summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/AArch64/AArch64TargetTransformInfo.cpp
blob: c326c12f0016d5feb67f8c4e2266357e79e7d8ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "AArch64TargetTransformInfo.h"
#include "AArch64ExpandImm.h"
#include "AArch64PerfectShuffle.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
#include <algorithm>
#include <optional>
using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "aarch64tti"

static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
                                               cl::init(true), cl::Hidden);

static cl::opt<unsigned> SVEGatherOverhead("sve-gather-overhead", cl::init(10),
                                           cl::Hidden);

static cl::opt<unsigned> SVEScatterOverhead("sve-scatter-overhead",
                                            cl::init(10), cl::Hidden);

namespace {
class TailFoldingOption {
  // These bitfields will only ever be set to something non-zero in operator=,
  // when setting the -sve-tail-folding option. This option should always be of
  // the form (default|simple|all|disable)[+(Flag1|Flag2|etc)], where here
  // InitialBits is one of (disabled|all|simple). EnableBits represents
  // additional flags we're enabling, and DisableBits for those flags we're
  // disabling. The default flag is tracked in the variable NeedsDefault, since
  // at the time of setting the option we may not know what the default value
  // for the CPU is.
  TailFoldingOpts InitialBits = TailFoldingOpts::Disabled;
  TailFoldingOpts EnableBits = TailFoldingOpts::Disabled;
  TailFoldingOpts DisableBits = TailFoldingOpts::Disabled;

  // This value needs to be initialised to true in case the user does not
  // explicitly set the -sve-tail-folding option.
  bool NeedsDefault = true;

  void setInitialBits(TailFoldingOpts Bits) { InitialBits = Bits; }

  void setNeedsDefault(bool V) { NeedsDefault = V; }

  void setEnableBit(TailFoldingOpts Bit) {
    EnableBits |= Bit;
    DisableBits &= ~Bit;
  }

  void setDisableBit(TailFoldingOpts Bit) {
    EnableBits &= ~Bit;
    DisableBits |= Bit;
  }

  TailFoldingOpts getBits(TailFoldingOpts DefaultBits) const {
    TailFoldingOpts Bits = TailFoldingOpts::Disabled;

    assert((InitialBits == TailFoldingOpts::Disabled || !NeedsDefault) &&
           "Initial bits should only include one of "
           "(disabled|all|simple|default)");
    Bits = NeedsDefault ? DefaultBits : InitialBits;
    Bits |= EnableBits;
    Bits &= ~DisableBits;

    return Bits;
  }

  void reportError(std::string Opt) {
    errs() << "invalid argument '" << Opt
           << "' to -sve-tail-folding=; the option should be of the form\n"
              "  (disabled|all|default|simple)[+(reductions|recurrences"
              "|reverse|noreductions|norecurrences|noreverse)]\n";
    report_fatal_error("Unrecognised tail-folding option");
  }

public:

  void operator=(const std::string &Val) {
    // If the user explicitly sets -sve-tail-folding= then treat as an error.
    if (Val.empty()) {
      reportError("");
      return;
    }

    // Since the user is explicitly setting the option we don't automatically
    // need the default unless they require it.
    setNeedsDefault(false);

    SmallVector<StringRef, 4> TailFoldTypes;
    StringRef(Val).split(TailFoldTypes, '+', -1, false);

    unsigned StartIdx = 1;
    if (TailFoldTypes[0] == "disabled")
      setInitialBits(TailFoldingOpts::Disabled);
    else if (TailFoldTypes[0] == "all")
      setInitialBits(TailFoldingOpts::All);
    else if (TailFoldTypes[0] == "default")
      setNeedsDefault(true);
    else if (TailFoldTypes[0] == "simple")
      setInitialBits(TailFoldingOpts::Simple);
    else {
      StartIdx = 0;
      setInitialBits(TailFoldingOpts::Disabled);
    }

    for (unsigned I = StartIdx; I < TailFoldTypes.size(); I++) {
      if (TailFoldTypes[I] == "reductions")
        setEnableBit(TailFoldingOpts::Reductions);
      else if (TailFoldTypes[I] == "recurrences")
        setEnableBit(TailFoldingOpts::Recurrences);
      else if (TailFoldTypes[I] == "reverse")
        setEnableBit(TailFoldingOpts::Reverse);
      else if (TailFoldTypes[I] == "noreductions")
        setDisableBit(TailFoldingOpts::Reductions);
      else if (TailFoldTypes[I] == "norecurrences")
        setDisableBit(TailFoldingOpts::Recurrences);
      else if (TailFoldTypes[I] == "noreverse")
        setDisableBit(TailFoldingOpts::Reverse);
      else
        reportError(Val);
    }
  }

  bool satisfies(TailFoldingOpts DefaultBits, TailFoldingOpts Required) const {
    return (getBits(DefaultBits) & Required) == Required;
  }
};
} // namespace

TailFoldingOption TailFoldingOptionLoc;

cl::opt<TailFoldingOption, true, cl::parser<std::string>> SVETailFolding(
    "sve-tail-folding",
    cl::desc(
        "Control the use of vectorisation using tail-folding for SVE where the"
        " option is specified in the form (Initial)[+(Flag1|Flag2|...)]:"
        "\ndisabled      (Initial) No loop types will vectorize using "
        "tail-folding"
        "\ndefault       (Initial) Uses the default tail-folding settings for "
        "the target CPU"
        "\nall           (Initial) All legal loop types will vectorize using "
        "tail-folding"
        "\nsimple        (Initial) Use tail-folding for simple loops (not "
        "reductions or recurrences)"
        "\nreductions    Use tail-folding for loops containing reductions"
        "\nnoreductions  Inverse of above"
        "\nrecurrences   Use tail-folding for loops containing fixed order "
        "recurrences"
        "\nnorecurrences Inverse of above"
        "\nreverse       Use tail-folding for loops requiring reversed "
        "predicates"
        "\nnoreverse     Inverse of above"),
    cl::location(TailFoldingOptionLoc));

// Experimental option that will only be fully functional when the
// code-generator is changed to use SVE instead of NEON for all fixed-width
// operations.
static cl::opt<bool> EnableFixedwidthAutovecInStreamingMode(
    "enable-fixedwidth-autovec-in-streaming-mode", cl::init(false), cl::Hidden);

// Experimental option that will only be fully functional when the cost-model
// and code-generator have been changed to avoid using scalable vector
// instructions that are not legal in streaming SVE mode.
static cl::opt<bool> EnableScalableAutovecInStreamingMode(
    "enable-scalable-autovec-in-streaming-mode", cl::init(false), cl::Hidden);

bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
                                         const Function *Callee) const {
  SMEAttrs CallerAttrs(*Caller);
  SMEAttrs CalleeAttrs(*Callee);
  if (CallerAttrs.requiresSMChange(CalleeAttrs,
                                   /*BodyOverridesInterface=*/true) ||
      CallerAttrs.requiresLazySave(CalleeAttrs) ||
      CalleeAttrs.hasNewZAInterface())
    return false;

  const TargetMachine &TM = getTLI()->getTargetMachine();

  const FeatureBitset &CallerBits =
      TM.getSubtargetImpl(*Caller)->getFeatureBits();
  const FeatureBitset &CalleeBits =
      TM.getSubtargetImpl(*Callee)->getFeatureBits();

  // Inline a callee if its target-features are a subset of the callers
  // target-features.
  return (CallerBits & CalleeBits) == CalleeBits;
}

bool AArch64TTIImpl::shouldMaximizeVectorBandwidth(
    TargetTransformInfo::RegisterKind K) const {
  assert(K != TargetTransformInfo::RGK_Scalar);
  return K == TargetTransformInfo::RGK_FixedWidthVector;
}

/// Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
InstructionCost AArch64TTIImpl::getIntImmCost(int64_t Val) {
  // Check if the immediate can be encoded within an instruction.
  if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
    return 0;

  if (Val < 0)
    Val = ~Val;

  // Calculate how many moves we will need to materialize this constant.
  SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
  AArch64_IMM::expandMOVImm(Val, 64, Insn);
  return Insn.size();
}

/// Calculate the cost of materializing the given constant.
InstructionCost AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
                                              TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  // Sign-extend all constants to a multiple of 64-bit.
  APInt ImmVal = Imm;
  if (BitSize & 0x3f)
    ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);

  // Split the constant into 64-bit chunks and calculate the cost for each
  // chunk.
  InstructionCost Cost = 0;
  for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
    APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
    int64_t Val = Tmp.getSExtValue();
    Cost += getIntImmCost(Val);
  }
  // We need at least one instruction to materialze the constant.
  return std::max<InstructionCost>(1, Cost);
}

InstructionCost AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                                  const APInt &Imm, Type *Ty,
                                                  TTI::TargetCostKind CostKind,
                                                  Instruction *Inst) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;

  unsigned ImmIdx = ~0U;
  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::Store:
    ImmIdx = 0;
    break;
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::ICmp:
    ImmIdx = 1;
    break;
  // Always return TCC_Free for the shift value of a shift instruction.
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    if (Idx == 1)
      return TTI::TCC_Free;
    break;
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::BitCast:
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Select:
  case Instruction::Ret:
  case Instruction::Load:
    break;
  }

  if (Idx == ImmIdx) {
    int NumConstants = (BitSize + 63) / 64;
    InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
    return (Cost <= NumConstants * TTI::TCC_Basic)
               ? static_cast<int>(TTI::TCC_Free)
               : Cost;
  }
  return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

InstructionCost
AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
                                    const APInt &Imm, Type *Ty,
                                    TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;

  // Most (all?) AArch64 intrinsics do not support folding immediates into the
  // selected instruction, so we compute the materialization cost for the
  // immediate directly.
  if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
    return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow:
    if (Idx == 1) {
      int NumConstants = (BitSize + 63) / 64;
      InstructionCost Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
      return (Cost <= NumConstants * TTI::TCC_Basic)
                 ? static_cast<int>(TTI::TCC_Free)
                 : Cost;
    }
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_gc_statepoint:
    if ((Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

TargetTransformInfo::PopcntSupportKind
AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  if (TyWidth == 32 || TyWidth == 64)
    return TTI::PSK_FastHardware;
  // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
  return TTI::PSK_Software;
}

InstructionCost
AArch64TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                                      TTI::TargetCostKind CostKind) {
  auto *RetTy = ICA.getReturnType();
  switch (ICA.getID()) {
  case Intrinsic::umin:
  case Intrinsic::umax:
  case Intrinsic::smin:
  case Intrinsic::smax: {
    static const auto ValidMinMaxTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
                                        MVT::v8i16, MVT::v2i32, MVT::v4i32};
    auto LT = getTypeLegalizationCost(RetTy);
    // v2i64 types get converted to cmp+bif hence the cost of 2
    if (LT.second == MVT::v2i64)
      return LT.first * 2;
    if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }))
      return LT.first;
    break;
  }
  case Intrinsic::sadd_sat:
  case Intrinsic::ssub_sat:
  case Intrinsic::uadd_sat:
  case Intrinsic::usub_sat: {
    static const auto ValidSatTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
                                     MVT::v8i16, MVT::v2i32, MVT::v4i32,
                                     MVT::v2i64};
    auto LT = getTypeLegalizationCost(RetTy);
    // This is a base cost of 1 for the vadd, plus 3 extract shifts if we
    // need to extend the type, as it uses shr(qadd(shl, shl)).
    unsigned Instrs =
        LT.second.getScalarSizeInBits() == RetTy->getScalarSizeInBits() ? 1 : 4;
    if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
      return LT.first * Instrs;
    break;
  }
  case Intrinsic::abs: {
    static const auto ValidAbsTys = {MVT::v8i8,  MVT::v16i8, MVT::v4i16,
                                     MVT::v8i16, MVT::v2i32, MVT::v4i32,
                                     MVT::v2i64};
    auto LT = getTypeLegalizationCost(RetTy);
    if (any_of(ValidAbsTys, [&LT](MVT M) { return M == LT.second; }))
      return LT.first;
    break;
  }
  case Intrinsic::experimental_stepvector: {
    InstructionCost Cost = 1; // Cost of the `index' instruction
    auto LT = getTypeLegalizationCost(RetTy);
    // Legalisation of illegal vectors involves an `index' instruction plus
    // (LT.first - 1) vector adds.
    if (LT.first > 1) {
      Type *LegalVTy = EVT(LT.second).getTypeForEVT(RetTy->getContext());
      InstructionCost AddCost =
          getArithmeticInstrCost(Instruction::Add, LegalVTy, CostKind);
      Cost += AddCost * (LT.first - 1);
    }
    return Cost;
  }
  case Intrinsic::bitreverse: {
    static const CostTblEntry BitreverseTbl[] = {
        {Intrinsic::bitreverse, MVT::i32, 1},
        {Intrinsic::bitreverse, MVT::i64, 1},
        {Intrinsic::bitreverse, MVT::v8i8, 1},
        {Intrinsic::bitreverse, MVT::v16i8, 1},
        {Intrinsic::bitreverse, MVT::v4i16, 2},
        {Intrinsic::bitreverse, MVT::v8i16, 2},
        {Intrinsic::bitreverse, MVT::v2i32, 2},
        {Intrinsic::bitreverse, MVT::v4i32, 2},
        {Intrinsic::bitreverse, MVT::v1i64, 2},
        {Intrinsic::bitreverse, MVT::v2i64, 2},
    };
    const auto LegalisationCost = getTypeLegalizationCost(RetTy);
    const auto *Entry =
        CostTableLookup(BitreverseTbl, ICA.getID(), LegalisationCost.second);
    if (Entry) {
      // Cost Model is using the legal type(i32) that i8 and i16 will be
      // converted to +1 so that we match the actual lowering cost
      if (TLI->getValueType(DL, RetTy, true) == MVT::i8 ||
          TLI->getValueType(DL, RetTy, true) == MVT::i16)
        return LegalisationCost.first * Entry->Cost + 1;

      return LegalisationCost.first * Entry->Cost;
    }
    break;
  }
  case Intrinsic::ctpop: {
    if (!ST->hasNEON()) {
      // 32-bit or 64-bit ctpop without NEON is 12 instructions.
      return getTypeLegalizationCost(RetTy).first * 12;
    }
    static const CostTblEntry CtpopCostTbl[] = {
        {ISD::CTPOP, MVT::v2i64, 4},
        {ISD::CTPOP, MVT::v4i32, 3},
        {ISD::CTPOP, MVT::v8i16, 2},
        {ISD::CTPOP, MVT::v16i8, 1},
        {ISD::CTPOP, MVT::i64,   4},
        {ISD::CTPOP, MVT::v2i32, 3},
        {ISD::CTPOP, MVT::v4i16, 2},
        {ISD::CTPOP, MVT::v8i8,  1},
        {ISD::CTPOP, MVT::i32,   5},
    };
    auto LT = getTypeLegalizationCost(RetTy);
    MVT MTy = LT.second;
    if (const auto *Entry = CostTableLookup(CtpopCostTbl, ISD::CTPOP, MTy)) {
      // Extra cost of +1 when illegal vector types are legalized by promoting
      // the integer type.
      int ExtraCost = MTy.isVector() && MTy.getScalarSizeInBits() !=
                                            RetTy->getScalarSizeInBits()
                          ? 1
                          : 0;
      return LT.first * Entry->Cost + ExtraCost;
    }
    break;
  }
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow: {
    static const CostTblEntry WithOverflowCostTbl[] = {
        {Intrinsic::sadd_with_overflow, MVT::i8, 3},
        {Intrinsic::uadd_with_overflow, MVT::i8, 3},
        {Intrinsic::sadd_with_overflow, MVT::i16, 3},
        {Intrinsic::uadd_with_overflow, MVT::i16, 3},
        {Intrinsic::sadd_with_overflow, MVT::i32, 1},
        {Intrinsic::uadd_with_overflow, MVT::i32, 1},
        {Intrinsic::sadd_with_overflow, MVT::i64, 1},
        {Intrinsic::uadd_with_overflow, MVT::i64, 1},
        {Intrinsic::ssub_with_overflow, MVT::i8, 3},
        {Intrinsic::usub_with_overflow, MVT::i8, 3},
        {Intrinsic::ssub_with_overflow, MVT::i16, 3},
        {Intrinsic::usub_with_overflow, MVT::i16, 3},
        {Intrinsic::ssub_with_overflow, MVT::i32, 1},
        {Intrinsic::usub_with_overflow, MVT::i32, 1},
        {Intrinsic::ssub_with_overflow, MVT::i64, 1},
        {Intrinsic::usub_with_overflow, MVT::i64, 1},
        {Intrinsic::smul_with_overflow, MVT::i8, 5},
        {Intrinsic::umul_with_overflow, MVT::i8, 4},
        {Intrinsic::smul_with_overflow, MVT::i16, 5},
        {Intrinsic::umul_with_overflow, MVT::i16, 4},
        {Intrinsic::smul_with_overflow, MVT::i32, 2}, // eg umull;tst
        {Intrinsic::umul_with_overflow, MVT::i32, 2}, // eg umull;cmp sxtw
        {Intrinsic::smul_with_overflow, MVT::i64, 3}, // eg mul;smulh;cmp
        {Intrinsic::umul_with_overflow, MVT::i64, 3}, // eg mul;umulh;cmp asr
    };
    EVT MTy = TLI->getValueType(DL, RetTy->getContainedType(0), true);
    if (MTy.isSimple())
      if (const auto *Entry = CostTableLookup(WithOverflowCostTbl, ICA.getID(),
                                              MTy.getSimpleVT()))
        return Entry->Cost;
    break;
  }
  case Intrinsic::fptosi_sat:
  case Intrinsic::fptoui_sat: {
    if (ICA.getArgTypes().empty())
      break;
    bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
    auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]);
    EVT MTy = TLI->getValueType(DL, RetTy);
    // Check for the legal types, which are where the size of the input and the
    // output are the same, or we are using cvt f64->i32 or f32->i64.
    if ((LT.second == MVT::f32 || LT.second == MVT::f64 ||
         LT.second == MVT::v2f32 || LT.second == MVT::v4f32 ||
         LT.second == MVT::v2f64) &&
        (LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits() ||
         (LT.second == MVT::f64 && MTy == MVT::i32) ||
         (LT.second == MVT::f32 && MTy == MVT::i64)))
      return LT.first;
    // Similarly for fp16 sizes
    if (ST->hasFullFP16() &&
        ((LT.second == MVT::f16 && MTy == MVT::i32) ||
         ((LT.second == MVT::v4f16 || LT.second == MVT::v8f16) &&
          (LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits()))))
      return LT.first;

    // Otherwise we use a legal convert followed by a min+max
    if ((LT.second.getScalarType() == MVT::f32 ||
         LT.second.getScalarType() == MVT::f64 ||
         (ST->hasFullFP16() && LT.second.getScalarType() == MVT::f16)) &&
        LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
      Type *LegalTy =
          Type::getIntNTy(RetTy->getContext(), LT.second.getScalarSizeInBits());
      if (LT.second.isVector())
        LegalTy = VectorType::get(LegalTy, LT.second.getVectorElementCount());
      InstructionCost Cost = 1;
      IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin : Intrinsic::umin,
                                    LegalTy, {LegalTy, LegalTy});
      Cost += getIntrinsicInstrCost(Attrs1, CostKind);
      IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax : Intrinsic::umax,
                                    LegalTy, {LegalTy, LegalTy});
      Cost += getIntrinsicInstrCost(Attrs2, CostKind);
      return LT.first * Cost;
    }
    break;
  }
  case Intrinsic::fshl:
  case Intrinsic::fshr: {
    if (ICA.getArgs().empty())
      break;

    // TODO: Add handling for fshl where third argument is not a constant.
    const TTI::OperandValueInfo OpInfoZ = TTI::getOperandInfo(ICA.getArgs()[2]);
    if (!OpInfoZ.isConstant())
      break;

    const auto LegalisationCost = getTypeLegalizationCost(RetTy);
    if (OpInfoZ.isUniform()) {
      // FIXME: The costs could be lower if the codegen is better.
      static const CostTblEntry FshlTbl[] = {
          {Intrinsic::fshl, MVT::v4i32, 3}, // ushr + shl + orr
          {Intrinsic::fshl, MVT::v2i64, 3}, {Intrinsic::fshl, MVT::v16i8, 4},
          {Intrinsic::fshl, MVT::v8i16, 4}, {Intrinsic::fshl, MVT::v2i32, 3},
          {Intrinsic::fshl, MVT::v8i8, 4},  {Intrinsic::fshl, MVT::v4i16, 4}};
      // Costs for both fshl & fshr are the same, so just pass Intrinsic::fshl
      // to avoid having to duplicate the costs.
      const auto *Entry =
          CostTableLookup(FshlTbl, Intrinsic::fshl, LegalisationCost.second);
      if (Entry)
        return LegalisationCost.first * Entry->Cost;
    }

    auto TyL = getTypeLegalizationCost(RetTy);
    if (!RetTy->isIntegerTy())
      break;

    // Estimate cost manually, as types like i8 and i16 will get promoted to
    // i32 and CostTableLookup will ignore the extra conversion cost.
    bool HigherCost = (RetTy->getScalarSizeInBits() != 32 &&
                       RetTy->getScalarSizeInBits() < 64) ||
                      (RetTy->getScalarSizeInBits() % 64 != 0);
    unsigned ExtraCost = HigherCost ? 1 : 0;
    if (RetTy->getScalarSizeInBits() == 32 ||
        RetTy->getScalarSizeInBits() == 64)
      ExtraCost = 0; // fhsl/fshr for i32 and i64 can be lowered to a single
                     // extr instruction.
    else if (HigherCost)
      ExtraCost = 1;
    else
      break;
    return TyL.first + ExtraCost;
  }
  default:
    break;
  }
  return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}

/// The function will remove redundant reinterprets casting in the presence
/// of the control flow
static std::optional<Instruction *> processPhiNode(InstCombiner &IC,
                                                   IntrinsicInst &II) {
  SmallVector<Instruction *, 32> Worklist;
  auto RequiredType = II.getType();

  auto *PN = dyn_cast<PHINode>(II.getArgOperand(0));
  assert(PN && "Expected Phi Node!");

  // Don't create a new Phi unless we can remove the old one.
  if (!PN->hasOneUse())
    return std::nullopt;

  for (Value *IncValPhi : PN->incoming_values()) {
    auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
    if (!Reinterpret ||
        Reinterpret->getIntrinsicID() !=
            Intrinsic::aarch64_sve_convert_to_svbool ||
        RequiredType != Reinterpret->getArgOperand(0)->getType())
      return std::nullopt;
  }

  // Create the new Phi
  PHINode *NPN = IC.Builder.CreatePHI(RequiredType, PN->getNumIncomingValues());
  Worklist.push_back(PN);

  for (unsigned I = 0; I < PN->getNumIncomingValues(); I++) {
    auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(I));
    NPN->addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(I));
    Worklist.push_back(Reinterpret);
  }

  // Cleanup Phi Node and reinterprets
  return IC.replaceInstUsesWith(II, NPN);
}

// (from_svbool (binop (to_svbool pred) (svbool_t _) (svbool_t _))))
// => (binop (pred) (from_svbool _) (from_svbool _))
//
// The above transformation eliminates a `to_svbool` in the predicate
// operand of bitwise operation `binop` by narrowing the vector width of
// the operation. For example, it would convert a `<vscale x 16 x i1>
// and` into a `<vscale x 4 x i1> and`. This is profitable because
// to_svbool must zero the new lanes during widening, whereas
// from_svbool is free.
static std::optional<Instruction *>
tryCombineFromSVBoolBinOp(InstCombiner &IC, IntrinsicInst &II) {
  auto BinOp = dyn_cast<IntrinsicInst>(II.getOperand(0));
  if (!BinOp)
    return std::nullopt;

  auto IntrinsicID = BinOp->getIntrinsicID();
  switch (IntrinsicID) {
  case Intrinsic::aarch64_sve_and_z:
  case Intrinsic::aarch64_sve_bic_z:
  case Intrinsic::aarch64_sve_eor_z:
  case Intrinsic::aarch64_sve_nand_z:
  case Intrinsic::aarch64_sve_nor_z:
  case Intrinsic::aarch64_sve_orn_z:
  case Intrinsic::aarch64_sve_orr_z:
    break;
  default:
    return std::nullopt;
  }

  auto BinOpPred = BinOp->getOperand(0);
  auto BinOpOp1 = BinOp->getOperand(1);
  auto BinOpOp2 = BinOp->getOperand(2);

  auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred);
  if (!PredIntr ||
      PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
    return std::nullopt;

  auto PredOp = PredIntr->getOperand(0);
  auto PredOpTy = cast<VectorType>(PredOp->getType());
  if (PredOpTy != II.getType())
    return std::nullopt;

  SmallVector<Value *> NarrowedBinOpArgs = {PredOp};
  auto NarrowBinOpOp1 = IC.Builder.CreateIntrinsic(
      Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1});
  NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
  if (BinOpOp1 == BinOpOp2)
    NarrowedBinOpArgs.push_back(NarrowBinOpOp1);
  else
    NarrowedBinOpArgs.push_back(IC.Builder.CreateIntrinsic(
        Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2}));

  auto NarrowedBinOp =
      IC.Builder.CreateIntrinsic(IntrinsicID, {PredOpTy}, NarrowedBinOpArgs);
  return IC.replaceInstUsesWith(II, NarrowedBinOp);
}

static std::optional<Instruction *>
instCombineConvertFromSVBool(InstCombiner &IC, IntrinsicInst &II) {
  // If the reinterpret instruction operand is a PHI Node
  if (isa<PHINode>(II.getArgOperand(0)))
    return processPhiNode(IC, II);

  if (auto BinOpCombine = tryCombineFromSVBoolBinOp(IC, II))
    return BinOpCombine;

  SmallVector<Instruction *, 32> CandidatesForRemoval;
  Value *Cursor = II.getOperand(0), *EarliestReplacement = nullptr;

  const auto *IVTy = cast<VectorType>(II.getType());

  // Walk the chain of conversions.
  while (Cursor) {
    // If the type of the cursor has fewer lanes than the final result, zeroing
    // must take place, which breaks the equivalence chain.
    const auto *CursorVTy = cast<VectorType>(Cursor->getType());
    if (CursorVTy->getElementCount().getKnownMinValue() <
        IVTy->getElementCount().getKnownMinValue())
      break;

    // If the cursor has the same type as I, it is a viable replacement.
    if (Cursor->getType() == IVTy)
      EarliestReplacement = Cursor;

    auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);

    // If this is not an SVE conversion intrinsic, this is the end of the chain.
    if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
                                  Intrinsic::aarch64_sve_convert_to_svbool ||
                              IntrinsicCursor->getIntrinsicID() ==
                                  Intrinsic::aarch64_sve_convert_from_svbool))
      break;

    CandidatesForRemoval.insert(CandidatesForRemoval.begin(), IntrinsicCursor);
    Cursor = IntrinsicCursor->getOperand(0);
  }

  // If no viable replacement in the conversion chain was found, there is
  // nothing to do.
  if (!EarliestReplacement)
    return std::nullopt;

  return IC.replaceInstUsesWith(II, EarliestReplacement);
}

static std::optional<Instruction *> instCombineSVESel(InstCombiner &IC,
                                                      IntrinsicInst &II) {
  auto Select = IC.Builder.CreateSelect(II.getOperand(0), II.getOperand(1),
                                        II.getOperand(2));
  return IC.replaceInstUsesWith(II, Select);
}

static std::optional<Instruction *> instCombineSVEDup(InstCombiner &IC,
                                                      IntrinsicInst &II) {
  IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
  if (!Pg)
    return std::nullopt;

  if (Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
    return std::nullopt;

  const auto PTruePattern =
      cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
  if (PTruePattern != AArch64SVEPredPattern::vl1)
    return std::nullopt;

  // The intrinsic is inserting into lane zero so use an insert instead.
  auto *IdxTy = Type::getInt64Ty(II.getContext());
  auto *Insert = InsertElementInst::Create(
      II.getArgOperand(0), II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
  Insert->insertBefore(&II);
  Insert->takeName(&II);

  return IC.replaceInstUsesWith(II, Insert);
}

static std::optional<Instruction *> instCombineSVEDupX(InstCombiner &IC,
                                                       IntrinsicInst &II) {
  // Replace DupX with a regular IR splat.
  auto *RetTy = cast<ScalableVectorType>(II.getType());
  Value *Splat = IC.Builder.CreateVectorSplat(RetTy->getElementCount(),
                                              II.getArgOperand(0));
  Splat->takeName(&II);
  return IC.replaceInstUsesWith(II, Splat);
}

static std::optional<Instruction *> instCombineSVECmpNE(InstCombiner &IC,
                                                        IntrinsicInst &II) {
  LLVMContext &Ctx = II.getContext();

  // Check that the predicate is all active
  auto *Pg = dyn_cast<IntrinsicInst>(II.getArgOperand(0));
  if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
    return std::nullopt;

  const auto PTruePattern =
      cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
  if (PTruePattern != AArch64SVEPredPattern::all)
    return std::nullopt;

  // Check that we have a compare of zero..
  auto *SplatValue =
      dyn_cast_or_null<ConstantInt>(getSplatValue(II.getArgOperand(2)));
  if (!SplatValue || !SplatValue->isZero())
    return std::nullopt;

  // ..against a dupq
  auto *DupQLane = dyn_cast<IntrinsicInst>(II.getArgOperand(1));
  if (!DupQLane ||
      DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
    return std::nullopt;

  // Where the dupq is a lane 0 replicate of a vector insert
  if (!cast<ConstantInt>(DupQLane->getArgOperand(1))->isZero())
    return std::nullopt;

  auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
  if (!VecIns || VecIns->getIntrinsicID() != Intrinsic::vector_insert)
    return std::nullopt;

  // Where the vector insert is a fixed constant vector insert into undef at
  // index zero
  if (!isa<UndefValue>(VecIns->getArgOperand(0)))
    return std::nullopt;

  if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
    return std::nullopt;

  auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
  if (!ConstVec)
    return std::nullopt;

  auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
  auto *OutTy = dyn_cast<ScalableVectorType>(II.getType());
  if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
    return std::nullopt;

  unsigned NumElts = VecTy->getNumElements();
  unsigned PredicateBits = 0;

  // Expand intrinsic operands to a 16-bit byte level predicate
  for (unsigned I = 0; I < NumElts; ++I) {
    auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(I));
    if (!Arg)
      return std::nullopt;
    if (!Arg->isZero())
      PredicateBits |= 1 << (I * (16 / NumElts));
  }

  // If all bits are zero bail early with an empty predicate
  if (PredicateBits == 0) {
    auto *PFalse = Constant::getNullValue(II.getType());
    PFalse->takeName(&II);
    return IC.replaceInstUsesWith(II, PFalse);
  }

  // Calculate largest predicate type used (where byte predicate is largest)
  unsigned Mask = 8;
  for (unsigned I = 0; I < 16; ++I)
    if ((PredicateBits & (1 << I)) != 0)
      Mask |= (I % 8);

  unsigned PredSize = Mask & -Mask;
  auto *PredType = ScalableVectorType::get(
      Type::getInt1Ty(Ctx), AArch64::SVEBitsPerBlock / (PredSize * 8));

  // Ensure all relevant bits are set
  for (unsigned I = 0; I < 16; I += PredSize)
    if ((PredicateBits & (1 << I)) == 0)
      return std::nullopt;

  auto *PTruePat =
      ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
  auto *PTrue = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
                                           {PredType}, {PTruePat});
  auto *ConvertToSVBool = IC.Builder.CreateIntrinsic(
      Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
  auto *ConvertFromSVBool =
      IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_convert_from_svbool,
                                 {II.getType()}, {ConvertToSVBool});

  ConvertFromSVBool->takeName(&II);
  return IC.replaceInstUsesWith(II, ConvertFromSVBool);
}

static std::optional<Instruction *> instCombineSVELast(InstCombiner &IC,
                                                       IntrinsicInst &II) {
  Value *Pg = II.getArgOperand(0);
  Value *Vec = II.getArgOperand(1);
  auto IntrinsicID = II.getIntrinsicID();
  bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;

  // lastX(splat(X)) --> X
  if (auto *SplatVal = getSplatValue(Vec))
    return IC.replaceInstUsesWith(II, SplatVal);

  // If x and/or y is a splat value then:
  // lastX (binop (x, y)) --> binop(lastX(x), lastX(y))
  Value *LHS, *RHS;
  if (match(Vec, m_OneUse(m_BinOp(m_Value(LHS), m_Value(RHS))))) {
    if (isSplatValue(LHS) || isSplatValue(RHS)) {
      auto *OldBinOp = cast<BinaryOperator>(Vec);
      auto OpC = OldBinOp->getOpcode();
      auto *NewLHS =
          IC.Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, LHS});
      auto *NewRHS =
          IC.Builder.CreateIntrinsic(IntrinsicID, {Vec->getType()}, {Pg, RHS});
      auto *NewBinOp = BinaryOperator::CreateWithCopiedFlags(
          OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(), &II);
      return IC.replaceInstUsesWith(II, NewBinOp);
    }
  }

  auto *C = dyn_cast<Constant>(Pg);
  if (IsAfter && C && C->isNullValue()) {
    // The intrinsic is extracting lane 0 so use an extract instead.
    auto *IdxTy = Type::getInt64Ty(II.getContext());
    auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, 0));
    Extract->insertBefore(&II);
    Extract->takeName(&II);
    return IC.replaceInstUsesWith(II, Extract);
  }

  auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
  if (!IntrPG)
    return std::nullopt;

  if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
    return std::nullopt;

  const auto PTruePattern =
      cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();

  // Can the intrinsic's predicate be converted to a known constant index?
  unsigned MinNumElts = getNumElementsFromSVEPredPattern(PTruePattern);
  if (!MinNumElts)
    return std::nullopt;

  unsigned Idx = MinNumElts - 1;
  // Increment the index if extracting the element after the last active
  // predicate element.
  if (IsAfter)
    ++Idx;

  // Ignore extracts whose index is larger than the known minimum vector
  // length. NOTE: This is an artificial constraint where we prefer to
  // maintain what the user asked for until an alternative is proven faster.
  auto *PgVTy = cast<ScalableVectorType>(Pg->getType());
  if (Idx >= PgVTy->getMinNumElements())
    return std::nullopt;

  // The intrinsic is extracting a fixed lane so use an extract instead.
  auto *IdxTy = Type::getInt64Ty(II.getContext());
  auto *Extract = ExtractElementInst::Create(Vec, ConstantInt::get(IdxTy, Idx));
  Extract->insertBefore(&II);
  Extract->takeName(&II);
  return IC.replaceInstUsesWith(II, Extract);
}

static std::optional<Instruction *> instCombineSVECondLast(InstCombiner &IC,
                                                           IntrinsicInst &II) {
  // The SIMD&FP variant of CLAST[AB] is significantly faster than the scalar
  // integer variant across a variety of micro-architectures. Replace scalar
  // integer CLAST[AB] intrinsic with optimal SIMD&FP variant. A simple
  // bitcast-to-fp + clast[ab] + bitcast-to-int will cost a cycle or two more
  // depending on the micro-architecture, but has been observed as generally
  // being faster, particularly when the CLAST[AB] op is a loop-carried
  // dependency.
  Value *Pg = II.getArgOperand(0);
  Value *Fallback = II.getArgOperand(1);
  Value *Vec = II.getArgOperand(2);
  Type *Ty = II.getType();

  if (!Ty->isIntegerTy())
    return std::nullopt;

  Type *FPTy;
  switch (cast<IntegerType>(Ty)->getBitWidth()) {
  default:
    return std::nullopt;
  case 16:
    FPTy = IC.Builder.getHalfTy();
    break;
  case 32:
    FPTy = IC.Builder.getFloatTy();
    break;
  case 64:
    FPTy = IC.Builder.getDoubleTy();
    break;
  }

  Value *FPFallBack = IC.Builder.CreateBitCast(Fallback, FPTy);
  auto *FPVTy = VectorType::get(
      FPTy, cast<VectorType>(Vec->getType())->getElementCount());
  Value *FPVec = IC.Builder.CreateBitCast(Vec, FPVTy);
  auto *FPII = IC.Builder.CreateIntrinsic(
      II.getIntrinsicID(), {FPVec->getType()}, {Pg, FPFallBack, FPVec});
  Value *FPIItoInt = IC.Builder.CreateBitCast(FPII, II.getType());
  return IC.replaceInstUsesWith(II, FPIItoInt);
}

static std::optional<Instruction *> instCombineRDFFR(InstCombiner &IC,
                                                     IntrinsicInst &II) {
  LLVMContext &Ctx = II.getContext();
  // Replace rdffr with predicated rdffr.z intrinsic, so that optimizePTestInstr
  // can work with RDFFR_PP for ptest elimination.
  auto *AllPat =
      ConstantInt::get(Type::getInt32Ty(Ctx), AArch64SVEPredPattern::all);
  auto *PTrue = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue,
                                           {II.getType()}, {AllPat});
  auto *RDFFR =
      IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_rdffr_z, {}, {PTrue});
  RDFFR->takeName(&II);
  return IC.replaceInstUsesWith(II, RDFFR);
}

static std::optional<Instruction *>
instCombineSVECntElts(InstCombiner &IC, IntrinsicInst &II, unsigned NumElts) {
  const auto Pattern = cast<ConstantInt>(II.getArgOperand(0))->getZExtValue();

  if (Pattern == AArch64SVEPredPattern::all) {
    Constant *StepVal = ConstantInt::get(II.getType(), NumElts);
    auto *VScale = IC.Builder.CreateVScale(StepVal);
    VScale->takeName(&II);
    return IC.replaceInstUsesWith(II, VScale);
  }

  unsigned MinNumElts = getNumElementsFromSVEPredPattern(Pattern);

  return MinNumElts && NumElts >= MinNumElts
             ? std::optional<Instruction *>(IC.replaceInstUsesWith(
                   II, ConstantInt::get(II.getType(), MinNumElts)))
             : std::nullopt;
}

static std::optional<Instruction *> instCombineSVEPTest(InstCombiner &IC,
                                                        IntrinsicInst &II) {
  Value *PgVal = II.getArgOperand(0);
  Value *OpVal = II.getArgOperand(1);

  // PTEST_<FIRST|LAST>(X, X) is equivalent to PTEST_ANY(X, X).
  // Later optimizations prefer this form.
  if (PgVal == OpVal &&
      (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_first ||
       II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_last)) {
    Value *Ops[] = {PgVal, OpVal};
    Type *Tys[] = {PgVal->getType()};

    auto *PTest =
        IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptest_any, Tys, Ops);
    PTest->takeName(&II);

    return IC.replaceInstUsesWith(II, PTest);
  }

  IntrinsicInst *Pg = dyn_cast<IntrinsicInst>(PgVal);
  IntrinsicInst *Op = dyn_cast<IntrinsicInst>(OpVal);

  if (!Pg || !Op)
    return std::nullopt;

  Intrinsic::ID OpIID = Op->getIntrinsicID();

  if (Pg->getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
      OpIID == Intrinsic::aarch64_sve_convert_to_svbool &&
      Pg->getArgOperand(0)->getType() == Op->getArgOperand(0)->getType()) {
    Value *Ops[] = {Pg->getArgOperand(0), Op->getArgOperand(0)};
    Type *Tys[] = {Pg->getArgOperand(0)->getType()};

    auto *PTest = IC.Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);

    PTest->takeName(&II);
    return IC.replaceInstUsesWith(II, PTest);
  }

  // Transform PTEST_ANY(X=OP(PG,...), X) -> PTEST_ANY(PG, X)).
  // Later optimizations may rewrite sequence to use the flag-setting variant
  // of instruction X to remove PTEST.
  if ((Pg == Op) && (II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_any) &&
      ((OpIID == Intrinsic::aarch64_sve_brka_z) ||
       (OpIID == Intrinsic::aarch64_sve_brkb_z) ||
       (OpIID == Intrinsic::aarch64_sve_brkpa_z) ||
       (OpIID == Intrinsic::aarch64_sve_brkpb_z) ||
       (OpIID == Intrinsic::aarch64_sve_rdffr_z) ||
       (OpIID == Intrinsic::aarch64_sve_and_z) ||
       (OpIID == Intrinsic::aarch64_sve_bic_z) ||
       (OpIID == Intrinsic::aarch64_sve_eor_z) ||
       (OpIID == Intrinsic::aarch64_sve_nand_z) ||
       (OpIID == Intrinsic::aarch64_sve_nor_z) ||
       (OpIID == Intrinsic::aarch64_sve_orn_z) ||
       (OpIID == Intrinsic::aarch64_sve_orr_z))) {
    Value *Ops[] = {Pg->getArgOperand(0), Pg};
    Type *Tys[] = {Pg->getType()};

    auto *PTest = IC.Builder.CreateIntrinsic(II.getIntrinsicID(), Tys, Ops);
    PTest->takeName(&II);

    return IC.replaceInstUsesWith(II, PTest);
  }

  return std::nullopt;
}

template <Intrinsic::ID MulOpc, typename Intrinsic::ID FuseOpc>
static std::optional<Instruction *>
instCombineSVEVectorFuseMulAddSub(InstCombiner &IC, IntrinsicInst &II,
                                  bool MergeIntoAddendOp) {
  Value *P = II.getOperand(0);
  Value *MulOp0, *MulOp1, *AddendOp, *Mul;
  if (MergeIntoAddendOp) {
    AddendOp = II.getOperand(1);
    Mul = II.getOperand(2);
  } else {
    AddendOp = II.getOperand(2);
    Mul = II.getOperand(1);
  }

  if (!match(Mul, m_Intrinsic<MulOpc>(m_Specific(P), m_Value(MulOp0),
                                      m_Value(MulOp1))))
    return std::nullopt;

  if (!Mul->hasOneUse())
    return std::nullopt;

  Instruction *FMFSource = nullptr;
  if (II.getType()->isFPOrFPVectorTy()) {
    llvm::FastMathFlags FAddFlags = II.getFastMathFlags();
    // Stop the combine when the flags on the inputs differ in case dropping
    // flags would lead to us missing out on more beneficial optimizations.
    if (FAddFlags != cast<CallInst>(Mul)->getFastMathFlags())
      return std::nullopt;
    if (!FAddFlags.allowContract())
      return std::nullopt;
    FMFSource = &II;
  }

  CallInst *Res;
  if (MergeIntoAddendOp)
    Res = IC.Builder.CreateIntrinsic(FuseOpc, {II.getType()},
                                     {P, AddendOp, MulOp0, MulOp1}, FMFSource);
  else
    Res = IC.Builder.CreateIntrinsic(FuseOpc, {II.getType()},
                                     {P, MulOp0, MulOp1, AddendOp}, FMFSource);

  return IC.replaceInstUsesWith(II, Res);
}

static bool isAllActivePredicate(Value *Pred) {
  // Look through convert.from.svbool(convert.to.svbool(...) chain.
  Value *UncastedPred;
  if (match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>(
                      m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>(
                          m_Value(UncastedPred)))))
    // If the predicate has the same or less lanes than the uncasted
    // predicate then we know the casting has no effect.
    if (cast<ScalableVectorType>(Pred->getType())->getMinNumElements() <=
        cast<ScalableVectorType>(UncastedPred->getType())->getMinNumElements())
      Pred = UncastedPred;

  return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
                         m_ConstantInt<AArch64SVEPredPattern::all>()));
}

static std::optional<Instruction *>
instCombineSVELD1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
  Value *Pred = II.getOperand(0);
  Value *PtrOp = II.getOperand(1);
  Type *VecTy = II.getType();
  Value *VecPtr = IC.Builder.CreateBitCast(PtrOp, VecTy->getPointerTo());

  if (isAllActivePredicate(Pred)) {
    LoadInst *Load = IC.Builder.CreateLoad(VecTy, VecPtr);
    Load->copyMetadata(II);
    return IC.replaceInstUsesWith(II, Load);
  }

  CallInst *MaskedLoad =
      IC.Builder.CreateMaskedLoad(VecTy, VecPtr, PtrOp->getPointerAlignment(DL),
                                  Pred, ConstantAggregateZero::get(VecTy));
  MaskedLoad->copyMetadata(II);
  return IC.replaceInstUsesWith(II, MaskedLoad);
}

static std::optional<Instruction *>
instCombineSVEST1(InstCombiner &IC, IntrinsicInst &II, const DataLayout &DL) {
  Value *VecOp = II.getOperand(0);
  Value *Pred = II.getOperand(1);
  Value *PtrOp = II.getOperand(2);
  Value *VecPtr =
      IC.Builder.CreateBitCast(PtrOp, VecOp->getType()->getPointerTo());

  if (isAllActivePredicate(Pred)) {
    StoreInst *Store = IC.Builder.CreateStore(VecOp, VecPtr);
    Store->copyMetadata(II);
    return IC.eraseInstFromFunction(II);
  }

  CallInst *MaskedStore = IC.Builder.CreateMaskedStore(
      VecOp, VecPtr, PtrOp->getPointerAlignment(DL), Pred);
  MaskedStore->copyMetadata(II);
  return IC.eraseInstFromFunction(II);
}

static Instruction::BinaryOps intrinsicIDToBinOpCode(unsigned Intrinsic) {
  switch (Intrinsic) {
  case Intrinsic::aarch64_sve_fmul:
    return Instruction::BinaryOps::FMul;
  case Intrinsic::aarch64_sve_fadd:
    return Instruction::BinaryOps::FAdd;
  case Intrinsic::aarch64_sve_fsub:
    return Instruction::BinaryOps::FSub;
  default:
    return Instruction::BinaryOpsEnd;
  }
}

static std::optional<Instruction *>
instCombineSVEVectorBinOp(InstCombiner &IC, IntrinsicInst &II) {
  // Bail due to missing support for ISD::STRICT_ scalable vector operations.
  if (II.isStrictFP())
    return std::nullopt;

  auto *OpPredicate = II.getOperand(0);
  auto BinOpCode = intrinsicIDToBinOpCode(II.getIntrinsicID());
  if (BinOpCode == Instruction::BinaryOpsEnd ||
      !match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
                              m_ConstantInt<AArch64SVEPredPattern::all>())))
    return std::nullopt;
  IRBuilderBase::FastMathFlagGuard FMFGuard(IC.Builder);
  IC.Builder.setFastMathFlags(II.getFastMathFlags());
  auto BinOp =
      IC.Builder.CreateBinOp(BinOpCode, II.getOperand(1), II.getOperand(2));
  return IC.replaceInstUsesWith(II, BinOp);
}

static std::optional<Instruction *> instCombineSVEVectorAdd(InstCombiner &IC,
                                                            IntrinsicInst &II) {
  if (auto FMLA =
          instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
                                            Intrinsic::aarch64_sve_fmla>(IC, II,
                                                                         true))
    return FMLA;
  if (auto MLA = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
                                                   Intrinsic::aarch64_sve_mla>(
          IC, II, true))
    return MLA;
  if (auto FMAD =
          instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
                                            Intrinsic::aarch64_sve_fmad>(IC, II,
                                                                         false))
    return FMAD;
  if (auto MAD = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
                                                   Intrinsic::aarch64_sve_mad>(
          IC, II, false))
    return MAD;
  return instCombineSVEVectorBinOp(IC, II);
}

static std::optional<Instruction *> instCombineSVEVectorSub(InstCombiner &IC,
                                                            IntrinsicInst &II) {
  if (auto FMLS =
          instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
                                            Intrinsic::aarch64_sve_fmls>(IC, II,
                                                                         true))
    return FMLS;
  if (auto MLS = instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul,
                                                   Intrinsic::aarch64_sve_mls>(
          IC, II, true))
    return MLS;
  if (auto FMSB =
          instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul,
                                            Intrinsic::aarch64_sve_fnmsb>(
              IC, II, false))
    return FMSB;
  return instCombineSVEVectorBinOp(IC, II);
}

static std::optional<Instruction *> instCombineSVEVectorMul(InstCombiner &IC,
                                                            IntrinsicInst &II) {
  auto *OpPredicate = II.getOperand(0);
  auto *OpMultiplicand = II.getOperand(1);
  auto *OpMultiplier = II.getOperand(2);

  // Return true if a given instruction is a unit splat value, false otherwise.
  auto IsUnitSplat = [](auto *I) {
    auto *SplatValue = getSplatValue(I);
    if (!SplatValue)
      return false;
    return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
  };

  // Return true if a given instruction is an aarch64_sve_dup intrinsic call
  // with a unit splat value, false otherwise.
  auto IsUnitDup = [](auto *I) {
    auto *IntrI = dyn_cast<IntrinsicInst>(I);
    if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
      return false;

    auto *SplatValue = IntrI->getOperand(2);
    return match(SplatValue, m_FPOne()) || match(SplatValue, m_One());
  };

  if (IsUnitSplat(OpMultiplier)) {
    // [f]mul pg %n, (dupx 1) => %n
    OpMultiplicand->takeName(&II);
    return IC.replaceInstUsesWith(II, OpMultiplicand);
  } else if (IsUnitDup(OpMultiplier)) {
    // [f]mul pg %n, (dup pg 1) => %n
    auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
    auto *DupPg = DupInst->getOperand(1);
    // TODO: this is naive. The optimization is still valid if DupPg
    // 'encompasses' OpPredicate, not only if they're the same predicate.
    if (OpPredicate == DupPg) {
      OpMultiplicand->takeName(&II);
      return IC.replaceInstUsesWith(II, OpMultiplicand);
    }
  }

  return instCombineSVEVectorBinOp(IC, II);
}

static std::optional<Instruction *> instCombineSVEUnpack(InstCombiner &IC,
                                                         IntrinsicInst &II) {
  Value *UnpackArg = II.getArgOperand(0);
  auto *RetTy = cast<ScalableVectorType>(II.getType());
  bool IsSigned = II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
                  II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;

  // Hi = uunpkhi(splat(X)) --> Hi = splat(extend(X))
  // Lo = uunpklo(splat(X)) --> Lo = splat(extend(X))
  if (auto *ScalarArg = getSplatValue(UnpackArg)) {
    ScalarArg =
        IC.Builder.CreateIntCast(ScalarArg, RetTy->getScalarType(), IsSigned);
    Value *NewVal =
        IC.Builder.CreateVectorSplat(RetTy->getElementCount(), ScalarArg);
    NewVal->takeName(&II);
    return IC.replaceInstUsesWith(II, NewVal);
  }

  return std::nullopt;
}
static std::optional<Instruction *> instCombineSVETBL(InstCombiner &IC,
                                                      IntrinsicInst &II) {
  auto *OpVal = II.getOperand(0);
  auto *OpIndices = II.getOperand(1);
  VectorType *VTy = cast<VectorType>(II.getType());

  // Check whether OpIndices is a constant splat value < minimal element count
  // of result.
  auto *SplatValue = dyn_cast_or_null<ConstantInt>(getSplatValue(OpIndices));
  if (!SplatValue ||
      SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
    return std::nullopt;

  // Convert sve_tbl(OpVal sve_dup_x(SplatValue)) to
  // splat_vector(extractelement(OpVal, SplatValue)) for further optimization.
  auto *Extract = IC.Builder.CreateExtractElement(OpVal, SplatValue);
  auto *VectorSplat =
      IC.Builder.CreateVectorSplat(VTy->getElementCount(), Extract);

  VectorSplat->takeName(&II);
  return IC.replaceInstUsesWith(II, VectorSplat);
}

static std::optional<Instruction *> instCombineSVEZip(InstCombiner &IC,
                                                      IntrinsicInst &II) {
  // zip1(uzp1(A, B), uzp2(A, B)) --> A
  // zip2(uzp1(A, B), uzp2(A, B)) --> B
  Value *A, *B;
  if (match(II.getArgOperand(0),
            m_Intrinsic<Intrinsic::aarch64_sve_uzp1>(m_Value(A), m_Value(B))) &&
      match(II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
                                     m_Specific(A), m_Specific(B))))
    return IC.replaceInstUsesWith(
        II, (II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ? A : B));

  return std::nullopt;
}

static std::optional<Instruction *>
instCombineLD1GatherIndex(InstCombiner &IC, IntrinsicInst &II) {
  Value *Mask = II.getOperand(0);
  Value *BasePtr = II.getOperand(1);
  Value *Index = II.getOperand(2);
  Type *Ty = II.getType();
  Value *PassThru = ConstantAggregateZero::get(Ty);

  // Contiguous gather => masked load.
  // (sve.ld1.gather.index Mask BasePtr (sve.index IndexBase 1))
  // => (masked.load (gep BasePtr IndexBase) Align Mask zeroinitializer)
  Value *IndexBase;
  if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
                       m_Value(IndexBase), m_SpecificInt(1)))) {
    Align Alignment =
        BasePtr->getPointerAlignment(II.getModule()->getDataLayout());

    Type *VecPtrTy = PointerType::getUnqual(Ty);
    Value *Ptr = IC.Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
                                      BasePtr, IndexBase);
    Ptr = IC.Builder.CreateBitCast(Ptr, VecPtrTy);
    CallInst *MaskedLoad =
        IC.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, Mask, PassThru);
    MaskedLoad->takeName(&II);
    return IC.replaceInstUsesWith(II, MaskedLoad);
  }

  return std::nullopt;
}

static std::optional<Instruction *>
instCombineST1ScatterIndex(InstCombiner &IC, IntrinsicInst &II) {
  Value *Val = II.getOperand(0);
  Value *Mask = II.getOperand(1);
  Value *BasePtr = II.getOperand(2);
  Value *Index = II.getOperand(3);
  Type *Ty = Val->getType();

  // Contiguous scatter => masked store.
  // (sve.st1.scatter.index Value Mask BasePtr (sve.index IndexBase 1))
  // => (masked.store Value (gep BasePtr IndexBase) Align Mask)
  Value *IndexBase;
  if (match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
                       m_Value(IndexBase), m_SpecificInt(1)))) {
    Align Alignment =
        BasePtr->getPointerAlignment(II.getModule()->getDataLayout());

    Value *Ptr = IC.Builder.CreateGEP(cast<VectorType>(Ty)->getElementType(),
                                      BasePtr, IndexBase);
    Type *VecPtrTy = PointerType::getUnqual(Ty);
    Ptr = IC.Builder.CreateBitCast(Ptr, VecPtrTy);

    (void)IC.Builder.CreateMaskedStore(Val, Ptr, Alignment, Mask);

    return IC.eraseInstFromFunction(II);
  }

  return std::nullopt;
}

static std::optional<Instruction *> instCombineSVESDIV(InstCombiner &IC,
                                                       IntrinsicInst &II) {
  Type *Int32Ty = IC.Builder.getInt32Ty();
  Value *Pred = II.getOperand(0);
  Value *Vec = II.getOperand(1);
  Value *DivVec = II.getOperand(2);

  Value *SplatValue = getSplatValue(DivVec);
  ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue);
  if (!SplatConstantInt)
    return std::nullopt;
  APInt Divisor = SplatConstantInt->getValue();

  if (Divisor.isPowerOf2()) {
    Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
    auto ASRD = IC.Builder.CreateIntrinsic(
        Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
    return IC.replaceInstUsesWith(II, ASRD);
  }
  if (Divisor.isNegatedPowerOf2()) {
    Divisor.negate();
    Constant *DivisorLog2 = ConstantInt::get(Int32Ty, Divisor.logBase2());
    auto ASRD = IC.Builder.CreateIntrinsic(
        Intrinsic::aarch64_sve_asrd, {II.getType()}, {Pred, Vec, DivisorLog2});
    auto NEG = IC.Builder.CreateIntrinsic(
        Intrinsic::aarch64_sve_neg, {ASRD->getType()}, {ASRD, Pred, ASRD});
    return IC.replaceInstUsesWith(II, NEG);
  }

  return std::nullopt;
}

bool SimplifyValuePattern(SmallVector<Value *> &Vec, bool AllowPoison) {
  size_t VecSize = Vec.size();
  if (VecSize == 1)
    return true;
  if (!isPowerOf2_64(VecSize))
    return false;
  size_t HalfVecSize = VecSize / 2;

  for (auto LHS = Vec.begin(), RHS = Vec.begin() + HalfVecSize;
       RHS != Vec.end(); LHS++, RHS++) {
    if (*LHS != nullptr && *RHS != nullptr) {
      if (*LHS == *RHS)
        continue;
      else
        return false;
    }
    if (!AllowPoison)
      return false;
    if (*LHS == nullptr && *RHS != nullptr)
      *LHS = *RHS;
  }

  Vec.resize(HalfVecSize);
  SimplifyValuePattern(Vec, AllowPoison);
  return true;
}

// Try to simplify dupqlane patterns like dupqlane(f32 A, f32 B, f32 A, f32 B)
// to dupqlane(f64(C)) where C is A concatenated with B
static std::optional<Instruction *> instCombineSVEDupqLane(InstCombiner &IC,
                                                           IntrinsicInst &II) {
  Value *CurrentInsertElt = nullptr, *Default = nullptr;
  if (!match(II.getOperand(0),
             m_Intrinsic<Intrinsic::vector_insert>(
                 m_Value(Default), m_Value(CurrentInsertElt), m_Value())) ||
      !isa<FixedVectorType>(CurrentInsertElt->getType()))
    return std::nullopt;
  auto IIScalableTy = cast<ScalableVectorType>(II.getType());

  // Insert the scalars into a container ordered by InsertElement index
  SmallVector<Value *> Elts(IIScalableTy->getMinNumElements(), nullptr);
  while (auto InsertElt = dyn_cast<InsertElementInst>(CurrentInsertElt)) {
    auto Idx = cast<ConstantInt>(InsertElt->getOperand(2));
    Elts[Idx->getValue().getZExtValue()] = InsertElt->getOperand(1);
    CurrentInsertElt = InsertElt->getOperand(0);
  }

  bool AllowPoison =
      isa<PoisonValue>(CurrentInsertElt) && isa<PoisonValue>(Default);
  if (!SimplifyValuePattern(Elts, AllowPoison))
    return std::nullopt;

  // Rebuild the simplified chain of InsertElements. e.g. (a, b, a, b) as (a, b)
  Value *InsertEltChain = PoisonValue::get(CurrentInsertElt->getType());
  for (size_t I = 0; I < Elts.size(); I++) {
    if (Elts[I] == nullptr)
      continue;
    InsertEltChain = IC.Builder.CreateInsertElement(InsertEltChain, Elts[I],
                                                    IC.Builder.getInt64(I));
  }
  if (InsertEltChain == nullptr)
    return std::nullopt;

  // Splat the simplified sequence, e.g. (f16 a, f16 b, f16 c, f16 d) as one i64
  // value or (f16 a, f16 b) as one i32 value. This requires an InsertSubvector
  // be bitcast to a type wide enough to fit the sequence, be splatted, and then
  // be narrowed back to the original type.
  unsigned PatternWidth = IIScalableTy->getScalarSizeInBits() * Elts.size();
  unsigned PatternElementCount = IIScalableTy->getScalarSizeInBits() *
                                 IIScalableTy->getMinNumElements() /
                                 PatternWidth;

  IntegerType *WideTy = IC.Builder.getIntNTy(PatternWidth);
  auto *WideScalableTy = ScalableVectorType::get(WideTy, PatternElementCount);
  auto *WideShuffleMaskTy =
      ScalableVectorType::get(IC.Builder.getInt32Ty(), PatternElementCount);

  auto ZeroIdx = ConstantInt::get(IC.Builder.getInt64Ty(), APInt(64, 0));
  auto InsertSubvector = IC.Builder.CreateInsertVector(
      II.getType(), PoisonValue::get(II.getType()), InsertEltChain, ZeroIdx);
  auto WideBitcast =
      IC.Builder.CreateBitOrPointerCast(InsertSubvector, WideScalableTy);
  auto WideShuffleMask = ConstantAggregateZero::get(WideShuffleMaskTy);
  auto WideShuffle = IC.Builder.CreateShuffleVector(
      WideBitcast, PoisonValue::get(WideScalableTy), WideShuffleMask);
  auto NarrowBitcast =
      IC.Builder.CreateBitOrPointerCast(WideShuffle, II.getType());

  return IC.replaceInstUsesWith(II, NarrowBitcast);
}

static std::optional<Instruction *> instCombineMaxMinNM(InstCombiner &IC,
                                                        IntrinsicInst &II) {
  Value *A = II.getArgOperand(0);
  Value *B = II.getArgOperand(1);
  if (A == B)
    return IC.replaceInstUsesWith(II, A);

  return std::nullopt;
}

static std::optional<Instruction *> instCombineSVESrshl(InstCombiner &IC,
                                                        IntrinsicInst &II) {
  Value *Pred = II.getOperand(0);
  Value *Vec = II.getOperand(1);
  Value *Shift = II.getOperand(2);

  // Convert SRSHL into the simpler LSL intrinsic when fed by an ABS intrinsic.
  Value *AbsPred, *MergedValue;
  if (!match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_sqabs>(
                      m_Value(MergedValue), m_Value(AbsPred), m_Value())) &&
      !match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_abs>(
                      m_Value(MergedValue), m_Value(AbsPred), m_Value())))

    return std::nullopt;

  // Transform is valid if any of the following are true:
  // * The ABS merge value is an undef or non-negative
  // * The ABS predicate is all active
  // * The ABS predicate and the SRSHL predicates are the same
  if (!isa<UndefValue>(MergedValue) && !match(MergedValue, m_NonNegative()) &&
      AbsPred != Pred && !isAllActivePredicate(AbsPred))
    return std::nullopt;

  // Only valid when the shift amount is non-negative, otherwise the rounding
  // behaviour of SRSHL cannot be ignored.
  if (!match(Shift, m_NonNegative()))
    return std::nullopt;

  auto LSL = IC.Builder.CreateIntrinsic(Intrinsic::aarch64_sve_lsl,
                                        {II.getType()}, {Pred, Vec, Shift});

  return IC.replaceInstUsesWith(II, LSL);
}

std::optional<Instruction *>
AArch64TTIImpl::instCombineIntrinsic(InstCombiner &IC,
                                     IntrinsicInst &II) const {
  Intrinsic::ID IID = II.getIntrinsicID();
  switch (IID) {
  default:
    break;
  case Intrinsic::aarch64_neon_fmaxnm:
  case Intrinsic::aarch64_neon_fminnm:
    return instCombineMaxMinNM(IC, II);
  case Intrinsic::aarch64_sve_convert_from_svbool:
    return instCombineConvertFromSVBool(IC, II);
  case Intrinsic::aarch64_sve_dup:
    return instCombineSVEDup(IC, II);
  case Intrinsic::aarch64_sve_dup_x:
    return instCombineSVEDupX(IC, II);
  case Intrinsic::aarch64_sve_cmpne:
  case Intrinsic::aarch64_sve_cmpne_wide:
    return instCombineSVECmpNE(IC, II);
  case Intrinsic::aarch64_sve_rdffr:
    return instCombineRDFFR(IC, II);
  case Intrinsic::aarch64_sve_lasta:
  case Intrinsic::aarch64_sve_lastb:
    return instCombineSVELast(IC, II);
  case Intrinsic::aarch64_sve_clasta_n:
  case Intrinsic::aarch64_sve_clastb_n:
    return instCombineSVECondLast(IC, II);
  case Intrinsic::aarch64_sve_cntd:
    return instCombineSVECntElts(IC, II, 2);
  case Intrinsic::aarch64_sve_cntw:
    return instCombineSVECntElts(IC, II, 4);
  case Intrinsic::aarch64_sve_cnth:
    return instCombineSVECntElts(IC, II, 8);
  case Intrinsic::aarch64_sve_cntb:
    return instCombineSVECntElts(IC, II, 16);
  case Intrinsic::aarch64_sve_ptest_any:
  case Intrinsic::aarch64_sve_ptest_first:
  case Intrinsic::aarch64_sve_ptest_last:
    return instCombineSVEPTest(IC, II);
  case Intrinsic::aarch64_sve_mul:
  case Intrinsic::aarch64_sve_fmul:
    return instCombineSVEVectorMul(IC, II);
  case Intrinsic::aarch64_sve_fadd:
  case Intrinsic::aarch64_sve_add:
    return instCombineSVEVectorAdd(IC, II);
  case Intrinsic::aarch64_sve_fadd_u:
    return instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
                                             Intrinsic::aarch64_sve_fmla_u>(
        IC, II, true);
  case Intrinsic::aarch64_sve_add_u:
    return instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul_u,
                                             Intrinsic::aarch64_sve_mla_u>(
        IC, II, true);
  case Intrinsic::aarch64_sve_fsub:
  case Intrinsic::aarch64_sve_sub:
    return instCombineSVEVectorSub(IC, II);
  case Intrinsic::aarch64_sve_fsub_u:
    return instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_fmul_u,
                                             Intrinsic::aarch64_sve_fmls_u>(
        IC, II, true);
  case Intrinsic::aarch64_sve_sub_u:
    return instCombineSVEVectorFuseMulAddSub<Intrinsic::aarch64_sve_mul_u,
                                             Intrinsic::aarch64_sve_mls_u>(
        IC, II, true);
  case Intrinsic::aarch64_sve_tbl:
    return instCombineSVETBL(IC, II);
  case Intrinsic::aarch64_sve_uunpkhi:
  case Intrinsic::aarch64_sve_uunpklo:
  case Intrinsic::aarch64_sve_sunpkhi:
  case Intrinsic::aarch64_sve_sunpklo:
    return instCombineSVEUnpack(IC, II);
  case Intrinsic::aarch64_sve_zip1:
  case Intrinsic::aarch64_sve_zip2:
    return instCombineSVEZip(IC, II);
  case Intrinsic::aarch64_sve_ld1_gather_index:
    return instCombineLD1GatherIndex(IC, II);
  case Intrinsic::aarch64_sve_st1_scatter_index:
    return instCombineST1ScatterIndex(IC, II);
  case Intrinsic::aarch64_sve_ld1:
    return instCombineSVELD1(IC, II, DL);
  case Intrinsic::aarch64_sve_st1:
    return instCombineSVEST1(IC, II, DL);
  case Intrinsic::aarch64_sve_sdiv:
    return instCombineSVESDIV(IC, II);
  case Intrinsic::aarch64_sve_sel:
    return instCombineSVESel(IC, II);
  case Intrinsic::aarch64_sve_srshl:
    return instCombineSVESrshl(IC, II);
  case Intrinsic::aarch64_sve_dupq_lane:
    return instCombineSVEDupqLane(IC, II);
  }

  return std::nullopt;
}

std::optional<Value *> AArch64TTIImpl::simplifyDemandedVectorEltsIntrinsic(
    InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
    APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
    std::function<void(Instruction *, unsigned, APInt, APInt &)>
        SimplifyAndSetOp) const {
  switch (II.getIntrinsicID()) {
  default:
    break;
  case Intrinsic::aarch64_neon_fcvtxn:
  case Intrinsic::aarch64_neon_rshrn:
  case Intrinsic::aarch64_neon_sqrshrn:
  case Intrinsic::aarch64_neon_sqrshrun:
  case Intrinsic::aarch64_neon_sqshrn:
  case Intrinsic::aarch64_neon_sqshrun:
  case Intrinsic::aarch64_neon_sqxtn:
  case Intrinsic::aarch64_neon_sqxtun:
  case Intrinsic::aarch64_neon_uqrshrn:
  case Intrinsic::aarch64_neon_uqshrn:
  case Intrinsic::aarch64_neon_uqxtn:
    SimplifyAndSetOp(&II, 0, OrigDemandedElts, UndefElts);
    break;
  }

  return std::nullopt;
}

TypeSize
AArch64TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
  switch (K) {
  case TargetTransformInfo::RGK_Scalar:
    return TypeSize::getFixed(64);
  case TargetTransformInfo::RGK_FixedWidthVector:
    if (!ST->isStreamingSVEModeDisabled() &&
        !EnableFixedwidthAutovecInStreamingMode)
      return TypeSize::getFixed(0);

    if (ST->hasSVE())
      return TypeSize::getFixed(
          std::max(ST->getMinSVEVectorSizeInBits(), 128u));

    return TypeSize::getFixed(ST->hasNEON() ? 128 : 0);
  case TargetTransformInfo::RGK_ScalableVector:
    if (!ST->isStreamingSVEModeDisabled() && !EnableScalableAutovecInStreamingMode)
      return TypeSize::getScalable(0);

    return TypeSize::getScalable(ST->hasSVE() ? 128 : 0);
  }
  llvm_unreachable("Unsupported register kind");
}

bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
                                           ArrayRef<const Value *> Args) {

  // A helper that returns a vector type from the given type. The number of
  // elements in type Ty determines the vector width.
  auto toVectorTy = [&](Type *ArgTy) {
    return VectorType::get(ArgTy->getScalarType(),
                           cast<VectorType>(DstTy)->getElementCount());
  };

  // Exit early if DstTy is not a vector type whose elements are at least
  // 16-bits wide. SVE doesn't generally have the same set of instructions to
  // perform an extend with the add/sub/mul. There are SMULLB style
  // instructions, but they operate on top/bottom, requiring some sort of lane
  // interleaving to be used with zext/sext.
  if (!useNeonVector(DstTy) || DstTy->getScalarSizeInBits() < 16)
    return false;

  // Determine if the operation has a widening variant. We consider both the
  // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
  // instructions.
  //
  // TODO: Add additional widening operations (e.g., shl, etc.) once we
  //       verify that their extending operands are eliminated during code
  //       generation.
  switch (Opcode) {
  case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
  case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
  case Instruction::Mul: // SMULL(2), UMULL(2)
    break;
  default:
    return false;
  }

  // To be a widening instruction (either the "wide" or "long" versions), the
  // second operand must be a sign- or zero extend.
  if (Args.size() != 2 ||
      (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])))
    return false;
  auto *Extend = cast<CastInst>(Args[1]);
  auto *Arg0 = dyn_cast<CastInst>(Args[0]);

  // A mul only has a mull version (not like addw). Both operands need to be
  // extending and the same type.
  if (Opcode == Instruction::Mul &&
      (!Arg0 || Arg0->getOpcode() != Extend->getOpcode() ||
       Arg0->getOperand(0)->getType() != Extend->getOperand(0)->getType()))
    return false;

  // Legalize the destination type and ensure it can be used in a widening
  // operation.
  auto DstTyL = getTypeLegalizationCost(DstTy);
  unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
  if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
    return false;

  // Legalize the source type and ensure it can be used in a widening
  // operation.
  auto *SrcTy = toVectorTy(Extend->getSrcTy());
  auto SrcTyL = getTypeLegalizationCost(SrcTy);
  unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
  if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
    return false;

  // Get the total number of vector elements in the legalized types.
  InstructionCost NumDstEls =
      DstTyL.first * DstTyL.second.getVectorMinNumElements();
  InstructionCost NumSrcEls =
      SrcTyL.first * SrcTyL.second.getVectorMinNumElements();

  // Return true if the legalized types have the same number of vector elements
  // and the destination element type size is twice that of the source type.
  return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
}

InstructionCost AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
                                                 Type *Src,
                                                 TTI::CastContextHint CCH,
                                                 TTI::TargetCostKind CostKind,
                                                 const Instruction *I) {
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // If the cast is observable, and it is used by a widening instruction (e.g.,
  // uaddl, saddw, etc.), it may be free.
  if (I && I->hasOneUser()) {
    auto *SingleUser = cast<Instruction>(*I->user_begin());
    SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
    if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
      // If the cast is the second operand, it is free. We will generate either
      // a "wide" or "long" version of the widening instruction.
      if (I == SingleUser->getOperand(1))
        return 0;
      // If the cast is not the second operand, it will be free if it looks the
      // same as the second operand. In this case, we will generate a "long"
      // version of the widening instruction.
      if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
        if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
            cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
          return 0;
    }
  }

  // TODO: Allow non-throughput costs that aren't binary.
  auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
    if (CostKind != TTI::TCK_RecipThroughput)
      return Cost == 0 ? 0 : 1;
    return Cost;
  };

  EVT SrcTy = TLI->getValueType(DL, Src);
  EVT DstTy = TLI->getValueType(DL, Dst);

  if (!SrcTy.isSimple() || !DstTy.isSimple())
    return AdjustCost(
        BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));

  static const TypeConversionCostTblEntry
  ConversionTbl[] = {
    { ISD::TRUNCATE, MVT::v2i8,   MVT::v2i64,  1},  // xtn
    { ISD::TRUNCATE, MVT::v2i16,  MVT::v2i64,  1},  // xtn
    { ISD::TRUNCATE, MVT::v2i32,  MVT::v2i64,  1},  // xtn
    { ISD::TRUNCATE, MVT::v4i8,   MVT::v4i32,  1},  // xtn
    { ISD::TRUNCATE, MVT::v4i8,   MVT::v4i64,  3},  // 2 xtn + 1 uzp1
    { ISD::TRUNCATE, MVT::v4i16,  MVT::v4i32,  1},  // xtn
    { ISD::TRUNCATE, MVT::v4i16,  MVT::v4i64,  2},  // 1 uzp1 + 1 xtn
    { ISD::TRUNCATE, MVT::v4i32,  MVT::v4i64,  1},  // 1 uzp1
    { ISD::TRUNCATE, MVT::v8i8,   MVT::v8i16,  1},  // 1 xtn
    { ISD::TRUNCATE, MVT::v8i8,   MVT::v8i32,  2},  // 1 uzp1 + 1 xtn
    { ISD::TRUNCATE, MVT::v8i8,   MVT::v8i64,  4},  // 3 x uzp1 + xtn
    { ISD::TRUNCATE, MVT::v8i16,  MVT::v8i32,  1},  // 1 uzp1
    { ISD::TRUNCATE, MVT::v8i16,  MVT::v8i64,  3},  // 3 x uzp1
    { ISD::TRUNCATE, MVT::v8i32,  MVT::v8i64,  2},  // 2 x uzp1
    { ISD::TRUNCATE, MVT::v16i8,  MVT::v16i16, 1},  // uzp1
    { ISD::TRUNCATE, MVT::v16i8,  MVT::v16i32, 3},  // (2 + 1) x uzp1
    { ISD::TRUNCATE, MVT::v16i8,  MVT::v16i64, 7},  // (4 + 2 + 1) x uzp1
    { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2},  // 2 x uzp1
    { ISD::TRUNCATE, MVT::v16i16, MVT::v16i64, 6},  // (4 + 2) x uzp1
    { ISD::TRUNCATE, MVT::v16i32, MVT::v16i64, 4},  // 4 x uzp1

    // Truncations on nxvmiN
    { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i16, 1 },
    { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i32, 1 },
    { ISD::TRUNCATE, MVT::nxv2i1, MVT::nxv2i64, 1 },
    { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i16, 1 },
    { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i32, 1 },
    { ISD::TRUNCATE, MVT::nxv4i1, MVT::nxv4i64, 2 },
    { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i16, 1 },
    { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i32, 3 },
    { ISD::TRUNCATE, MVT::nxv8i1, MVT::nxv8i64, 5 },
    { ISD::TRUNCATE, MVT::nxv16i1, MVT::nxv16i8, 1 },
    { ISD::TRUNCATE, MVT::nxv2i16, MVT::nxv2i32, 1 },
    { ISD::TRUNCATE, MVT::nxv2i32, MVT::nxv2i64, 1 },
    { ISD::TRUNCATE, MVT::nxv4i16, MVT::nxv4i32, 1 },
    { ISD::TRUNCATE, MVT::nxv4i32, MVT::nxv4i64, 2 },
    { ISD::TRUNCATE, MVT::nxv8i16, MVT::nxv8i32, 3 },
    { ISD::TRUNCATE, MVT::nxv8i32, MVT::nxv8i64, 6 },

    // The number of shll instructions for the extension.
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },

    // LowerVectorINT_TO_FP:
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },

    // Complex: to v2f32
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },

    // Complex: to v4f32
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },

    // Complex: to v8f32
    { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
    { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },

    // Complex: to v16f32
    { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
    { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },

    // Complex: to v2f64
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },

    // Complex: to v4f64
    { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32,  4 },
    { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32,  4 },

    // LowerVectorFP_TO_INT
    { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
    { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
    { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },

    // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
    { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
    { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
    { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
    { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },

    // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
    { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
    { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },

    // Complex, from nxv2f32.
    { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f32, 1 },

    // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
    { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },

    // Complex, from nxv2f64.
    { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f64, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f64, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f64, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f64, 1 },

    // Complex, from nxv4f32.
    { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
    { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
    { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
    { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f32, 4 },
    { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f32, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f32, 1 },

    // Complex, from nxv8f64. Illegal -> illegal conversions not required.
    { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
    { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },
    { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f64, 7 },
    { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f64, 7 },

    // Complex, from nxv4f64. Illegal -> illegal conversions not required.
    { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
    { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
    { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },
    { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f64, 3 },
    { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f64, 3 },
    { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f64, 3 },

    // Complex, from nxv8f32. Illegal -> illegal conversions not required.
    { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
    { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },
    { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f32, 3 },
    { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f32, 3 },

    // Complex, from nxv8f16.
    { ISD::FP_TO_SINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
    { ISD::FP_TO_SINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
    { ISD::FP_TO_SINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv8i64, MVT::nxv8f16, 10 },
    { ISD::FP_TO_UINT, MVT::nxv8i32, MVT::nxv8f16, 4 },
    { ISD::FP_TO_UINT, MVT::nxv8i16, MVT::nxv8f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv8i8,  MVT::nxv8f16, 1 },

    // Complex, from nxv4f16.
    { ISD::FP_TO_SINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
    { ISD::FP_TO_SINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i64, MVT::nxv4f16, 4 },
    { ISD::FP_TO_UINT, MVT::nxv4i32, MVT::nxv4f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i16, MVT::nxv4f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv4i8,  MVT::nxv4f16, 1 },

    // Complex, from nxv2f16.
    { ISD::FP_TO_SINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
    { ISD::FP_TO_SINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i64, MVT::nxv2f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i32, MVT::nxv2f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i16, MVT::nxv2f16, 1 },
    { ISD::FP_TO_UINT, MVT::nxv2i8,  MVT::nxv2f16, 1 },

    // Truncate from nxvmf32 to nxvmf16.
    { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f32, 1 },
    { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f32, 1 },
    { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f32, 3 },

    // Truncate from nxvmf64 to nxvmf16.
    { ISD::FP_ROUND, MVT::nxv2f16, MVT::nxv2f64, 1 },
    { ISD::FP_ROUND, MVT::nxv4f16, MVT::nxv4f64, 3 },
    { ISD::FP_ROUND, MVT::nxv8f16, MVT::nxv8f64, 7 },

    // Truncate from nxvmf64 to nxvmf32.
    { ISD::FP_ROUND, MVT::nxv2f32, MVT::nxv2f64, 1 },
    { ISD::FP_ROUND, MVT::nxv4f32, MVT::nxv4f64, 3 },
    { ISD::FP_ROUND, MVT::nxv8f32, MVT::nxv8f64, 6 },

    // Extend from nxvmf16 to nxvmf32.
    { ISD::FP_EXTEND, MVT::nxv2f32, MVT::nxv2f16, 1},
    { ISD::FP_EXTEND, MVT::nxv4f32, MVT::nxv4f16, 1},
    { ISD::FP_EXTEND, MVT::nxv8f32, MVT::nxv8f16, 2},

    // Extend from nxvmf16 to nxvmf64.
    { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f16, 1},
    { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f16, 2},
    { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f16, 4},

    // Extend from nxvmf32 to nxvmf64.
    { ISD::FP_EXTEND, MVT::nxv2f64, MVT::nxv2f32, 1},
    { ISD::FP_EXTEND, MVT::nxv4f64, MVT::nxv4f32, 2},
    { ISD::FP_EXTEND, MVT::nxv8f64, MVT::nxv8f32, 6},

    // Bitcasts from float to integer
    { ISD::BITCAST, MVT::nxv2f16, MVT::nxv2i16, 0 },
    { ISD::BITCAST, MVT::nxv4f16, MVT::nxv4i16, 0 },
    { ISD::BITCAST, MVT::nxv2f32, MVT::nxv2i32, 0 },

    // Bitcasts from integer to float
    { ISD::BITCAST, MVT::nxv2i16, MVT::nxv2f16, 0 },
    { ISD::BITCAST, MVT::nxv4i16, MVT::nxv4f16, 0 },
    { ISD::BITCAST, MVT::nxv2i32, MVT::nxv2f32, 0 },

    // Add cost for extending to illegal -too wide- scalable vectors.
    // zero/sign extend are implemented by multiple unpack operations,
    // where each operation has a cost of 1.
    { ISD::ZERO_EXTEND, MVT::nxv16i16, MVT::nxv16i8, 2},
    { ISD::ZERO_EXTEND, MVT::nxv16i32, MVT::nxv16i8, 6},
    { ISD::ZERO_EXTEND, MVT::nxv16i64, MVT::nxv16i8, 14},
    { ISD::ZERO_EXTEND, MVT::nxv8i32, MVT::nxv8i16, 2},
    { ISD::ZERO_EXTEND, MVT::nxv8i64, MVT::nxv8i16, 6},
    { ISD::ZERO_EXTEND, MVT::nxv4i64, MVT::nxv4i32, 2},

    { ISD::SIGN_EXTEND, MVT::nxv16i16, MVT::nxv16i8, 2},
    { ISD::SIGN_EXTEND, MVT::nxv16i32, MVT::nxv16i8, 6},
    { ISD::SIGN_EXTEND, MVT::nxv16i64, MVT::nxv16i8, 14},
    { ISD::SIGN_EXTEND, MVT::nxv8i32, MVT::nxv8i16, 2},
    { ISD::SIGN_EXTEND, MVT::nxv8i64, MVT::nxv8i16, 6},
    { ISD::SIGN_EXTEND, MVT::nxv4i64, MVT::nxv4i32, 2},
  };

  // We have to estimate a cost of fixed length operation upon
  // SVE registers(operations) with the number of registers required
  // for a fixed type to be represented upon SVE registers.
  EVT WiderTy = SrcTy.bitsGT(DstTy) ? SrcTy : DstTy;
  if (SrcTy.isFixedLengthVector() && DstTy.isFixedLengthVector() &&
      SrcTy.getVectorNumElements() == DstTy.getVectorNumElements() &&
      ST->useSVEForFixedLengthVectors(WiderTy)) {
    std::pair<InstructionCost, MVT> LT =
        getTypeLegalizationCost(WiderTy.getTypeForEVT(Dst->getContext()));
    unsigned NumElements = AArch64::SVEBitsPerBlock /
                           LT.second.getVectorElementType().getSizeInBits();
    return AdjustCost(
        LT.first *
        getCastInstrCost(
            Opcode, ScalableVectorType::get(Dst->getScalarType(), NumElements),
            ScalableVectorType::get(Src->getScalarType(), NumElements), CCH,
            CostKind, I));
  }

  if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
                                                 DstTy.getSimpleVT(),
                                                 SrcTy.getSimpleVT()))
    return AdjustCost(Entry->Cost);

  static const TypeConversionCostTblEntry FP16Tbl[] = {
      {ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f16, 1}, // fcvtzs
      {ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f16, 1},
      {ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f16, 1}, // fcvtzs
      {ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f16, 1},
      {ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f16, 2}, // fcvtl+fcvtzs
      {ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f16, 2},
      {ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f16, 2}, // fcvtzs+xtn
      {ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f16, 2},
      {ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f16, 1}, // fcvtzs
      {ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f16, 1},
      {ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f16, 4}, // 2*fcvtl+2*fcvtzs
      {ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f16, 4},
      {ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f16, 3}, // 2*fcvtzs+xtn
      {ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f16, 3},
      {ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f16, 2}, // 2*fcvtzs
      {ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f16, 2},
      {ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f16, 8}, // 4*fcvtl+4*fcvtzs
      {ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f16, 8},
      {ISD::UINT_TO_FP, MVT::v8f16, MVT::v8i8, 2},   // ushll + ucvtf
      {ISD::SINT_TO_FP, MVT::v8f16, MVT::v8i8, 2},   // sshll + scvtf
      {ISD::UINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * ushl(2) + 2 * ucvtf
      {ISD::SINT_TO_FP, MVT::v16f16, MVT::v16i8, 4}, // 2 * sshl(2) + 2 * scvtf
  };

  if (ST->hasFullFP16())
    if (const auto *Entry = ConvertCostTableLookup(
            FP16Tbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
      return AdjustCost(Entry->Cost);

  // The BasicTTIImpl version only deals with CCH==TTI::CastContextHint::Normal,
  // but we also want to include the TTI::CastContextHint::Masked case too.
  if ((ISD == ISD::ZERO_EXTEND || ISD == ISD::SIGN_EXTEND) &&
      CCH == TTI::CastContextHint::Masked && ST->hasSVEorSME() &&
      TLI->isTypeLegal(DstTy))
    CCH = TTI::CastContextHint::Normal;

  return AdjustCost(
      BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
}

InstructionCost AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode,
                                                         Type *Dst,
                                                         VectorType *VecTy,
                                                         unsigned Index) {

  // Make sure we were given a valid extend opcode.
  assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
         "Invalid opcode");

  // We are extending an element we extract from a vector, so the source type
  // of the extend is the element type of the vector.
  auto *Src = VecTy->getElementType();

  // Sign- and zero-extends are for integer types only.
  assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");

  // Get the cost for the extract. We compute the cost (if any) for the extend
  // below.
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
  InstructionCost Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy,
                                            CostKind, Index, nullptr, nullptr);

  // Legalize the types.
  auto VecLT = getTypeLegalizationCost(VecTy);
  auto DstVT = TLI->getValueType(DL, Dst);
  auto SrcVT = TLI->getValueType(DL, Src);

  // If the resulting type is still a vector and the destination type is legal,
  // we may get the extension for free. If not, get the default cost for the
  // extend.
  if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
    return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
                                   CostKind);

  // The destination type should be larger than the element type. If not, get
  // the default cost for the extend.
  if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
    return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
                                   CostKind);

  switch (Opcode) {
  default:
    llvm_unreachable("Opcode should be either SExt or ZExt");

  // For sign-extends, we only need a smov, which performs the extension
  // automatically.
  case Instruction::SExt:
    return Cost;

  // For zero-extends, the extend is performed automatically by a umov unless
  // the destination type is i64 and the element type is i8 or i16.
  case Instruction::ZExt:
    if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
      return Cost;
  }

  // If we are unable to perform the extend for free, get the default cost.
  return Cost + getCastInstrCost(Opcode, Dst, Src, TTI::CastContextHint::None,
                                 CostKind);
}

InstructionCost AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
                                               TTI::TargetCostKind CostKind,
                                               const Instruction *I) {
  if (CostKind != TTI::TCK_RecipThroughput)
    return Opcode == Instruction::PHI ? 0 : 1;
  assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
  // Branches are assumed to be predicted.
  return 0;
}

InstructionCost AArch64TTIImpl::getVectorInstrCostHelper(const Instruction *I,
                                                         Type *Val,
                                                         unsigned Index,
                                                         bool HasRealUse) {
  assert(Val->isVectorTy() && "This must be a vector type");

  if (Index != -1U) {
    // Legalize the type.
    std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);

    // This type is legalized to a scalar type.
    if (!LT.second.isVector())
      return 0;

    // The type may be split. For fixed-width vectors we can normalize the
    // index to the new type.
    if (LT.second.isFixedLengthVector()) {
      unsigned Width = LT.second.getVectorNumElements();
      Index = Index % Width;
    }

    // The element at index zero is already inside the vector.
    // - For a physical (HasRealUse==true) insert-element or extract-element
    // instruction that extracts integers, an explicit FPR -> GPR move is
    // needed. So it has non-zero cost.
    // - For the rest of cases (virtual instruction or element type is float),
    // consider the instruction free.
    if (Index == 0 && (!HasRealUse || !Val->getScalarType()->isIntegerTy()))
      return 0;

    // This is recognising a LD1 single-element structure to one lane of one
    // register instruction. I.e., if this is an `insertelement` instruction,
    // and its second operand is a load, then we will generate a LD1, which
    // are expensive instructions.
    if (I && dyn_cast<LoadInst>(I->getOperand(1)))
      return ST->getVectorInsertExtractBaseCost() + 1;

    // FIXME:
    // If the extract-element and insert-element instructions could be
    // simplified away (e.g., could be combined into users by looking at use-def
    // context), they have no cost. This is not done in the first place for
    // compile-time considerations.
  }

  // All other insert/extracts cost this much.
  return ST->getVectorInsertExtractBaseCost();
}

InstructionCost AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
                                                   TTI::TargetCostKind CostKind,
                                                   unsigned Index, Value *Op0,
                                                   Value *Op1) {
  bool HasRealUse =
      Opcode == Instruction::InsertElement && Op0 && !isa<UndefValue>(Op0);
  return getVectorInstrCostHelper(nullptr, Val, Index, HasRealUse);
}

InstructionCost AArch64TTIImpl::getVectorInstrCost(const Instruction &I,
                                                   Type *Val,
                                                   TTI::TargetCostKind CostKind,
                                                   unsigned Index) {
  return getVectorInstrCostHelper(&I, Val, Index, true /* HasRealUse */);
}

InstructionCost AArch64TTIImpl::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
    TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
    ArrayRef<const Value *> Args,
    const Instruction *CxtI) {

  // TODO: Handle more cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
                                         Op2Info, Args, CxtI);

  // Legalize the type.
  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
  int ISD = TLI->InstructionOpcodeToISD(Opcode);

  switch (ISD) {
  default:
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
                                         Op2Info);
  case ISD::SDIV:
    if (Op2Info.isConstant() && Op2Info.isUniform() && Op2Info.isPowerOf2()) {
      // On AArch64, scalar signed division by constants power-of-two are
      // normally expanded to the sequence ADD + CMP + SELECT + SRA.
      // The OperandValue properties many not be same as that of previous
      // operation; conservatively assume OP_None.
      InstructionCost Cost = getArithmeticInstrCost(
          Instruction::Add, Ty, CostKind,
          Op1Info.getNoProps(), Op2Info.getNoProps());
      Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
                                     Op1Info.getNoProps(), Op2Info.getNoProps());
      Cost += getArithmeticInstrCost(
          Instruction::Select, Ty, CostKind,
          Op1Info.getNoProps(), Op2Info.getNoProps());
      Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
                                     Op1Info.getNoProps(), Op2Info.getNoProps());
      return Cost;
    }
    [[fallthrough]];
  case ISD::UDIV: {
    if (Op2Info.isConstant() && Op2Info.isUniform()) {
      auto VT = TLI->getValueType(DL, Ty);
      if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
        // Vector signed division by constant are expanded to the
        // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
        // to MULHS + SUB + SRL + ADD + SRL.
        InstructionCost MulCost = getArithmeticInstrCost(
            Instruction::Mul, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
        InstructionCost AddCost = getArithmeticInstrCost(
            Instruction::Add, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
        InstructionCost ShrCost = getArithmeticInstrCost(
            Instruction::AShr, Ty, CostKind, Op1Info.getNoProps(), Op2Info.getNoProps());
        return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
      }
    }

    InstructionCost Cost = BaseT::getArithmeticInstrCost(
        Opcode, Ty, CostKind, Op1Info, Op2Info);
    if (Ty->isVectorTy()) {
      if (TLI->isOperationLegalOrCustom(ISD, LT.second) && ST->hasSVE()) {
        // SDIV/UDIV operations are lowered using SVE, then we can have less
        // costs.
        if (isa<FixedVectorType>(Ty) && cast<FixedVectorType>(Ty)
                                                ->getPrimitiveSizeInBits()
                                                .getFixedValue() < 128) {
          EVT VT = TLI->getValueType(DL, Ty);
          static const CostTblEntry DivTbl[]{
              {ISD::SDIV, MVT::v2i8, 5},  {ISD::SDIV, MVT::v4i8, 8},
              {ISD::SDIV, MVT::v8i8, 8},  {ISD::SDIV, MVT::v2i16, 5},
              {ISD::SDIV, MVT::v4i16, 5}, {ISD::SDIV, MVT::v2i32, 1},
              {ISD::UDIV, MVT::v2i8, 5},  {ISD::UDIV, MVT::v4i8, 8},
              {ISD::UDIV, MVT::v8i8, 8},  {ISD::UDIV, MVT::v2i16, 5},
              {ISD::UDIV, MVT::v4i16, 5}, {ISD::UDIV, MVT::v2i32, 1}};

          const auto *Entry = CostTableLookup(DivTbl, ISD, VT.getSimpleVT());
          if (nullptr != Entry)
            return Entry->Cost;
        }
        // For 8/16-bit elements, the cost is higher because the type
        // requires promotion and possibly splitting:
        if (LT.second.getScalarType() == MVT::i8)
          Cost *= 8;
        else if (LT.second.getScalarType() == MVT::i16)
          Cost *= 4;
        return Cost;
      } else {
        // If one of the operands is a uniform constant then the cost for each
        // element is Cost for insertion, extraction and division.
        // Insertion cost = 2, Extraction Cost = 2, Division = cost for the
        // operation with scalar type
        if ((Op1Info.isConstant() && Op1Info.isUniform()) ||
            (Op2Info.isConstant() && Op2Info.isUniform())) {
          if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
            InstructionCost DivCost = BaseT::getArithmeticInstrCost(
                Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info);
            return (4 + DivCost) * VTy->getNumElements();
          }
        }
        // On AArch64, without SVE, vector divisions are expanded
        // into scalar divisions of each pair of elements.
        Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty,
                                       CostKind, Op1Info, Op2Info);
        Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
                                       Op1Info, Op2Info);
      }

      // TODO: if one of the arguments is scalar, then it's not necessary to
      // double the cost of handling the vector elements.
      Cost += Cost;
    }
    return Cost;
  }
  case ISD::MUL:
    // When SVE is available, then we can lower the v2i64 operation using
    // the SVE mul instruction, which has a lower cost.
    if (LT.second == MVT::v2i64 && ST->hasSVE())
      return LT.first;

    // When SVE is not available, there is no MUL.2d instruction,
    // which means mul <2 x i64> is expensive as elements are extracted
    // from the vectors and the muls scalarized.
    // As getScalarizationOverhead is a bit too pessimistic, we
    // estimate the cost for a i64 vector directly here, which is:
    // - four 2-cost i64 extracts,
    // - two 2-cost i64 inserts, and
    // - two 1-cost muls.
    // So, for a v2i64 with LT.First = 1 the cost is 14, and for a v4i64 with
    // LT.first = 2 the cost is 28. If both operands are extensions it will not
    // need to scalarize so the cost can be cheaper (smull or umull).
    // so the cost can be cheaper (smull or umull).
    if (LT.second != MVT::v2i64 || isWideningInstruction(Ty, Opcode, Args))
      return LT.first;
    return LT.first * 14;
  case ISD::ADD:
  case ISD::XOR:
  case ISD::OR:
  case ISD::AND:
  case ISD::SRL:
  case ISD::SRA:
  case ISD::SHL:
    // These nodes are marked as 'custom' for combining purposes only.
    // We know that they are legal. See LowerAdd in ISelLowering.
    return LT.first;

  case ISD::FNEG:
  case ISD::FADD:
  case ISD::FSUB:
    // Increase the cost for half and bfloat types if not architecturally
    // supported.
    if ((Ty->getScalarType()->isHalfTy() && !ST->hasFullFP16()) ||
        (Ty->getScalarType()->isBFloatTy() && !ST->hasBF16()))
      return 2 * LT.first;
    if (!Ty->getScalarType()->isFP128Ty())
      return LT.first;
    LLVM_FALLTHROUGH;
  case ISD::FMUL:
  case ISD::FDIV:
    // These nodes are marked as 'custom' just to lower them to SVE.
    // We know said lowering will incur no additional cost.
    if (!Ty->getScalarType()->isFP128Ty())
      return 2 * LT.first;

    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
                                         Op2Info);
  }
}

InstructionCost AArch64TTIImpl::getAddressComputationCost(Type *Ty,
                                                          ScalarEvolution *SE,
                                                          const SCEV *Ptr) {
  // Address computations in vectorized code with non-consecutive addresses will
  // likely result in more instructions compared to scalar code where the
  // computation can more often be merged into the index mode. The resulting
  // extra micro-ops can significantly decrease throughput.
  unsigned NumVectorInstToHideOverhead = 10;
  int MaxMergeDistance = 64;

  if (Ty->isVectorTy() && SE &&
      !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
    return NumVectorInstToHideOverhead;

  // In many cases the address computation is not merged into the instruction
  // addressing mode.
  return 1;
}

InstructionCost AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                                   Type *CondTy,
                                                   CmpInst::Predicate VecPred,
                                                   TTI::TargetCostKind CostKind,
                                                   const Instruction *I) {
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
                                     I);

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  // We don't lower some vector selects well that are wider than the register
  // width.
  if (isa<FixedVectorType>(ValTy) && ISD == ISD::SELECT) {
    // We would need this many instructions to hide the scalarization happening.
    const int AmortizationCost = 20;

    // If VecPred is not set, check if we can get a predicate from the context
    // instruction, if its type matches the requested ValTy.
    if (VecPred == CmpInst::BAD_ICMP_PREDICATE && I && I->getType() == ValTy) {
      CmpInst::Predicate CurrentPred;
      if (match(I, m_Select(m_Cmp(CurrentPred, m_Value(), m_Value()), m_Value(),
                            m_Value())))
        VecPred = CurrentPred;
    }
    // Check if we have a compare/select chain that can be lowered using
    // a (F)CMxx & BFI pair.
    if (CmpInst::isIntPredicate(VecPred) || VecPred == CmpInst::FCMP_OLE ||
        VecPred == CmpInst::FCMP_OLT || VecPred == CmpInst::FCMP_OGT ||
        VecPred == CmpInst::FCMP_OGE || VecPred == CmpInst::FCMP_OEQ ||
        VecPred == CmpInst::FCMP_UNE) {
      static const auto ValidMinMaxTys = {
          MVT::v8i8,  MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
          MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64};
      static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16};

      auto LT = getTypeLegalizationCost(ValTy);
      if (any_of(ValidMinMaxTys, [&LT](MVT M) { return M == LT.second; }) ||
          (ST->hasFullFP16() &&
           any_of(ValidFP16MinMaxTys, [&LT](MVT M) { return M == LT.second; })))
        return LT.first;
    }

    static const TypeConversionCostTblEntry
    VectorSelectTbl[] = {
      { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
      { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
      { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
      { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
      { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
      { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
    };

    EVT SelCondTy = TLI->getValueType(DL, CondTy);
    EVT SelValTy = TLI->getValueType(DL, ValTy);
    if (SelCondTy.isSimple() && SelValTy.isSimple()) {
      if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
                                                     SelCondTy.getSimpleVT(),
                                                     SelValTy.getSimpleVT()))
        return Entry->Cost;
    }
  }

  if (isa<FixedVectorType>(ValTy) && ISD == ISD::SETCC) {
    auto LT = getTypeLegalizationCost(ValTy);
    // Cost v4f16 FCmp without FP16 support via converting to v4f32 and back.
    if (LT.second == MVT::v4f16 && !ST->hasFullFP16())
      return LT.first * 4; // fcvtl + fcvtl + fcmp + xtn
  }

  // The base case handles scalable vectors fine for now, since it treats the
  // cost as 1 * legalization cost.
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
}

AArch64TTIImpl::TTI::MemCmpExpansionOptions
AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
  TTI::MemCmpExpansionOptions Options;
  if (ST->requiresStrictAlign()) {
    // TODO: Add cost modeling for strict align. Misaligned loads expand to
    // a bunch of instructions when strict align is enabled.
    return Options;
  }
  Options.AllowOverlappingLoads = true;
  Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
  Options.NumLoadsPerBlock = Options.MaxNumLoads;
  // TODO: Though vector loads usually perform well on AArch64, in some targets
  // they may wake up the FP unit, which raises the power consumption.  Perhaps
  // they could be used with no holds barred (-O3).
  Options.LoadSizes = {8, 4, 2, 1};
  return Options;
}

bool AArch64TTIImpl::prefersVectorizedAddressing() const {
  return ST->hasSVE();
}

InstructionCost
AArch64TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
                                      Align Alignment, unsigned AddressSpace,
                                      TTI::TargetCostKind CostKind) {
  if (useNeonVector(Src))
    return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
                                        CostKind);
  auto LT = getTypeLegalizationCost(Src);
  if (!LT.first.isValid())
    return InstructionCost::getInvalid();

  // The code-generator is currently not able to handle scalable vectors
  // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
  // it. This change will be removed when code-generation for these types is
  // sufficiently reliable.
  if (cast<VectorType>(Src)->getElementCount() == ElementCount::getScalable(1))
    return InstructionCost::getInvalid();

  return LT.first;
}

static unsigned getSVEGatherScatterOverhead(unsigned Opcode) {
  return Opcode == Instruction::Load ? SVEGatherOverhead : SVEScatterOverhead;
}

InstructionCost AArch64TTIImpl::getGatherScatterOpCost(
    unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
    Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
  if (useNeonVector(DataTy))
    return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
                                         Alignment, CostKind, I);
  auto *VT = cast<VectorType>(DataTy);
  auto LT = getTypeLegalizationCost(DataTy);
  if (!LT.first.isValid())
    return InstructionCost::getInvalid();

  // The code-generator is currently not able to handle scalable vectors
  // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
  // it. This change will be removed when code-generation for these types is
  // sufficiently reliable.
  if (cast<VectorType>(DataTy)->getElementCount() ==
      ElementCount::getScalable(1))
    return InstructionCost::getInvalid();

  ElementCount LegalVF = LT.second.getVectorElementCount();
  InstructionCost MemOpCost =
      getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind,
                      {TTI::OK_AnyValue, TTI::OP_None}, I);
  // Add on an overhead cost for using gathers/scatters.
  // TODO: At the moment this is applied unilaterally for all CPUs, but at some
  // point we may want a per-CPU overhead.
  MemOpCost *= getSVEGatherScatterOverhead(Opcode);
  return LT.first * MemOpCost * getMaxNumElements(LegalVF);
}

bool AArch64TTIImpl::useNeonVector(const Type *Ty) const {
  return isa<FixedVectorType>(Ty) && !ST->useSVEForFixedLengthVectors();
}

InstructionCost AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
                                                MaybeAlign Alignment,
                                                unsigned AddressSpace,
                                                TTI::TargetCostKind CostKind,
                                                TTI::OperandValueInfo OpInfo,
                                                const Instruction *I) {
  EVT VT = TLI->getValueType(DL, Ty, true);
  // Type legalization can't handle structs
  if (VT == MVT::Other)
    return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
                                  CostKind);

  auto LT = getTypeLegalizationCost(Ty);
  if (!LT.first.isValid())
    return InstructionCost::getInvalid();

  // The code-generator is currently not able to handle scalable vectors
  // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
  // it. This change will be removed when code-generation for these types is
  // sufficiently reliable.
  if (auto *VTy = dyn_cast<ScalableVectorType>(Ty))
    if (VTy->getElementCount() == ElementCount::getScalable(1))
      return InstructionCost::getInvalid();

  // TODO: consider latency as well for TCK_SizeAndLatency.
  if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency)
    return LT.first;

  if (CostKind != TTI::TCK_RecipThroughput)
    return 1;

  if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
      LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
    // Unaligned stores are extremely inefficient. We don't split all
    // unaligned 128-bit stores because the negative impact that has shown in
    // practice on inlined block copy code.
    // We make such stores expensive so that we will only vectorize if there
    // are 6 other instructions getting vectorized.
    const int AmortizationCost = 6;

    return LT.first * 2 * AmortizationCost;
  }

  // Opaque ptr or ptr vector types are i64s and can be lowered to STP/LDPs.
  if (Ty->isPtrOrPtrVectorTy())
    return LT.first;

  // Check truncating stores and extending loads.
  if (useNeonVector(Ty) &&
      Ty->getScalarSizeInBits() != LT.second.getScalarSizeInBits()) {
    // v4i8 types are lowered to scalar a load/store and sshll/xtn.
    if (VT == MVT::v4i8)
      return 2;
    // Otherwise we need to scalarize.
    return cast<FixedVectorType>(Ty)->getNumElements() * 2;
  }

  return LT.first;
}

InstructionCost AArch64TTIImpl::getInterleavedMemoryOpCost(
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
    Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
    bool UseMaskForCond, bool UseMaskForGaps) {
  assert(Factor >= 2 && "Invalid interleave factor");
  auto *VecVTy = cast<FixedVectorType>(VecTy);

  if (!UseMaskForCond && !UseMaskForGaps &&
      Factor <= TLI->getMaxSupportedInterleaveFactor()) {
    unsigned NumElts = VecVTy->getNumElements();
    auto *SubVecTy =
        FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);

    // ldN/stN only support legal vector types of size 64 or 128 in bits.
    // Accesses having vector types that are a multiple of 128 bits can be
    // matched to more than one ldN/stN instruction.
    bool UseScalable;
    if (NumElts % Factor == 0 &&
        TLI->isLegalInterleavedAccessType(SubVecTy, DL, UseScalable))
      return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL, UseScalable);
  }

  return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                           Alignment, AddressSpace, CostKind,
                                           UseMaskForCond, UseMaskForGaps);
}

InstructionCost
AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
  InstructionCost Cost = 0;
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
  for (auto *I : Tys) {
    if (!I->isVectorTy())
      continue;
    if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
        128)
      Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
              getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
  }
  return Cost;
}

unsigned AArch64TTIImpl::getMaxInterleaveFactor(ElementCount VF) {
  return ST->getMaxInterleaveFactor();
}

// For Falkor, we want to avoid having too many strided loads in a loop since
// that can exhaust the HW prefetcher resources.  We adjust the unroller
// MaxCount preference below to attempt to ensure unrolling doesn't create too
// many strided loads.
static void
getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                              TargetTransformInfo::UnrollingPreferences &UP) {
  enum { MaxStridedLoads = 7 };
  auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
    int StridedLoads = 0;
    // FIXME? We could make this more precise by looking at the CFG and
    // e.g. not counting loads in each side of an if-then-else diamond.
    for (const auto BB : L->blocks()) {
      for (auto &I : *BB) {
        LoadInst *LMemI = dyn_cast<LoadInst>(&I);
        if (!LMemI)
          continue;

        Value *PtrValue = LMemI->getPointerOperand();
        if (L->isLoopInvariant(PtrValue))
          continue;

        const SCEV *LSCEV = SE.getSCEV(PtrValue);
        const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
        if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
          continue;

        // FIXME? We could take pairing of unrolled load copies into account
        // by looking at the AddRec, but we would probably have to limit this
        // to loops with no stores or other memory optimization barriers.
        ++StridedLoads;
        // We've seen enough strided loads that seeing more won't make a
        // difference.
        if (StridedLoads > MaxStridedLoads / 2)
          return StridedLoads;
      }
    }
    return StridedLoads;
  };

  int StridedLoads = countStridedLoads(L, SE);
  LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
                    << " strided loads\n");
  // Pick the largest power of 2 unroll count that won't result in too many
  // strided loads.
  if (StridedLoads) {
    UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
    LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
                      << UP.MaxCount << '\n');
  }
}

void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                             TTI::UnrollingPreferences &UP,
                                             OptimizationRemarkEmitter *ORE) {
  // Enable partial unrolling and runtime unrolling.
  BaseT::getUnrollingPreferences(L, SE, UP, ORE);

  UP.UpperBound = true;

  // For inner loop, it is more likely to be a hot one, and the runtime check
  // can be promoted out from LICM pass, so the overhead is less, let's try
  // a larger threshold to unroll more loops.
  if (L->getLoopDepth() > 1)
    UP.PartialThreshold *= 2;

  // Disable partial & runtime unrolling on -Os.
  UP.PartialOptSizeThreshold = 0;

  if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
      EnableFalkorHWPFUnrollFix)
    getFalkorUnrollingPreferences(L, SE, UP);

  // Scan the loop: don't unroll loops with calls as this could prevent
  // inlining. Don't unroll vector loops either, as they don't benefit much from
  // unrolling.
  for (auto *BB : L->getBlocks()) {
    for (auto &I : *BB) {
      // Don't unroll vectorised loop.
      if (I.getType()->isVectorTy())
        return;

      if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
        if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
          if (!isLoweredToCall(F))
            continue;
        }
        return;
      }
    }
  }

  // Enable runtime unrolling for in-order models
  // If mcpu is omitted, getProcFamily() returns AArch64Subtarget::Others, so by
  // checking for that case, we can ensure that the default behaviour is
  // unchanged
  if (ST->getProcFamily() != AArch64Subtarget::Others &&
      !ST->getSchedModel().isOutOfOrder()) {
    UP.Runtime = true;
    UP.Partial = true;
    UP.UnrollRemainder = true;
    UP.DefaultUnrollRuntimeCount = 4;

    UP.UnrollAndJam = true;
    UP.UnrollAndJamInnerLoopThreshold = 60;
  }
}

void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                                           TTI::PeelingPreferences &PP) {
  BaseT::getPeelingPreferences(L, SE, PP);
}

Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                                         Type *ExpectedType) {
  switch (Inst->getIntrinsicID()) {
  default:
    return nullptr;
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4: {
    // Create a struct type
    StructType *ST = dyn_cast<StructType>(ExpectedType);
    if (!ST)
      return nullptr;
    unsigned NumElts = Inst->arg_size() - 1;
    if (ST->getNumElements() != NumElts)
      return nullptr;
    for (unsigned i = 0, e = NumElts; i != e; ++i) {
      if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
        return nullptr;
    }
    Value *Res = PoisonValue::get(ExpectedType);
    IRBuilder<> Builder(Inst);
    for (unsigned i = 0, e = NumElts; i != e; ++i) {
      Value *L = Inst->getArgOperand(i);
      Res = Builder.CreateInsertValue(Res, L, i);
    }
    return Res;
  }
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
    if (Inst->getType() == ExpectedType)
      return Inst;
    return nullptr;
  }
}

bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
                                        MemIntrinsicInfo &Info) {
  switch (Inst->getIntrinsicID()) {
  default:
    break;
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
    Info.ReadMem = true;
    Info.WriteMem = false;
    Info.PtrVal = Inst->getArgOperand(0);
    break;
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4:
    Info.ReadMem = false;
    Info.WriteMem = true;
    Info.PtrVal = Inst->getArgOperand(Inst->arg_size() - 1);
    break;
  }

  switch (Inst->getIntrinsicID()) {
  default:
    return false;
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_st2:
    Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
    break;
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_st3:
    Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
    break;
  case Intrinsic::aarch64_neon_ld4:
  case Intrinsic::aarch64_neon_st4:
    Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
    break;
  }
  return true;
}

/// See if \p I should be considered for address type promotion. We check if \p
/// I is a sext with right type and used in memory accesses. If it used in a
/// "complex" getelementptr, we allow it to be promoted without finding other
/// sext instructions that sign extended the same initial value. A getelementptr
/// is considered as "complex" if it has more than 2 operands.
bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
    const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
  bool Considerable = false;
  AllowPromotionWithoutCommonHeader = false;
  if (!isa<SExtInst>(&I))
    return false;
  Type *ConsideredSExtType =
      Type::getInt64Ty(I.getParent()->getParent()->getContext());
  if (I.getType() != ConsideredSExtType)
    return false;
  // See if the sext is the one with the right type and used in at least one
  // GetElementPtrInst.
  for (const User *U : I.users()) {
    if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
      Considerable = true;
      // A getelementptr is considered as "complex" if it has more than 2
      // operands. We will promote a SExt used in such complex GEP as we
      // expect some computation to be merged if they are done on 64 bits.
      if (GEPInst->getNumOperands() > 2) {
        AllowPromotionWithoutCommonHeader = true;
        break;
      }
    }
  }
  return Considerable;
}

bool AArch64TTIImpl::isLegalToVectorizeReduction(
    const RecurrenceDescriptor &RdxDesc, ElementCount VF) const {
  if (!VF.isScalable())
    return true;

  Type *Ty = RdxDesc.getRecurrenceType();
  if (Ty->isBFloatTy() || !isElementTypeLegalForScalableVector(Ty))
    return false;

  switch (RdxDesc.getRecurrenceKind()) {
  case RecurKind::Add:
  case RecurKind::FAdd:
  case RecurKind::And:
  case RecurKind::Or:
  case RecurKind::Xor:
  case RecurKind::SMin:
  case RecurKind::SMax:
  case RecurKind::UMin:
  case RecurKind::UMax:
  case RecurKind::FMin:
  case RecurKind::FMax:
  case RecurKind::SelectICmp:
  case RecurKind::SelectFCmp:
  case RecurKind::FMulAdd:
    return true;
  default:
    return false;
  }
}

InstructionCost
AArch64TTIImpl::getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
                                       bool IsUnsigned, FastMathFlags FMF,
                                       TTI::TargetCostKind CostKind) {
  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);

  if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
    return BaseT::getMinMaxReductionCost(Ty, CondTy, IsUnsigned, FMF, CostKind);

  assert((isa<ScalableVectorType>(Ty) == isa<ScalableVectorType>(CondTy)) &&
         "Both vector needs to be equally scalable");

  InstructionCost LegalizationCost = 0;
  if (LT.first > 1) {
    Type *LegalVTy = EVT(LT.second).getTypeForEVT(Ty->getContext());
    Intrinsic::ID MinMaxOpcode =
        Ty->isFPOrFPVectorTy()
            ? Intrinsic::maxnum
            : (IsUnsigned ? Intrinsic::umin : Intrinsic::smin);
    IntrinsicCostAttributes Attrs(MinMaxOpcode, LegalVTy, {LegalVTy, LegalVTy},
                                  FMF);
    LegalizationCost = getIntrinsicInstrCost(Attrs, CostKind) * (LT.first - 1);
  }

  return LegalizationCost + /*Cost of horizontal reduction*/ 2;
}

InstructionCost AArch64TTIImpl::getArithmeticReductionCostSVE(
    unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind) {
  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
  InstructionCost LegalizationCost = 0;
  if (LT.first > 1) {
    Type *LegalVTy = EVT(LT.second).getTypeForEVT(ValTy->getContext());
    LegalizationCost = getArithmeticInstrCost(Opcode, LegalVTy, CostKind);
    LegalizationCost *= LT.first - 1;
  }

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");
  // Add the final reduction cost for the legal horizontal reduction
  switch (ISD) {
  case ISD::ADD:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::FADD:
    return LegalizationCost + 2;
  default:
    return InstructionCost::getInvalid();
  }
}

InstructionCost
AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
                                           std::optional<FastMathFlags> FMF,
                                           TTI::TargetCostKind CostKind) {
  if (TTI::requiresOrderedReduction(FMF)) {
    if (auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
      InstructionCost BaseCost =
          BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
      // Add on extra cost to reflect the extra overhead on some CPUs. We still
      // end up vectorizing for more computationally intensive loops.
      return BaseCost + FixedVTy->getNumElements();
    }

    if (Opcode != Instruction::FAdd)
      return InstructionCost::getInvalid();

    auto *VTy = cast<ScalableVectorType>(ValTy);
    InstructionCost Cost =
        getArithmeticInstrCost(Opcode, VTy->getScalarType(), CostKind);
    Cost *= getMaxNumElements(VTy->getElementCount());
    return Cost;
  }

  if (isa<ScalableVectorType>(ValTy))
    return getArithmeticReductionCostSVE(Opcode, ValTy, CostKind);

  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
  MVT MTy = LT.second;
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // Horizontal adds can use the 'addv' instruction. We model the cost of these
  // instructions as twice a normal vector add, plus 1 for each legalization
  // step (LT.first). This is the only arithmetic vector reduction operation for
  // which we have an instruction.
  // OR, XOR and AND costs should match the codegen from:
  // OR: llvm/test/CodeGen/AArch64/reduce-or.ll
  // XOR: llvm/test/CodeGen/AArch64/reduce-xor.ll
  // AND: llvm/test/CodeGen/AArch64/reduce-and.ll
  static const CostTblEntry CostTblNoPairwise[]{
      {ISD::ADD, MVT::v8i8,   2},
      {ISD::ADD, MVT::v16i8,  2},
      {ISD::ADD, MVT::v4i16,  2},
      {ISD::ADD, MVT::v8i16,  2},
      {ISD::ADD, MVT::v4i32,  2},
      {ISD::ADD, MVT::v2i64,  2},
      {ISD::OR,  MVT::v8i8,  15},
      {ISD::OR,  MVT::v16i8, 17},
      {ISD::OR,  MVT::v4i16,  7},
      {ISD::OR,  MVT::v8i16,  9},
      {ISD::OR,  MVT::v2i32,  3},
      {ISD::OR,  MVT::v4i32,  5},
      {ISD::OR,  MVT::v2i64,  3},
      {ISD::XOR, MVT::v8i8,  15},
      {ISD::XOR, MVT::v16i8, 17},
      {ISD::XOR, MVT::v4i16,  7},
      {ISD::XOR, MVT::v8i16,  9},
      {ISD::XOR, MVT::v2i32,  3},
      {ISD::XOR, MVT::v4i32,  5},
      {ISD::XOR, MVT::v2i64,  3},
      {ISD::AND, MVT::v8i8,  15},
      {ISD::AND, MVT::v16i8, 17},
      {ISD::AND, MVT::v4i16,  7},
      {ISD::AND, MVT::v8i16,  9},
      {ISD::AND, MVT::v2i32,  3},
      {ISD::AND, MVT::v4i32,  5},
      {ISD::AND, MVT::v2i64,  3},
  };
  switch (ISD) {
  default:
    break;
  case ISD::ADD:
    if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
      return (LT.first - 1) + Entry->Cost;
    break;
  case ISD::XOR:
  case ISD::AND:
  case ISD::OR:
    const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy);
    if (!Entry)
      break;
    auto *ValVTy = cast<FixedVectorType>(ValTy);
    if (!ValVTy->getElementType()->isIntegerTy(1) &&
        MTy.getVectorNumElements() <= ValVTy->getNumElements() &&
        isPowerOf2_32(ValVTy->getNumElements())) {
      InstructionCost ExtraCost = 0;
      if (LT.first != 1) {
        // Type needs to be split, so there is an extra cost of LT.first - 1
        // arithmetic ops.
        auto *Ty = FixedVectorType::get(ValTy->getElementType(),
                                        MTy.getVectorNumElements());
        ExtraCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
        ExtraCost *= LT.first - 1;
      }
      return Entry->Cost + ExtraCost;
    }
    break;
  }
  return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
}

InstructionCost AArch64TTIImpl::getSpliceCost(VectorType *Tp, int Index) {
  static const CostTblEntry ShuffleTbl[] = {
      { TTI::SK_Splice, MVT::nxv16i8,  1 },
      { TTI::SK_Splice, MVT::nxv8i16,  1 },
      { TTI::SK_Splice, MVT::nxv4i32,  1 },
      { TTI::SK_Splice, MVT::nxv2i64,  1 },
      { TTI::SK_Splice, MVT::nxv2f16,  1 },
      { TTI::SK_Splice, MVT::nxv4f16,  1 },
      { TTI::SK_Splice, MVT::nxv8f16,  1 },
      { TTI::SK_Splice, MVT::nxv2bf16, 1 },
      { TTI::SK_Splice, MVT::nxv4bf16, 1 },
      { TTI::SK_Splice, MVT::nxv8bf16, 1 },
      { TTI::SK_Splice, MVT::nxv2f32,  1 },
      { TTI::SK_Splice, MVT::nxv4f32,  1 },
      { TTI::SK_Splice, MVT::nxv2f64,  1 },
  };

  // The code-generator is currently not able to handle scalable vectors
  // of <vscale x 1 x eltty> yet, so return an invalid cost to avoid selecting
  // it. This change will be removed when code-generation for these types is
  // sufficiently reliable.
  if (Tp->getElementCount() == ElementCount::getScalable(1))
    return InstructionCost::getInvalid();

  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
  Type *LegalVTy = EVT(LT.second).getTypeForEVT(Tp->getContext());
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
  EVT PromotedVT = LT.second.getScalarType() == MVT::i1
                       ? TLI->getPromotedVTForPredicate(EVT(LT.second))
                       : LT.second;
  Type *PromotedVTy = EVT(PromotedVT).getTypeForEVT(Tp->getContext());
  InstructionCost LegalizationCost = 0;
  if (Index < 0) {
    LegalizationCost =
        getCmpSelInstrCost(Instruction::ICmp, PromotedVTy, PromotedVTy,
                           CmpInst::BAD_ICMP_PREDICATE, CostKind) +
        getCmpSelInstrCost(Instruction::Select, PromotedVTy, LegalVTy,
                           CmpInst::BAD_ICMP_PREDICATE, CostKind);
  }

  // Predicated splice are promoted when lowering. See AArch64ISelLowering.cpp
  // Cost performed on a promoted type.
  if (LT.second.getScalarType() == MVT::i1) {
    LegalizationCost +=
        getCastInstrCost(Instruction::ZExt, PromotedVTy, LegalVTy,
                         TTI::CastContextHint::None, CostKind) +
        getCastInstrCost(Instruction::Trunc, LegalVTy, PromotedVTy,
                         TTI::CastContextHint::None, CostKind);
  }
  const auto *Entry =
      CostTableLookup(ShuffleTbl, TTI::SK_Splice, PromotedVT.getSimpleVT());
  assert(Entry && "Illegal Type for Splice");
  LegalizationCost += Entry->Cost;
  return LegalizationCost * LT.first;
}

InstructionCost AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
                                               VectorType *Tp,
                                               ArrayRef<int> Mask,
                                               TTI::TargetCostKind CostKind,
                                               int Index, VectorType *SubTp,
                                               ArrayRef<const Value *> Args) {
  std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
  // If we have a Mask, and the LT is being legalized somehow, split the Mask
  // into smaller vectors and sum the cost of each shuffle.
  if (!Mask.empty() && isa<FixedVectorType>(Tp) && LT.second.isVector() &&
      Tp->getScalarSizeInBits() == LT.second.getScalarSizeInBits() &&
      cast<FixedVectorType>(Tp)->getNumElements() >
          LT.second.getVectorNumElements() &&
      !Index && !SubTp) {
    unsigned TpNumElts = cast<FixedVectorType>(Tp)->getNumElements();
    assert(Mask.size() == TpNumElts && "Expected Mask and Tp size to match!");
    unsigned LTNumElts = LT.second.getVectorNumElements();
    unsigned NumVecs = (TpNumElts + LTNumElts - 1) / LTNumElts;
    VectorType *NTp =
        VectorType::get(Tp->getScalarType(), LT.second.getVectorElementCount());
    InstructionCost Cost;
    for (unsigned N = 0; N < NumVecs; N++) {
      SmallVector<int> NMask;
      // Split the existing mask into chunks of size LTNumElts. Track the source
      // sub-vectors to ensure the result has at most 2 inputs.
      unsigned Source1, Source2;
      unsigned NumSources = 0;
      for (unsigned E = 0; E < LTNumElts; E++) {
        int MaskElt = (N * LTNumElts + E < TpNumElts) ? Mask[N * LTNumElts + E]
                                                      : PoisonMaskElem;
        if (MaskElt < 0) {
          NMask.push_back(PoisonMaskElem);
          continue;
        }

        // Calculate which source from the input this comes from and whether it
        // is new to us.
        unsigned Source = MaskElt / LTNumElts;
        if (NumSources == 0) {
          Source1 = Source;
          NumSources = 1;
        } else if (NumSources == 1 && Source != Source1) {
          Source2 = Source;
          NumSources = 2;
        } else if (NumSources >= 2 && Source != Source1 && Source != Source2) {
          NumSources++;
        }

        // Add to the new mask. For the NumSources>2 case these are not correct,
        // but are only used for the modular lane number.
        if (Source == Source1)
          NMask.push_back(MaskElt % LTNumElts);
        else if (Source == Source2)
          NMask.push_back(MaskElt % LTNumElts + LTNumElts);
        else
          NMask.push_back(MaskElt % LTNumElts);
      }
      // If the sub-mask has at most 2 input sub-vectors then re-cost it using
      // getShuffleCost. If not then cost it using the worst case.
      if (NumSources <= 2)
        Cost += getShuffleCost(NumSources <= 1 ? TTI::SK_PermuteSingleSrc
                                               : TTI::SK_PermuteTwoSrc,
                               NTp, NMask, CostKind, 0, nullptr, Args);
      else if (any_of(enumerate(NMask), [&](const auto &ME) {
                 return ME.value() % LTNumElts == ME.index();
               }))
        Cost += LTNumElts - 1;
      else
        Cost += LTNumElts;
    }
    return Cost;
  }

  Kind = improveShuffleKindFromMask(Kind, Mask);

  // Check for broadcast loads, which are supported by the LD1R instruction.
  // In terms of code-size, the shuffle vector is free when a load + dup get
  // folded into a LD1R. That's what we check and return here. For performance
  // and reciprocal throughput, a LD1R is not completely free. In this case, we
  // return the cost for the broadcast below (i.e. 1 for most/all types), so
  // that we model the load + dup sequence slightly higher because LD1R is a
  // high latency instruction.
  if (CostKind == TTI::TCK_CodeSize && Kind == TTI::SK_Broadcast) {
    bool IsLoad = !Args.empty() && isa<LoadInst>(Args[0]);
    if (IsLoad && LT.second.isVector() &&
        isLegalBroadcastLoad(Tp->getElementType(),
                             LT.second.getVectorElementCount()))
      return 0;
  }

  // If we have 4 elements for the shuffle and a Mask, get the cost straight
  // from the perfect shuffle tables.
  if (Mask.size() == 4 && Tp->getElementCount() == ElementCount::getFixed(4) &&
      (Tp->getScalarSizeInBits() == 16 || Tp->getScalarSizeInBits() == 32) &&
      all_of(Mask, [](int E) { return E < 8; }))
    return getPerfectShuffleCost(Mask);

  if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
      Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc ||
      Kind == TTI::SK_Reverse || Kind == TTI::SK_Splice) {
    static const CostTblEntry ShuffleTbl[] = {
        // Broadcast shuffle kinds can be performed with 'dup'.
        {TTI::SK_Broadcast, MVT::v8i8, 1},
        {TTI::SK_Broadcast, MVT::v16i8, 1},
        {TTI::SK_Broadcast, MVT::v4i16, 1},
        {TTI::SK_Broadcast, MVT::v8i16, 1},
        {TTI::SK_Broadcast, MVT::v2i32, 1},
        {TTI::SK_Broadcast, MVT::v4i32, 1},
        {TTI::SK_Broadcast, MVT::v2i64, 1},
        {TTI::SK_Broadcast, MVT::v4f16, 1},
        {TTI::SK_Broadcast, MVT::v8f16, 1},
        {TTI::SK_Broadcast, MVT::v2f32, 1},
        {TTI::SK_Broadcast, MVT::v4f32, 1},
        {TTI::SK_Broadcast, MVT::v2f64, 1},
        // Transpose shuffle kinds can be performed with 'trn1/trn2' and
        // 'zip1/zip2' instructions.
        {TTI::SK_Transpose, MVT::v8i8, 1},
        {TTI::SK_Transpose, MVT::v16i8, 1},
        {TTI::SK_Transpose, MVT::v4i16, 1},
        {TTI::SK_Transpose, MVT::v8i16, 1},
        {TTI::SK_Transpose, MVT::v2i32, 1},
        {TTI::SK_Transpose, MVT::v4i32, 1},
        {TTI::SK_Transpose, MVT::v2i64, 1},
        {TTI::SK_Transpose, MVT::v4f16, 1},
        {TTI::SK_Transpose, MVT::v8f16, 1},
        {TTI::SK_Transpose, MVT::v2f32, 1},
        {TTI::SK_Transpose, MVT::v4f32, 1},
        {TTI::SK_Transpose, MVT::v2f64, 1},
        // Select shuffle kinds.
        // TODO: handle vXi8/vXi16.
        {TTI::SK_Select, MVT::v2i32, 1}, // mov.
        {TTI::SK_Select, MVT::v4i32, 2}, // rev+trn (or similar).
        {TTI::SK_Select, MVT::v2i64, 1}, // mov.
        {TTI::SK_Select, MVT::v2f32, 1}, // mov.
        {TTI::SK_Select, MVT::v4f32, 2}, // rev+trn (or similar).
        {TTI::SK_Select, MVT::v2f64, 1}, // mov.
        // PermuteSingleSrc shuffle kinds.
        {TTI::SK_PermuteSingleSrc, MVT::v2i32, 1}, // mov.
        {TTI::SK_PermuteSingleSrc, MVT::v4i32, 3}, // perfectshuffle worst case.
        {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // mov.
        {TTI::SK_PermuteSingleSrc, MVT::v2f32, 1}, // mov.
        {TTI::SK_PermuteSingleSrc, MVT::v4f32, 3}, // perfectshuffle worst case.
        {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // mov.
        {TTI::SK_PermuteSingleSrc, MVT::v4i16, 3}, // perfectshuffle worst case.
        {TTI::SK_PermuteSingleSrc, MVT::v4f16, 3}, // perfectshuffle worst case.
        {TTI::SK_PermuteSingleSrc, MVT::v4bf16, 3}, // same
        {TTI::SK_PermuteSingleSrc, MVT::v8i16, 8},  // constpool + load + tbl
        {TTI::SK_PermuteSingleSrc, MVT::v8f16, 8},  // constpool + load + tbl
        {TTI::SK_PermuteSingleSrc, MVT::v8bf16, 8}, // constpool + load + tbl
        {TTI::SK_PermuteSingleSrc, MVT::v8i8, 8},   // constpool + load + tbl
        {TTI::SK_PermuteSingleSrc, MVT::v16i8, 8},  // constpool + load + tbl
        // Reverse can be lowered with `rev`.
        {TTI::SK_Reverse, MVT::v2i32, 1}, // REV64
        {TTI::SK_Reverse, MVT::v4i32, 2}, // REV64; EXT
        {TTI::SK_Reverse, MVT::v2i64, 1}, // EXT
        {TTI::SK_Reverse, MVT::v2f32, 1}, // REV64
        {TTI::SK_Reverse, MVT::v4f32, 2}, // REV64; EXT
        {TTI::SK_Reverse, MVT::v2f64, 1}, // EXT
        {TTI::SK_Reverse, MVT::v8f16, 2}, // REV64; EXT
        {TTI::SK_Reverse, MVT::v8i16, 2}, // REV64; EXT
        {TTI::SK_Reverse, MVT::v16i8, 2}, // REV64; EXT
        {TTI::SK_Reverse, MVT::v4f16, 1}, // REV64
        {TTI::SK_Reverse, MVT::v4i16, 1}, // REV64
        {TTI::SK_Reverse, MVT::v8i8, 1},  // REV64
        // Splice can all be lowered as `ext`.
        {TTI::SK_Splice, MVT::v2i32, 1},
        {TTI::SK_Splice, MVT::v4i32, 1},
        {TTI::SK_Splice, MVT::v2i64, 1},
        {TTI::SK_Splice, MVT::v2f32, 1},
        {TTI::SK_Splice, MVT::v4f32, 1},
        {TTI::SK_Splice, MVT::v2f64, 1},
        {TTI::SK_Splice, MVT::v8f16, 1},
        {TTI::SK_Splice, MVT::v8bf16, 1},
        {TTI::SK_Splice, MVT::v8i16, 1},
        {TTI::SK_Splice, MVT::v16i8, 1},
        {TTI::SK_Splice, MVT::v4bf16, 1},
        {TTI::SK_Splice, MVT::v4f16, 1},
        {TTI::SK_Splice, MVT::v4i16, 1},
        {TTI::SK_Splice, MVT::v8i8, 1},
        // Broadcast shuffle kinds for scalable vectors
        {TTI::SK_Broadcast, MVT::nxv16i8, 1},
        {TTI::SK_Broadcast, MVT::nxv8i16, 1},
        {TTI::SK_Broadcast, MVT::nxv4i32, 1},
        {TTI::SK_Broadcast, MVT::nxv2i64, 1},
        {TTI::SK_Broadcast, MVT::nxv2f16, 1},
        {TTI::SK_Broadcast, MVT::nxv4f16, 1},
        {TTI::SK_Broadcast, MVT::nxv8f16, 1},
        {TTI::SK_Broadcast, MVT::nxv2bf16, 1},
        {TTI::SK_Broadcast, MVT::nxv4bf16, 1},
        {TTI::SK_Broadcast, MVT::nxv8bf16, 1},
        {TTI::SK_Broadcast, MVT::nxv2f32, 1},
        {TTI::SK_Broadcast, MVT::nxv4f32, 1},
        {TTI::SK_Broadcast, MVT::nxv2f64, 1},
        {TTI::SK_Broadcast, MVT::nxv16i1, 1},
        {TTI::SK_Broadcast, MVT::nxv8i1, 1},
        {TTI::SK_Broadcast, MVT::nxv4i1, 1},
        {TTI::SK_Broadcast, MVT::nxv2i1, 1},
        // Handle the cases for vector.reverse with scalable vectors
        {TTI::SK_Reverse, MVT::nxv16i8, 1},
        {TTI::SK_Reverse, MVT::nxv8i16, 1},
        {TTI::SK_Reverse, MVT::nxv4i32, 1},
        {TTI::SK_Reverse, MVT::nxv2i64, 1},
        {TTI::SK_Reverse, MVT::nxv2f16, 1},
        {TTI::SK_Reverse, MVT::nxv4f16, 1},
        {TTI::SK_Reverse, MVT::nxv8f16, 1},
        {TTI::SK_Reverse, MVT::nxv2bf16, 1},
        {TTI::SK_Reverse, MVT::nxv4bf16, 1},
        {TTI::SK_Reverse, MVT::nxv8bf16, 1},
        {TTI::SK_Reverse, MVT::nxv2f32, 1},
        {TTI::SK_Reverse, MVT::nxv4f32, 1},
        {TTI::SK_Reverse, MVT::nxv2f64, 1},
        {TTI::SK_Reverse, MVT::nxv16i1, 1},
        {TTI::SK_Reverse, MVT::nxv8i1, 1},
        {TTI::SK_Reverse, MVT::nxv4i1, 1},
        {TTI::SK_Reverse, MVT::nxv2i1, 1},
    };
    if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
      return LT.first * Entry->Cost;
  }

  if (Kind == TTI::SK_Splice && isa<ScalableVectorType>(Tp))
    return getSpliceCost(Tp, Index);

  // Inserting a subvector can often be done with either a D, S or H register
  // move, so long as the inserted vector is "aligned".
  if (Kind == TTI::SK_InsertSubvector && LT.second.isFixedLengthVector() &&
      LT.second.getSizeInBits() <= 128 && SubTp) {
    std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
    if (SubLT.second.isVector()) {
      int NumElts = LT.second.getVectorNumElements();
      int NumSubElts = SubLT.second.getVectorNumElements();
      if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
        return SubLT.first;
    }
  }

  return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
}

static bool containsDecreasingPointers(Loop *TheLoop,
                                       PredicatedScalarEvolution *PSE) {
  const auto &Strides = DenseMap<Value *, const SCEV *>();
  for (BasicBlock *BB : TheLoop->blocks()) {
    // Scan the instructions in the block and look for addresses that are
    // consecutive and decreasing.
    for (Instruction &I : *BB) {
      if (isa<LoadInst>(&I) || isa<StoreInst>(&I)) {
        Value *Ptr = getLoadStorePointerOperand(&I);
        Type *AccessTy = getLoadStoreType(&I);
        if (getPtrStride(*PSE, AccessTy, Ptr, TheLoop, Strides, /*Assume=*/true,
                         /*ShouldCheckWrap=*/false)
                .value_or(0) < 0)
          return true;
      }
    }
  }
  return false;
}

bool AArch64TTIImpl::preferPredicateOverEpilogue(TailFoldingInfo *TFI) {
  if (!ST->hasSVE())
    return false;

  // We don't currently support vectorisation with interleaving for SVE - with
  // such loops we're better off not using tail-folding. This gives us a chance
  // to fall back on fixed-width vectorisation using NEON's ld2/st2/etc.
  if (TFI->IAI->hasGroups())
    return false;

  TailFoldingOpts Required = TailFoldingOpts::Disabled;
  if (TFI->LVL->getReductionVars().size())
    Required |= TailFoldingOpts::Reductions;
  if (TFI->LVL->getFixedOrderRecurrences().size())
    Required |= TailFoldingOpts::Recurrences;

  // We call this to discover whether any load/store pointers in the loop have
  // negative strides. This will require extra work to reverse the loop
  // predicate, which may be expensive.
  if (containsDecreasingPointers(TFI->LVL->getLoop(),
                                 TFI->LVL->getPredicatedScalarEvolution()))
    Required |= TailFoldingOpts::Reverse;
  if (Required == TailFoldingOpts::Disabled)
    Required |= TailFoldingOpts::Simple;

  return TailFoldingOptionLoc.satisfies(ST->getSVETailFoldingDefaultOpts(),
                                        Required);
}

InstructionCost
AArch64TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
                                     int64_t BaseOffset, bool HasBaseReg,
                                     int64_t Scale, unsigned AddrSpace) const {
  // Scaling factors are not free at all.
  // Operands                     | Rt Latency
  // -------------------------------------------
  // Rt, [Xn, Xm]                 | 4
  // -------------------------------------------
  // Rt, [Xn, Xm, lsl #imm]       | Rn: 4 Rm: 5
  // Rt, [Xn, Wm, <extend> #imm]  |
  TargetLoweringBase::AddrMode AM;
  AM.BaseGV = BaseGV;
  AM.BaseOffs = BaseOffset;
  AM.HasBaseReg = HasBaseReg;
  AM.Scale = Scale;
  if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
    // Scale represents reg2 * scale, thus account for 1 if
    // it is not equal to 0 or 1.
    return AM.Scale != 0 && AM.Scale != 1;
  return -1;
}