fastest. If -O2 is given, we use level 6 to compress debug info more by
  // ~15%. We found that level 7 to 9 doesn't make much difference (~1% more
  // compression) while they take significant amount of time (~2x), so level 6
  // seems enough.
  const int level = config->optimize >= 2 ? 6 : Z_BEST_SPEED;

  // Split input into 1-MiB shards.
  constexpr size_t shardSize = 1 << 20;
  auto shardsIn = split(ArrayRef<uint8_t>(buf.get(), size), shardSize);
  const size_t numShards = shardsIn.size();

  // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all
  // shards but the last to flush the output to a byte boundary to be
  // concatenated with the next shard.
  auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(numShards);
  auto shardsAdler = std::make_unique<uint32_t[]>(numShards);
  parallelFor(0, numShards, [&](size_t i) {
    shardsOut[i] = deflateShard(shardsIn[i], level,
                                i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH);
    shardsAdler[i] = adler32(1, shardsIn[i].data(), shardsIn[i].size());
  });

  // Update section size and combine Alder-32 checksums.
  uint32_t checksum = 1;       // Initial Adler-32 value
  size = sizeof(Elf_Chdr) + 2; // Elf_Chdir and zlib header
  for (size_t i = 0; i != numShards; ++i) {
    size += shardsOut[i].size();
    checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size());
  }
  size += 4; // checksum

  compressed.shards = std::move(shardsOut);
  compressed.numShards = numShards;
  compressed.checksum = checksum;
  flags |= SHF_COMPRESSED;
#endif
}

static void writeInt(uint8_t *buf, uint64_t data, uint64_t size) {
  if (size == 1)
    *buf = data;
  else if (size == 2)
    write16(buf, data);
  else if (size == 4)
    write32(buf, data);
  else if (size == 8)
    write64(buf, data);
  else
    llvm_unreachable("unsupported Size argument");
}

template <class ELFT>
void OutputSection::writeTo(uint8_t *buf, parallel::TaskGroup &tg) {
  llvm::TimeTraceScope timeScope("Write sections", name);
  if (type == SHT_NOBITS)
    return;

  // If --compress-debug-section is specified and if this is a debug section,
  // we've already compressed section contents. If that's the case,
  // just write it down.
  if (compressed.shards) {
    auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf);
    chdr->ch_size = compressed.uncompressedSize;
    chdr->ch_addralign = addralign;
    buf += sizeof(*chdr);
    if (config->compressDebugSections == DebugCompressionType::Zstd) {
      chdr->ch_type = ELFCOMPRESS_ZSTD;
      memcpy(buf, compressed.shards[0].data(), compressed.shards[0].size());
      return;
    }
    chdr->ch_type = ELFCOMPRESS_ZLIB;

    // Compute shard offsets.
    auto offsets = std::make_unique<size_t[]>(compressed.numShards);
    offsets[0] = 2; // zlib header
    for (size_t i = 1; i != compressed.numShards; ++i)
      offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size();

    buf[0] = 0x78; // CMF
    buf[1] = 0x01; // FLG: best speed
    parallelFor(0, compressed.numShards, [&](size_t i) {
      memcpy(buf + offsets[i], compressed.shards[i].data(),
             compressed.shards[i].size());
    });

    write32be(buf + (size - sizeof(*chdr) - 4), compressed.checksum);
    return;
  }

  // Write leading padding.
  ArrayRef<InputSection *> sections = getInputSections(*this, storage);
  std::array<uint8_t, 4> filler = getFiller();
  bool nonZeroFiller = read32(filler.data()) != 0;
  if (nonZeroFiller)
    fill(buf, sections.empty() ? size : sections[0]->outSecOff, filler);

  auto fn = [=](size_t begin, size_t end) {
    size_t numSections = sections.size();
    for (size_t i = begin; i != end; ++i) {
      InputSection *isec = sections[i];
      if (auto *s = dyn_cast<SyntheticSection>(isec))
        s->writeTo(buf + isec->outSecOff);
      else
        isec->writeTo<ELFT>(buf + isec->outSecOff);

      // Fill gaps between sections.
      if (nonZeroFiller) {
        uint8_t *start = buf + isec->outSecOff + isec->getSize();
        uint8_t *end;
        if (i + 1 == numSections)
          end = buf + size;
        else
          end = buf + sections[i + 1]->outSecOff;
        if (isec->nopFiller) {
          assert(target->nopInstrs);
          nopInstrFill(start, end - start);
        } else
          fill(start, end - start, filler);
      }
    }
  };

  // If there is any BYTE()-family command (rare), write the section content
  // first then process BYTE to overwrite the filler content. The write is
  // serial due to the limitation of llvm/Support/Parallel.h.
  bool written = false;
  size_t numSections = sections.size();
  for (SectionCommand *cmd : commands)
    if (auto *data = dyn_cast<ByteCommand>(cmd)) {
      if (!std::exchange(written, true))
        fn(0, numSections);
      writeInt(buf + data->offset, data->expression().getValue(), data->size);
    }
  if (written || !numSections)
    return;

  // There is no data command. Write content asynchronously to overlap the write
  // time with other output sections. Note, if a linker script specifies
  // overlapping output sections (needs --noinhibit-exec or --no-check-sections
  // to supress the error), the output may be non-deterministic.
  const size_t taskSizeLimit = 4 << 20;
  for (size_t begin = 0, i = 0, taskSize = 0;;) {
    taskSize += sections[i]->getSize();
    bool done = ++i == numSections;
    if (done || taskSize >= taskSizeLimit) {
      tg.spawn([=] { fn(begin, i); });
      if (done)
        break;
      begin = i;
      taskSize = 0;
    }
  }
}

static void finalizeShtGroup(OutputSection *os, InputSection *section) {
  // sh_link field for SHT_GROUP sections should contain the section index of
  // the symbol table.
  os->link = in.symTab->getParent()->sectionIndex;

  if (!section)
    return;

  // sh_info then contain index of an entry in symbol table section which
  // provides signature of the section group.
  ArrayRef<Symbol *> symbols = section->file->getSymbols();
  os->info = in.symTab->getSymbolIndex(symbols[section->info]);

  // Some group members may be combined or discarded, so we need to compute the
  // new size. The content will be rewritten in InputSection::copyShtGroup.
  DenseSet<uint32_t> seen;
  ArrayRef<InputSectionBase *> sections = section->file->getSections();
  for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(1))
    if (OutputSection *osec = sections[read32(&idx)]->getOutputSection())
      seen.insert(osec->sectionIndex);
  os->size = (1 + seen.size()) * sizeof(uint32_t);
}

void OutputSection::finalize() {
  InputSection *first = getFirstInputSection(this);

  if (flags & SHF_LINK_ORDER) {
    // We must preserve the link order dependency of sections with the
    // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We
    // need to translate the InputSection sh_link to the OutputSection sh_link,
    // all InputSections in the OutputSection have the same dependency.
    if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(first))
      link = ex->getLinkOrderDep()->getParent()->sectionIndex;
    else if (first->flags & SHF_LINK_ORDER)
      if (auto *d = first->getLinkOrderDep())
        link = d->getParent()->sectionIndex;
  }

  if (type == SHT_GROUP) {
    finalizeShtGroup(this, first);
    return;
  }

  if (!config->copyRelocs || (type != SHT_RELA && type != SHT_REL))
    return;

  // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs.
  // Normally 'type' was changed by 'first' so 'first' should be non-null.
  // However, if the output section is .rela.dyn, 'type' can be set by the empty
  // synthetic .rela.plt and first can be null.
  if (!first || isa<SyntheticSection>(first))
    return;

  link = in.symTab->getParent()->sectionIndex;
  // sh_info for SHT_REL[A] sections should contain the section header index of
  // the section to which the relocation applies.
  InputSectionBase *s = first->getRelocatedSection();
  info = s->getOutputSection()->sectionIndex;
  flags |= SHF_INFO_LINK;
}

// Returns true if S is in one of the many forms the compiler driver may pass
// crtbegin files.
//
// Gcc uses any of crtbegin[<empty>|S|T].o.
// Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o.

static bool isCrt(StringRef s, StringRef beginEnd) {
  s = sys::path::filename(s);
  if (!s.consume_back(".o"))
    return false;
  if (s.consume_front("clang_rt."))
    return s.consume_front(beginEnd);
  return s.consume_front(beginEnd) && s.size() <= 1;
}

// .ctors and .dtors are sorted by this order:
//
// 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1).
// 2. The section is named ".ctors" or ".dtors" (priority: 65536).
// 3. The section has an optional priority value in the form of ".ctors.N" or
//    ".dtors.N" where N is a number in the form of %05u (priority: 65535-N).
// 4. .ctors/.dtors in crtend (which contains a sentinel value 0).
//
// For 2 and 3, the sections are sorted by priority from high to low, e.g.
// .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336).  In GNU ld's
// internal linker scripts, the sorting is by string comparison which can
// achieve the same goal given the optional priority values are of the same
// length.
//
// In an ideal world, we don't need this function because .init_array and
// .ctors are duplicate features (and .init_array is newer.) However, there
// are too many real-world use cases of .ctors, so we had no choice to
// support that with this rather ad-hoc semantics.
static bool compCtors(const InputSection *a, const InputSection *b) {
  bool beginA = isCrt(a->file->getName(), "crtbegin");
  bool beginB = isCrt(b->file->getName(), "crtbegin");
  if (beginA != beginB)
    return beginA;
  bool endA = isCrt(a->file->getName(), "crtend");
  bool endB = isCrt(b->file->getName(), "crtend");
  if (endA != endB)
    return endB;
  return getPriority(a->name) > getPriority(b->name);
}

// Sorts input sections by the special rules for .ctors and .dtors.
// Unfortunately, the rules are different from the one for .{init,fini}_array.
// Read the comment above.
void OutputSection::sortCtorsDtors() {
  assert(commands.size() == 1);
  auto *isd = cast<InputSectionDescription>(commands[0]);
  llvm::stable_sort(isd->sections, compCtors);
}

// If an input string is in the form of "foo.N" where N is a number, return N
// (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one
// greater than the lowest priority.
int elf::getPriority(StringRef s) {
  size_t pos = s.rfind('.');
  if (pos == StringRef::npos)
    return 65536;
  int v = 65536;
  if (to_integer(s.substr(pos + 1), v, 10) &&
      (pos == 6 && (s.startswith(".ctors") || s.startswith(".dtors"))))
    v = 65535 - v;
  return v;
}

InputSection *elf::getFirstInputSection(const OutputSection *os) {
  for (SectionCommand *cmd : os->commands)
    if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
      if (!isd->sections.empty())
        return isd->sections[0];
  return nullptr;
}

ArrayRef<InputSection *>
elf::getInputSections(const OutputSection &os,
                      SmallVector<InputSection *, 0> &storage) {
  ArrayRef<InputSection *> ret;
  storage.clear();
  for (SectionCommand *cmd : os.commands) {
    auto *isd = dyn_cast<InputSectionDescription>(cmd);
    if (!isd)
      continue;
    if (ret.empty()) {
      ret = isd->sections;
    } else {
      if (storage.empty())
        storage.assign(ret.begin(), ret.end());
      storage.insert(storage.end(), isd->sections.begin(), isd->sections.end());
    }
  }
  return storage.empty() ? ret : ArrayRef(storage);
}

// Sorts input sections by section name suffixes, so that .foo.N comes
// before .foo.M if N < M. Used to sort .{init,fini}_array.N sections.
// We want to keep the original order if the priorities are the same
// because the compiler keeps the original initialization order in a
// translation unit and we need to respect that.
// For more detail, read the section of the GCC's manual about init_priority.
void OutputSection::sortInitFini() {
  // Sort sections by priority.
  sort([](InputSectionBase *s) { return getPriority(s->name); });
}

std::array<uint8_t, 4> OutputSection::getFiller() {
  if (filler)
    return *filler;
  if (flags & SHF_EXECINSTR)
    return target->trapInstr;
  return {0, 0, 0, 0};
}

void OutputSection::checkDynRelAddends(const uint8_t *bufStart) {
  assert(config->writeAddends && config->checkDynamicRelocs);
  assert(type == SHT_REL || type == SHT_RELA);
  SmallVector<InputSection *, 0> storage;
  ArrayRef<InputSection *> sections = getInputSections(*this, storage);
  parallelFor(0, sections.size(), [&](size_t i) {
    // When linking with -r or --emit-relocs we might also call this function
    // for input .rel[a].<sec> sections which we simply pass through to the
    // output. We skip over those and only look at the synthetic relocation
    // sections created during linking.
    const auto *sec = dyn_cast<RelocationBaseSection>(sections[i]);
    if (!sec)
      return;
    for (const DynamicReloc &rel : sec->relocs) {
      int64_t addend = rel.addend;
      const OutputSection *relOsec = rel.inputSec->getOutputSection();
      assert(relOsec != nullptr && "missing output section for relocation");
      const uint8_t *relocTarget =
          bufStart + relOsec->offset + rel.inputSec->getOffset(rel.offsetInSec);
      // For SHT_NOBITS the written addend is always zero.
      int64_t writtenAddend =
          relOsec->type == SHT_NOBITS
              ? 0
              : target->getImplicitAddend(relocTarget, rel.type);
      if (addend != writtenAddend)
        internalLinkerError(
            getErrorLocation(relocTarget),
            "wrote incorrect addend value 0x" + utohexstr(writtenAddend) +
                " instead of 0x" + utohexstr(addend) +
                " for dynamic relocation " + toString(rel.type) +
                " at offset 0x" + utohexstr(rel.getOffset()) +
                (rel.sym ? " against symbol " + toString(*rel.sym) : ""));
    }
  });
}

template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr);
template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr);
template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr);
template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr);

template void OutputSection::writeTo<ELF32LE>(uint8_t *,
                                              llvm::parallel::TaskGroup &);
template void OutputSection::writeTo<ELF32BE>(uint8_t *,
                                              llvm::parallel::TaskGroup &);
template void OutputSection::writeTo<ELF64LE>(uint8_t *,
                                              llvm::parallel::TaskGroup &);
template void OutputSection::writeTo<ELF64BE>(uint8_t *,
                                              llvm::parallel::TaskGroup &);

template void OutputSection::maybeCompress<ELF32LE>();
template void OutputSection::maybeCompress<ELF32BE>();
template void OutputSection::maybeCompress<ELF64LE>();
template void OutputSection::maybeCompress<ELF64BE>();