1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
//===-- MathToLibm.cpp - conversion from Math to libm calls ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/MathToLibm/MathToLibm.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include <optional>
namespace mlir {
#define GEN_PASS_DEF_CONVERTMATHTOLIBM
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
// Pattern to convert vector operations to scalar operations. This is needed as
// libm calls require scalars.
template <typename Op>
struct VecOpToScalarOp : public OpRewritePattern<Op> {
public:
using OpRewritePattern<Op>::OpRewritePattern;
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
};
// Pattern to promote an op of a smaller floating point type to F32.
template <typename Op>
struct PromoteOpToF32 : public OpRewritePattern<Op> {
public:
using OpRewritePattern<Op>::OpRewritePattern;
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
};
// Pattern to convert scalar math operations to calls to libm functions.
// Additionally the libm function signatures are declared.
template <typename Op>
struct ScalarOpToLibmCall : public OpRewritePattern<Op> {
public:
using OpRewritePattern<Op>::OpRewritePattern;
ScalarOpToLibmCall<Op>(MLIRContext *context, StringRef floatFunc,
StringRef doubleFunc, PatternBenefit benefit)
: OpRewritePattern<Op>(context, benefit), floatFunc(floatFunc),
doubleFunc(doubleFunc){};
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
private:
std::string floatFunc, doubleFunc;
};
} // namespace
template <typename Op>
LogicalResult
VecOpToScalarOp<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const {
auto opType = op.getType();
auto loc = op.getLoc();
auto vecType = opType.template dyn_cast<VectorType>();
if (!vecType)
return failure();
if (!vecType.hasRank())
return failure();
auto shape = vecType.getShape();
int64_t numElements = vecType.getNumElements();
Value result = rewriter.create<arith::ConstantOp>(
loc, DenseElementsAttr::get(
vecType, FloatAttr::get(vecType.getElementType(), 0.0)));
SmallVector<int64_t> strides = computeStrides(shape);
for (auto linearIndex = 0; linearIndex < numElements; ++linearIndex) {
SmallVector<int64_t> positions = delinearize(strides, linearIndex);
SmallVector<Value> operands;
for (auto input : op->getOperands())
operands.push_back(
rewriter.create<vector::ExtractOp>(loc, input, positions));
Value scalarOp =
rewriter.create<Op>(loc, vecType.getElementType(), operands);
result =
rewriter.create<vector::InsertOp>(loc, scalarOp, result, positions);
}
rewriter.replaceOp(op, {result});
return success();
}
template <typename Op>
LogicalResult
PromoteOpToF32<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const {
auto opType = op.getType();
if (!opType.template isa<Float16Type, BFloat16Type>())
return failure();
auto loc = op.getLoc();
auto f32 = rewriter.getF32Type();
auto extendedOperands = llvm::to_vector(
llvm::map_range(op->getOperands(), [&](Value operand) -> Value {
return rewriter.create<arith::ExtFOp>(loc, f32, operand);
}));
auto newOp = rewriter.create<Op>(loc, f32, extendedOperands);
rewriter.replaceOpWithNewOp<arith::TruncFOp>(op, opType, newOp);
return success();
}
template <typename Op>
LogicalResult
ScalarOpToLibmCall<Op>::matchAndRewrite(Op op,
PatternRewriter &rewriter) const {
auto module = SymbolTable::getNearestSymbolTable(op);
auto type = op.getType();
if (!type.template isa<Float32Type, Float64Type>())
return failure();
auto name = type.getIntOrFloatBitWidth() == 64 ? doubleFunc : floatFunc;
auto opFunc = dyn_cast_or_null<SymbolOpInterface>(
SymbolTable::lookupSymbolIn(module, name));
// Forward declare function if it hasn't already been
if (!opFunc) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&module->getRegion(0).front());
auto opFunctionTy = FunctionType::get(
rewriter.getContext(), op->getOperandTypes(), op->getResultTypes());
opFunc = rewriter.create<func::FuncOp>(rewriter.getUnknownLoc(), name,
opFunctionTy);
opFunc.setPrivate();
// By definition Math dialect operations imply LLVM's "readnone"
// function attribute, so we can set it here to provide more
// optimization opportunities (e.g. LICM) for backends targeting LLVM IR.
// This will have to be changed, when strict FP behavior is supported
// by Math dialect.
opFunc->setAttr(LLVM::LLVMDialect::getReadnoneAttrName(),
UnitAttr::get(rewriter.getContext()));
}
assert(isa<FunctionOpInterface>(SymbolTable::lookupSymbolIn(module, name)));
rewriter.replaceOpWithNewOp<func::CallOp>(op, name, op.getType(),
op->getOperands());
return success();
}
void mlir::populateMathToLibmConversionPatterns(
RewritePatternSet &patterns, PatternBenefit benefit,
llvm::Optional<PatternBenefit> log1pBenefit) {
patterns.add<VecOpToScalarOp<math::Atan2Op>, VecOpToScalarOp<math::CbrtOp>,
VecOpToScalarOp<math::ExpM1Op>, VecOpToScalarOp<math::TanhOp>,
VecOpToScalarOp<math::CosOp>, VecOpToScalarOp<math::SinOp>,
VecOpToScalarOp<math::ErfOp>, VecOpToScalarOp<math::RoundEvenOp>,
VecOpToScalarOp<math::RoundOp>, VecOpToScalarOp<math::AtanOp>,
VecOpToScalarOp<math::TanOp>, VecOpToScalarOp<math::TruncOp>>(
patterns.getContext(), benefit);
patterns.add<PromoteOpToF32<math::Atan2Op>, PromoteOpToF32<math::CbrtOp>,
PromoteOpToF32<math::ExpM1Op>, PromoteOpToF32<math::TanhOp>,
PromoteOpToF32<math::CosOp>, PromoteOpToF32<math::SinOp>,
PromoteOpToF32<math::ErfOp>, PromoteOpToF32<math::RoundEvenOp>,
PromoteOpToF32<math::RoundOp>, PromoteOpToF32<math::AtanOp>,
PromoteOpToF32<math::TanOp>, PromoteOpToF32<math::TruncOp>>(
patterns.getContext(), benefit);
patterns.add<ScalarOpToLibmCall<math::AtanOp>>(patterns.getContext(), "atanf",
"atan", benefit);
patterns.add<ScalarOpToLibmCall<math::Atan2Op>>(patterns.getContext(),
"atan2f", "atan2", benefit);
patterns.add<ScalarOpToLibmCall<math::CbrtOp>>(patterns.getContext(), "cbrtf",
"cbrt", benefit);
patterns.add<ScalarOpToLibmCall<math::ErfOp>>(patterns.getContext(), "erff",
"erf", benefit);
patterns.add<ScalarOpToLibmCall<math::ExpM1Op>>(patterns.getContext(),
"expm1f", "expm1", benefit);
patterns.add<ScalarOpToLibmCall<math::TanOp>>(patterns.getContext(), "tanf",
"tan", benefit);
patterns.add<ScalarOpToLibmCall<math::TanhOp>>(patterns.getContext(), "tanhf",
"tanh", benefit);
patterns.add<ScalarOpToLibmCall<math::RoundEvenOp>>(
patterns.getContext(), "roundevenf", "roundeven", benefit);
patterns.add<ScalarOpToLibmCall<math::RoundOp>>(patterns.getContext(),
"roundf", "round", benefit);
patterns.add<ScalarOpToLibmCall<math::CosOp>>(patterns.getContext(), "cosf",
"cos", benefit);
patterns.add<ScalarOpToLibmCall<math::SinOp>>(patterns.getContext(), "sinf",
"sin", benefit);
patterns.add<ScalarOpToLibmCall<math::Log1pOp>>(
patterns.getContext(), "log1pf", "log1p", log1pBenefit.value_or(benefit));
patterns.add<ScalarOpToLibmCall<math::FloorOp>>(patterns.getContext(),
"floorf", "floor", benefit);
patterns.add<ScalarOpToLibmCall<math::CeilOp>>(patterns.getContext(), "ceilf",
"ceil", benefit);
patterns.add<ScalarOpToLibmCall<math::TruncOp>>(patterns.getContext(),
"truncf", "trunc", benefit);
}
namespace {
struct ConvertMathToLibmPass
: public impl::ConvertMathToLibmBase<ConvertMathToLibmPass> {
void runOnOperation() override;
};
} // namespace
void ConvertMathToLibmPass::runOnOperation() {
auto module = getOperation();
RewritePatternSet patterns(&getContext());
populateMathToLibmConversionPatterns(patterns, /*benefit=*/1);
ConversionTarget target(getContext());
target.addLegalDialect<arith::ArithDialect, BuiltinDialect, func::FuncDialect,
vector::VectorDialect>();
target.addIllegalDialect<math::MathDialect>();
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
std::unique_ptr<OperationPass<ModuleOp>> mlir::createConvertMathToLibmPass() {
return std::make_unique<ConvertMathToLibmPass>();
}
|