1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
//===- LinalgToStandard.cpp - conversion from Linalg to Standard dialect --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LinalgToStandard/LinalgToStandard.h"
#include "../PassDetail.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
using namespace mlir;
using namespace mlir::linalg;
/// Helper function to extract the operand types that are passed to the
/// generated CallOp. MemRefTypes have their layout canonicalized since the
/// information is not used in signature generation.
/// Note that static size information is not modified.
static SmallVector<Type, 4> extractOperandTypes(Operation *op) {
SmallVector<Type, 4> result;
result.reserve(op->getNumOperands());
for (auto type : op->getOperandTypes()) {
// The underlying descriptor type (e.g. LLVM) does not have layout
// information. Canonicalizing the type at the level of std when going into
// a library call avoids needing to introduce DialectCastOp.
if (auto memrefType = type.dyn_cast<MemRefType>())
result.push_back(eraseStridedLayout(memrefType));
else
result.push_back(type);
}
return result;
}
// Get a SymbolRefAttr containing the library function name for the LinalgOp.
// If the library function does not exist, insert a declaration.
static FlatSymbolRefAttr getLibraryCallSymbolRef(Operation *op,
PatternRewriter &rewriter) {
auto linalgOp = cast<LinalgOp>(op);
auto fnName = linalgOp.getLibraryCallName();
if (fnName.empty()) {
op->emitWarning("No library call defined for: ") << *op;
return {};
}
// fnName is a dynamic std::string, unique it via a SymbolRefAttr.
FlatSymbolRefAttr fnNameAttr =
SymbolRefAttr::get(rewriter.getContext(), fnName);
auto module = op->getParentOfType<ModuleOp>();
if (module.lookupSymbol(fnNameAttr.getAttr()))
return fnNameAttr;
SmallVector<Type, 4> inputTypes(extractOperandTypes(op));
assert(op->getNumResults() == 0 &&
"Library call for linalg operation can be generated only for ops that "
"have void return types");
auto libFnType = rewriter.getFunctionType(inputTypes, {});
OpBuilder::InsertionGuard guard(rewriter);
// Insert before module terminator.
rewriter.setInsertionPoint(module.getBody(),
std::prev(module.getBody()->end()));
func::FuncOp funcOp = rewriter.create<func::FuncOp>(
op->getLoc(), fnNameAttr.getValue(), libFnType);
// Insert a function attribute that will trigger the emission of the
// corresponding `_mlir_ciface_xxx` interface so that external libraries see
// a normalized ABI. This interface is added during std to llvm conversion.
funcOp->setAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName(),
UnitAttr::get(op->getContext()));
funcOp.setPrivate();
return fnNameAttr;
}
static SmallVector<Value, 4>
createTypeCanonicalizedMemRefOperands(OpBuilder &b, Location loc,
ValueRange operands) {
SmallVector<Value, 4> res;
res.reserve(operands.size());
for (auto op : operands) {
auto memrefType = op.getType().dyn_cast<MemRefType>();
if (!memrefType) {
res.push_back(op);
continue;
}
Value cast =
b.create<memref::CastOp>(loc, eraseStridedLayout(memrefType), op);
res.push_back(cast);
}
return res;
}
LogicalResult mlir::linalg::LinalgOpToLibraryCallRewrite::matchAndRewrite(
LinalgOp op, PatternRewriter &rewriter) const {
auto libraryCallName = getLibraryCallSymbolRef(op, rewriter);
if (!libraryCallName)
return failure();
// TODO: Add support for more complex library call signatures that include
// indices or captured values.
rewriter.replaceOpWithNewOp<func::CallOp>(
op, libraryCallName.getValue(), TypeRange(),
createTypeCanonicalizedMemRefOperands(rewriter, op->getLoc(),
op->getOperands()));
return success();
}
/// Populate the given list with patterns that convert from Linalg to Standard.
void mlir::linalg::populateLinalgToStandardConversionPatterns(
RewritePatternSet &patterns) {
// TODO: ConvOp conversion needs to export a descriptor with relevant
// attribute values such as kernel striding and dilation.
patterns.add<LinalgOpToLibraryCallRewrite>(patterns.getContext());
}
namespace {
struct ConvertLinalgToStandardPass
: public ConvertLinalgToStandardBase<ConvertLinalgToStandardPass> {
void runOnOperation() override;
};
} // namespace
void ConvertLinalgToStandardPass::runOnOperation() {
auto module = getOperation();
ConversionTarget target(getContext());
target.addLegalDialect<AffineDialect, arith::ArithmeticDialect,
func::FuncDialect, memref::MemRefDialect,
scf::SCFDialect>();
target.addLegalOp<ModuleOp, func::FuncOp, func::ReturnOp>();
RewritePatternSet patterns(&getContext());
populateLinalgToStandardConversionPatterns(patterns);
if (failed(applyFullConversion(module, target, std::move(patterns))))
signalPassFailure();
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertLinalgToStandardPass() {
return std::make_unique<ConvertLinalgToStandardPass>();
}
|