summaryrefslogtreecommitdiff
path: root/lld/ELF/Relocations.h
blob: 29e3edeca6befa5896f38678e695384c88d31f74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
//===- Relocations.h -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLD_ELF_RELOCATIONS_H
#define LLD_ELF_RELOCATIONS_H

#include "lld/Common/LLVM.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include <vector>

namespace lld::elf {
class Symbol;
class InputSection;
class InputSectionBase;
class OutputSection;
class SectionBase;

// Represents a relocation type, such as R_X86_64_PC32 or R_ARM_THM_CALL.
using RelType = uint32_t;
using JumpModType = uint32_t;

// List of target-independent relocation types. Relocations read
// from files are converted to these types so that the main code
// doesn't have to know about architecture-specific details.
enum RelExpr {
  R_ABS,
  R_ADDEND,
  R_DTPREL,
  R_GOT,
  R_GOT_OFF,
  R_GOT_PC,
  R_GOTONLY_PC,
  R_GOTPLTONLY_PC,
  R_GOTPLT,
  R_GOTPLTREL,
  R_GOTREL,
  R_NONE,
  R_PC,
  R_PLT,
  R_PLT_PC,
  R_PLT_GOTPLT,
  R_RELAX_HINT,
  R_RELAX_GOT_PC,
  R_RELAX_GOT_PC_NOPIC,
  R_RELAX_TLS_GD_TO_IE,
  R_RELAX_TLS_GD_TO_IE_ABS,
  R_RELAX_TLS_GD_TO_IE_GOT_OFF,
  R_RELAX_TLS_GD_TO_IE_GOTPLT,
  R_RELAX_TLS_GD_TO_LE,
  R_RELAX_TLS_GD_TO_LE_NEG,
  R_RELAX_TLS_IE_TO_LE,
  R_RELAX_TLS_LD_TO_LE,
  R_RELAX_TLS_LD_TO_LE_ABS,
  R_SIZE,
  R_TPREL,
  R_TPREL_NEG,
  R_TLSDESC,
  R_TLSDESC_CALL,
  R_TLSDESC_PC,
  R_TLSDESC_GOTPLT,
  R_TLSGD_GOT,
  R_TLSGD_GOTPLT,
  R_TLSGD_PC,
  R_TLSIE_HINT,
  R_TLSLD_GOT,
  R_TLSLD_GOTPLT,
  R_TLSLD_GOT_OFF,
  R_TLSLD_HINT,
  R_TLSLD_PC,

  // The following is abstract relocation types used for only one target.
  //
  // Even though RelExpr is intended to be a target-neutral representation
  // of a relocation type, there are some relocations whose semantics are
  // unique to a target. Such relocation are marked with R_<TARGET_NAME>.
  R_AARCH64_GOT_PAGE_PC,
  R_AARCH64_GOT_PAGE,
  R_AARCH64_PAGE_PC,
  R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC,
  R_AARCH64_TLSDESC_PAGE,
  R_ARM_PCA,
  R_ARM_SBREL,
  R_MIPS_GOTREL,
  R_MIPS_GOT_GP,
  R_MIPS_GOT_GP_PC,
  R_MIPS_GOT_LOCAL_PAGE,
  R_MIPS_GOT_OFF,
  R_MIPS_GOT_OFF32,
  R_MIPS_TLSGD,
  R_MIPS_TLSLD,
  R_PPC32_PLTREL,
  R_PPC64_CALL,
  R_PPC64_CALL_PLT,
  R_PPC64_RELAX_TOC,
  R_PPC64_TOCBASE,
  R_PPC64_RELAX_GOT_PC,
  R_RISCV_ADD,
  R_RISCV_PC_INDIRECT,
};

// Architecture-neutral representation of relocation.
struct Relocation {
  RelExpr expr;
  RelType type;
  uint64_t offset;
  int64_t addend;
  Symbol *sym;
};

// Manipulate jump instructions with these modifiers.  These are used to relax
// jump instruction opcodes at basic block boundaries and are particularly
// useful when basic block sections are enabled.
struct JumpInstrMod {
  uint64_t offset;
  JumpModType original;
  unsigned size;
};

// This function writes undefined symbol diagnostics to an internal buffer.
// Call reportUndefinedSymbols() after calling scanRelocations() to emit
// the diagnostics.
template <class ELFT> void scanRelocations();
void reportUndefinedSymbols();
void postScanRelocations();

void hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections);
bool hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections);

class ThunkSection;
class Thunk;
class InputSectionDescription;

class ThunkCreator {
public:
  // Return true if Thunks have been added to OutputSections
  bool createThunks(uint32_t pass, ArrayRef<OutputSection *> outputSections);

private:
  void mergeThunks(ArrayRef<OutputSection *> outputSections);

  ThunkSection *getISDThunkSec(OutputSection *os, InputSection *isec,
                               InputSectionDescription *isd,
                               const Relocation &rel, uint64_t src);

  ThunkSection *getISThunkSec(InputSection *isec);

  void createInitialThunkSections(ArrayRef<OutputSection *> outputSections);

  std::pair<Thunk *, bool> getThunk(InputSection *isec, Relocation &rel,
                                    uint64_t src);

  ThunkSection *addThunkSection(OutputSection *os, InputSectionDescription *,
                                uint64_t off);

  bool normalizeExistingThunk(Relocation &rel, uint64_t src);

  // Record all the available Thunks for a (Symbol, addend) pair, where Symbol
  // is represented as a (section, offset) pair. There may be multiple
  // relocations sharing the same (section, offset + addend) pair. We may revert
  // a relocation back to its original non-Thunk target, and restore the
  // original addend, so we cannot fold offset + addend. A nested pair is used
  // because DenseMapInfo is not specialized for std::tuple.
  llvm::DenseMap<std::pair<std::pair<SectionBase *, uint64_t>, int64_t>,
                 std::vector<Thunk *>>
      thunkedSymbolsBySectionAndAddend;
  llvm::DenseMap<std::pair<Symbol *, int64_t>, std::vector<Thunk *>>
      thunkedSymbols;

  // Find a Thunk from the Thunks symbol definition, we can use this to find
  // the Thunk from a relocation to the Thunks symbol definition.
  llvm::DenseMap<Symbol *, Thunk *> thunks;

  // Track InputSections that have an inline ThunkSection placed in front
  // an inline ThunkSection may have control fall through to the section below
  // so we need to make sure that there is only one of them.
  // The Mips LA25 Thunk is an example of an inline ThunkSection.
  llvm::DenseMap<InputSection *, ThunkSection *> thunkedSections;

  // The number of completed passes of createThunks this permits us
  // to do one time initialization on Pass 0 and put a limit on the
  // number of times it can be called to prevent infinite loops.
  uint32_t pass = 0;
};

// Return a int64_t to make sure we get the sign extension out of the way as
// early as possible.
template <class ELFT>
static inline int64_t getAddend(const typename ELFT::Rel &rel) {
  return 0;
}
template <class ELFT>
static inline int64_t getAddend(const typename ELFT::Rela &rel) {
  return rel.r_addend;
}

template <typename RelTy>
ArrayRef<RelTy> sortRels(ArrayRef<RelTy> rels, SmallVector<RelTy, 0> &storage) {
  auto cmp = [](const RelTy &a, const RelTy &b) {
    return a.r_offset < b.r_offset;
  };
  if (!llvm::is_sorted(rels, cmp)) {
    storage.assign(rels.begin(), rels.end());
    llvm::stable_sort(storage, cmp);
    rels = storage;
  }
  return rels;
}
} // namespace lld::elf

#endif