1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
|
//===- AffineAnalysis.cpp - Affine structures analysis routines -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous analysis routines for affine structures
// (expressions, maps, sets), and other utilities relying on such analysis.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Interfaces/ViewLikeInterface.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#define DEBUG_TYPE "affine-analysis"
using namespace mlir;
using namespace affine;
using namespace presburger;
/// Get the value that is being reduced by `pos`-th reduction in the loop if
/// such a reduction can be performed by affine parallel loops. This assumes
/// floating-point operations are commutative. On success, `kind` will be the
/// reduction kind suitable for use in affine parallel loop builder. If the
/// reduction is not supported, returns null.
static Value getSupportedReduction(AffineForOp forOp, unsigned pos,
arith::AtomicRMWKind &kind) {
SmallVector<Operation *> combinerOps;
Value reducedVal =
matchReduction(forOp.getRegionIterArgs(), pos, combinerOps);
if (!reducedVal)
return nullptr;
// Expected only one combiner operation.
if (combinerOps.size() > 1)
return nullptr;
Operation *combinerOp = combinerOps.back();
std::optional<arith::AtomicRMWKind> maybeKind =
TypeSwitch<Operation *, std::optional<arith::AtomicRMWKind>>(combinerOp)
.Case([](arith::AddFOp) { return arith::AtomicRMWKind::addf; })
.Case([](arith::MulFOp) { return arith::AtomicRMWKind::mulf; })
.Case([](arith::AddIOp) { return arith::AtomicRMWKind::addi; })
.Case([](arith::AndIOp) { return arith::AtomicRMWKind::andi; })
.Case([](arith::OrIOp) { return arith::AtomicRMWKind::ori; })
.Case([](arith::MulIOp) { return arith::AtomicRMWKind::muli; })
.Case([](arith::MinFOp) { return arith::AtomicRMWKind::minf; })
.Case([](arith::MaxFOp) { return arith::AtomicRMWKind::maxf; })
.Case([](arith::MinSIOp) { return arith::AtomicRMWKind::mins; })
.Case([](arith::MaxSIOp) { return arith::AtomicRMWKind::maxs; })
.Case([](arith::MinUIOp) { return arith::AtomicRMWKind::minu; })
.Case([](arith::MaxUIOp) { return arith::AtomicRMWKind::maxu; })
.Default([](Operation *) -> std::optional<arith::AtomicRMWKind> {
// TODO: AtomicRMW supports other kinds of reductions this is
// currently not detecting, add those when the need arises.
return std::nullopt;
});
if (!maybeKind)
return nullptr;
kind = *maybeKind;
return reducedVal;
}
/// Populate `supportedReductions` with descriptors of the supported reductions.
void mlir::affine::getSupportedReductions(
AffineForOp forOp, SmallVectorImpl<LoopReduction> &supportedReductions) {
unsigned numIterArgs = forOp.getNumIterOperands();
if (numIterArgs == 0)
return;
supportedReductions.reserve(numIterArgs);
for (unsigned i = 0; i < numIterArgs; ++i) {
arith::AtomicRMWKind kind;
if (Value value = getSupportedReduction(forOp, i, kind))
supportedReductions.emplace_back(LoopReduction{kind, i, value});
}
}
/// Returns true if `forOp' is a parallel loop. If `parallelReductions` is
/// provided, populates it with descriptors of the parallelizable reductions and
/// treats them as not preventing parallelization.
bool mlir::affine::isLoopParallel(
AffineForOp forOp, SmallVectorImpl<LoopReduction> *parallelReductions) {
unsigned numIterArgs = forOp.getNumIterOperands();
// Loop is not parallel if it has SSA loop-carried dependences and reduction
// detection is not requested.
if (numIterArgs > 0 && !parallelReductions)
return false;
// Find supported reductions of requested.
if (parallelReductions) {
getSupportedReductions(forOp, *parallelReductions);
// Return later to allow for identifying all parallel reductions even if the
// loop is not parallel.
if (parallelReductions->size() != numIterArgs)
return false;
}
// Check memory dependences.
return isLoopMemoryParallel(forOp);
}
/// Returns true if `v` is allocated locally to `enclosingOp` -- i.e., it is
/// allocated by an operation nested within `enclosingOp`.
static bool isLocallyDefined(Value v, Operation *enclosingOp) {
Operation *defOp = v.getDefiningOp();
if (!defOp)
return false;
if (hasSingleEffect<MemoryEffects::Allocate>(defOp, v) &&
enclosingOp->isProperAncestor(defOp))
return true;
// Aliasing ops.
auto viewOp = dyn_cast<ViewLikeOpInterface>(defOp);
return viewOp && isLocallyDefined(viewOp.getViewSource(), enclosingOp);
}
bool mlir::affine::isLoopMemoryParallel(AffineForOp forOp) {
// Any memref-typed iteration arguments are treated as serializing.
if (llvm::any_of(forOp.getResultTypes(),
[](Type type) { return type.isa<BaseMemRefType>(); }))
return false;
// Collect all load and store ops in loop nest rooted at 'forOp'.
SmallVector<Operation *, 8> loadAndStoreOps;
auto walkResult = forOp.walk([&](Operation *op) -> WalkResult {
if (auto readOp = dyn_cast<AffineReadOpInterface>(op)) {
// Memrefs that are allocated inside `forOp` need not be considered.
if (!isLocallyDefined(readOp.getMemRef(), forOp))
loadAndStoreOps.push_back(op);
} else if (auto writeOp = dyn_cast<AffineWriteOpInterface>(op)) {
// Filter out stores the same way as above.
if (!isLocallyDefined(writeOp.getMemRef(), forOp))
loadAndStoreOps.push_back(op);
} else if (!isa<AffineForOp, AffineYieldOp, AffineIfOp>(op) &&
!hasSingleEffect<MemoryEffects::Allocate>(op) &&
!isMemoryEffectFree(op)) {
// Alloc-like ops inside `forOp` are fine (they don't impact parallelism)
// as long as they don't escape the loop (which has been checked above).
return WalkResult::interrupt();
}
return WalkResult::advance();
});
// Stop early if the loop has unknown ops with side effects.
if (walkResult.wasInterrupted())
return false;
// Dep check depth would be number of enclosing loops + 1.
unsigned depth = getNestingDepth(forOp) + 1;
// Check dependences between all pairs of ops in 'loadAndStoreOps'.
for (auto *srcOp : loadAndStoreOps) {
MemRefAccess srcAccess(srcOp);
for (auto *dstOp : loadAndStoreOps) {
MemRefAccess dstAccess(dstOp);
DependenceResult result =
checkMemrefAccessDependence(srcAccess, dstAccess, depth);
if (result.value != DependenceResult::NoDependence)
return false;
}
}
return true;
}
/// Returns the sequence of AffineApplyOp Operations operation in
/// 'affineApplyOps', which are reachable via a search starting from 'operands',
/// and ending at operands which are not defined by AffineApplyOps.
// TODO: Add a method to AffineApplyOp which forward substitutes the
// AffineApplyOp into any user AffineApplyOps.
void mlir::affine::getReachableAffineApplyOps(
ArrayRef<Value> operands, SmallVectorImpl<Operation *> &affineApplyOps) {
struct State {
// The ssa value for this node in the DFS traversal.
Value value;
// The operand index of 'value' to explore next during DFS traversal.
unsigned operandIndex;
};
SmallVector<State, 4> worklist;
for (auto operand : operands) {
worklist.push_back({operand, 0});
}
while (!worklist.empty()) {
State &state = worklist.back();
auto *opInst = state.value.getDefiningOp();
// Note: getDefiningOp will return nullptr if the operand is not an
// Operation (i.e. block argument), which is a terminator for the search.
if (!isa_and_nonnull<AffineApplyOp>(opInst)) {
worklist.pop_back();
continue;
}
if (state.operandIndex == 0) {
// Pre-Visit: Add 'opInst' to reachable sequence.
affineApplyOps.push_back(opInst);
}
if (state.operandIndex < opInst->getNumOperands()) {
// Visit: Add next 'affineApplyOp' operand to worklist.
// Get next operand to visit at 'operandIndex'.
auto nextOperand = opInst->getOperand(state.operandIndex);
// Increment 'operandIndex' in 'state'.
++state.operandIndex;
// Add 'nextOperand' to worklist.
worklist.push_back({nextOperand, 0});
} else {
// Post-visit: done visiting operands AffineApplyOp, pop off stack.
worklist.pop_back();
}
}
}
// Builds a system of constraints with dimensional variables corresponding to
// the loop IVs of the forOps appearing in that order. Any symbols founds in
// the bound operands are added as symbols in the system. Returns failure for
// the yet unimplemented cases.
// TODO: Handle non-unit steps through local variables or stride information in
// FlatAffineValueConstraints. (For eg., by using iv - lb % step = 0 and/or by
// introducing a method in FlatAffineValueConstraints
// setExprStride(ArrayRef<int64_t> expr, int64_t stride)
LogicalResult mlir::affine::getIndexSet(MutableArrayRef<Operation *> ops,
FlatAffineValueConstraints *domain) {
SmallVector<Value, 4> indices;
SmallVector<Operation *, 8> loopOps;
size_t numDims = 0;
for (Operation *op : ops) {
if (!isa<AffineForOp, AffineIfOp, AffineParallelOp>(op)) {
LLVM_DEBUG(llvm::dbgs() << "getIndexSet only handles affine.for/if/"
"parallel ops");
return failure();
}
if (AffineForOp forOp = dyn_cast<AffineForOp>(op)) {
loopOps.push_back(forOp);
// An AffineForOp retains only 1 induction variable.
numDims += 1;
} else if (AffineParallelOp parallelOp = dyn_cast<AffineParallelOp>(op)) {
loopOps.push_back(parallelOp);
numDims += parallelOp.getNumDims();
}
}
extractInductionVars(loopOps, indices);
// Reset while associating Values in 'indices' to the domain.
*domain = FlatAffineValueConstraints(numDims, /*numSymbols=*/0,
/*numLocals=*/0, indices);
for (Operation *op : ops) {
// Add constraints from forOp's bounds.
if (AffineForOp forOp = dyn_cast<AffineForOp>(op)) {
if (failed(domain->addAffineForOpDomain(forOp)))
return failure();
} else if (auto ifOp = dyn_cast<AffineIfOp>(op)) {
domain->addAffineIfOpDomain(ifOp);
} else if (auto parallelOp = dyn_cast<AffineParallelOp>(op))
if (failed(domain->addAffineParallelOpDomain(parallelOp)))
return failure();
}
return success();
}
/// Computes the iteration domain for 'op' and populates 'indexSet', which
/// encapsulates the constraints involving loops surrounding 'op' and
/// potentially involving any Function symbols. The dimensional variables in
/// 'indexSet' correspond to the loops surrounding 'op' from outermost to
/// innermost.
static LogicalResult getOpIndexSet(Operation *op,
FlatAffineValueConstraints *indexSet) {
SmallVector<Operation *, 4> ops;
getEnclosingAffineOps(*op, &ops);
return getIndexSet(ops, indexSet);
}
// Returns the number of outer loop common to 'src/dstDomain'.
// Loops common to 'src/dst' domains are added to 'commonLoops' if non-null.
static unsigned
getNumCommonLoops(const FlatAffineValueConstraints &srcDomain,
const FlatAffineValueConstraints &dstDomain,
SmallVectorImpl<AffineForOp> *commonLoops = nullptr) {
// Find the number of common loops shared by src and dst accesses.
unsigned minNumLoops =
std::min(srcDomain.getNumDimVars(), dstDomain.getNumDimVars());
unsigned numCommonLoops = 0;
for (unsigned i = 0; i < minNumLoops; ++i) {
if ((!isAffineForInductionVar(srcDomain.getValue(i)) &&
!isAffineParallelInductionVar(srcDomain.getValue(i))) ||
(!isAffineForInductionVar(dstDomain.getValue(i)) &&
!isAffineParallelInductionVar(dstDomain.getValue(i))) ||
srcDomain.getValue(i) != dstDomain.getValue(i))
break;
if (commonLoops != nullptr)
commonLoops->push_back(getForInductionVarOwner(srcDomain.getValue(i)));
++numCommonLoops;
}
if (commonLoops != nullptr)
assert(commonLoops->size() == numCommonLoops);
return numCommonLoops;
}
/// Returns the closest surrounding block common to `opA` and `opB`. `opA` and
/// `opB` should be in the same affine scope. Returns nullptr if such a block
/// does not exist (when the two ops are in different blocks of an op starting
/// an `AffineScope`).
static Block *getCommonBlockInAffineScope(Operation *opA, Operation *opB) {
// Get the chain of ancestor blocks for the given `MemRefAccess` instance. The
// chain extends up to and includnig an op that starts an affine scope.
auto getChainOfAncestorBlocks =
[&](Operation *op, SmallVectorImpl<Block *> &ancestorBlocks) {
Block *currBlock = op->getBlock();
// Loop terminates when the currBlock is nullptr or its parent operation
// holds an affine scope.
while (currBlock &&
!currBlock->getParentOp()->hasTrait<OpTrait::AffineScope>()) {
ancestorBlocks.push_back(currBlock);
currBlock = currBlock->getParentOp()->getBlock();
}
assert(currBlock &&
"parent op starting an affine scope is always expected");
ancestorBlocks.push_back(currBlock);
};
// Find the closest common block.
SmallVector<Block *, 4> srcAncestorBlocks, dstAncestorBlocks;
getChainOfAncestorBlocks(opA, srcAncestorBlocks);
getChainOfAncestorBlocks(opB, dstAncestorBlocks);
Block *commonBlock = nullptr;
for (int i = srcAncestorBlocks.size() - 1, j = dstAncestorBlocks.size() - 1;
i >= 0 && j >= 0 && srcAncestorBlocks[i] == dstAncestorBlocks[j];
i--, j--)
commonBlock = srcAncestorBlocks[i];
return commonBlock;
}
/// Returns true if the ancestor operation of 'srcAccess' appears before the
/// ancestor operation of 'dstAccess' in their common ancestral block. The
/// operations for `srcAccess` and `dstAccess` are expected to be in the same
/// affine scope and have a common surrounding block within it.
static bool srcAppearsBeforeDstInAncestralBlock(const MemRefAccess &srcAccess,
const MemRefAccess &dstAccess) {
// Get Block common to 'srcAccess.opInst' and 'dstAccess.opInst'.
Block *commonBlock =
getCommonBlockInAffineScope(srcAccess.opInst, dstAccess.opInst);
assert(commonBlock &&
"ops expected to have a common surrounding block in affine scope");
// Check the dominance relationship between the respective ancestors of the
// src and dst in the Block of the innermost among the common loops.
Operation *srcOp = commonBlock->findAncestorOpInBlock(*srcAccess.opInst);
assert(srcOp && "src access op must lie in common block");
Operation *dstOp = commonBlock->findAncestorOpInBlock(*dstAccess.opInst);
assert(dstOp && "dest access op must lie in common block");
// Determine whether dstOp comes after srcOp.
return srcOp->isBeforeInBlock(dstOp);
}
// Adds ordering constraints to 'dependenceDomain' based on number of loops
// common to 'src/dstDomain' and requested 'loopDepth'.
// Note that 'loopDepth' cannot exceed the number of common loops plus one.
// EX: Given a loop nest of depth 2 with IVs 'i' and 'j':
// *) If 'loopDepth == 1' then one constraint is added: i' >= i + 1
// *) If 'loopDepth == 2' then two constraints are added: i == i' and j' > j + 1
// *) If 'loopDepth == 3' then two constraints are added: i == i' and j == j'
static void
addOrderingConstraints(const FlatAffineValueConstraints &srcDomain,
const FlatAffineValueConstraints &dstDomain,
unsigned loopDepth,
FlatAffineValueConstraints *dependenceDomain) {
unsigned numCols = dependenceDomain->getNumCols();
SmallVector<int64_t, 4> eq(numCols);
unsigned numSrcDims = srcDomain.getNumDimVars();
unsigned numCommonLoops = getNumCommonLoops(srcDomain, dstDomain);
unsigned numCommonLoopConstraints = std::min(numCommonLoops, loopDepth);
for (unsigned i = 0; i < numCommonLoopConstraints; ++i) {
std::fill(eq.begin(), eq.end(), 0);
eq[i] = -1;
eq[i + numSrcDims] = 1;
if (i == loopDepth - 1) {
eq[numCols - 1] = -1;
dependenceDomain->addInequality(eq);
} else {
dependenceDomain->addEquality(eq);
}
}
}
// Computes distance and direction vectors in 'dependences', by adding
// variables to 'dependenceDomain' which represent the difference of the IVs,
// eliminating all other variables, and reading off distance vectors from
// equality constraints (if possible), and direction vectors from inequalities.
static void computeDirectionVector(
const FlatAffineValueConstraints &srcDomain,
const FlatAffineValueConstraints &dstDomain, unsigned loopDepth,
FlatAffineValueConstraints *dependenceDomain,
SmallVector<DependenceComponent, 2> *dependenceComponents) {
// Find the number of common loops shared by src and dst accesses.
SmallVector<AffineForOp, 4> commonLoops;
unsigned numCommonLoops =
getNumCommonLoops(srcDomain, dstDomain, &commonLoops);
if (numCommonLoops == 0)
return;
// Compute direction vectors for requested loop depth.
unsigned numIdsToEliminate = dependenceDomain->getNumVars();
// Add new variables to 'dependenceDomain' to represent the direction
// constraints for each shared loop.
dependenceDomain->insertDimVar(/*pos=*/0, /*num=*/numCommonLoops);
// Add equality constraints for each common loop, setting newly introduced
// variable at column 'j' to the 'dst' IV minus the 'src IV.
SmallVector<int64_t, 4> eq;
eq.resize(dependenceDomain->getNumCols());
unsigned numSrcDims = srcDomain.getNumDimVars();
// Constraint variables format:
// [num-common-loops][num-src-dim-ids][num-dst-dim-ids][num-symbols][constant]
for (unsigned j = 0; j < numCommonLoops; ++j) {
std::fill(eq.begin(), eq.end(), 0);
eq[j] = 1;
eq[j + numCommonLoops] = 1;
eq[j + numCommonLoops + numSrcDims] = -1;
dependenceDomain->addEquality(eq);
}
// Eliminate all variables other than the direction variables just added.
dependenceDomain->projectOut(numCommonLoops, numIdsToEliminate);
// Scan each common loop variable column and set direction vectors based
// on eliminated constraint system.
dependenceComponents->resize(numCommonLoops);
for (unsigned j = 0; j < numCommonLoops; ++j) {
(*dependenceComponents)[j].op = commonLoops[j].getOperation();
auto lbConst = dependenceDomain->getConstantBound64(BoundType::LB, j);
(*dependenceComponents)[j].lb =
lbConst.value_or(std::numeric_limits<int64_t>::min());
auto ubConst = dependenceDomain->getConstantBound64(BoundType::UB, j);
(*dependenceComponents)[j].ub =
ubConst.value_or(std::numeric_limits<int64_t>::max());
}
}
LogicalResult MemRefAccess::getAccessRelation(FlatAffineRelation &rel) const {
// Create set corresponding to domain of access.
FlatAffineValueConstraints domain;
if (failed(getOpIndexSet(opInst, &domain)))
return failure();
// Get access relation from access map.
AffineValueMap accessValueMap;
getAccessMap(&accessValueMap);
if (failed(getRelationFromMap(accessValueMap, rel)))
return failure();
FlatAffineRelation domainRel(rel.getNumDomainDims(), /*numRangeDims=*/0,
domain);
// Merge and align domain ids of `ret` and ids of `domain`. Since the domain
// of the access map is a subset of the domain of access, the domain ids of
// `ret` are guranteed to be a subset of ids of `domain`.
for (unsigned i = 0, e = domain.getNumDimVars(); i < e; ++i) {
unsigned loc;
if (rel.findVar(domain.getValue(i), &loc)) {
rel.swapVar(i, loc);
} else {
rel.insertDomainVar(i);
rel.setValue(i, domain.getValue(i));
}
}
// Append domain constraints to `rel`.
domainRel.appendRangeVar(rel.getNumRangeDims());
domainRel.mergeSymbolVars(rel);
domainRel.mergeLocalVars(rel);
rel.append(domainRel);
return success();
}
// Populates 'accessMap' with composition of AffineApplyOps reachable from
// indices of MemRefAccess.
void MemRefAccess::getAccessMap(AffineValueMap *accessMap) const {
// Get affine map from AffineLoad/Store.
AffineMap map;
if (auto loadOp = dyn_cast<AffineReadOpInterface>(opInst))
map = loadOp.getAffineMap();
else
map = cast<AffineWriteOpInterface>(opInst).getAffineMap();
SmallVector<Value, 8> operands(indices.begin(), indices.end());
fullyComposeAffineMapAndOperands(&map, &operands);
map = simplifyAffineMap(map);
canonicalizeMapAndOperands(&map, &operands);
accessMap->reset(map, operands);
}
// Builds a flat affine constraint system to check if there exists a dependence
// between memref accesses 'srcAccess' and 'dstAccess'.
// Returns 'NoDependence' if the accesses can be definitively shown not to
// access the same element.
// Returns 'HasDependence' if the accesses do access the same element.
// Returns 'Failure' if an error or unsupported case was encountered.
// If a dependence exists, returns in 'dependenceComponents' a direction
// vector for the dependence, with a component for each loop IV in loops
// common to both accesses (see Dependence in AffineAnalysis.h for details).
//
// The memref access dependence check is comprised of the following steps:
// *) Build access relation for each access. An access relation maps elements
// of an iteration domain to the element(s) of an array domain accessed by
// that iteration of the associated statement through some array reference.
// *) Compute the dependence relation by composing access relation of
// `srcAccess` with the inverse of access relation of `dstAccess`.
// Doing this builds a relation between iteration domain of `srcAccess`
// to the iteration domain of `dstAccess` which access the same memory
// location.
// *) Add ordering constraints for `srcAccess` to be accessed before
// `dstAccess`.
//
// This method builds a constraint system with the following column format:
//
// [src-dim-variables, dst-dim-variables, symbols, constant]
//
// For example, given the following MLIR code with "source" and "destination"
// accesses to the same memref label, and symbols %M, %N, %K:
//
// affine.for %i0 = 0 to 100 {
// affine.for %i1 = 0 to 50 {
// %a0 = affine.apply
// (d0, d1) -> (d0 * 2 - d1 * 4 + s1, d1 * 3 - s0) (%i0, %i1)[%M, %N]
// // Source memref access.
// store %v0, %m[%a0#0, %a0#1] : memref<4x4xf32>
// }
// }
//
// affine.for %i2 = 0 to 100 {
// affine.for %i3 = 0 to 50 {
// %a1 = affine.apply
// (d0, d1) -> (d0 * 7 + d1 * 9 - s1, d1 * 11 + s0) (%i2, %i3)[%K, %M]
// // Destination memref access.
// %v1 = load %m[%a1#0, %a1#1] : memref<4x4xf32>
// }
// }
//
// The access relation for `srcAccess` would be the following:
//
// [src_dim0, src_dim1, mem_dim0, mem_dim1, %N, %M, const]
// 2 -4 -1 0 1 0 0 = 0
// 0 3 0 -1 0 -1 0 = 0
// 1 0 0 0 0 0 0 >= 0
// -1 0 0 0 0 0 100 >= 0
// 0 1 0 0 0 0 0 >= 0
// 0 -1 0 0 0 0 50 >= 0
//
// The access relation for `dstAccess` would be the following:
//
// [dst_dim0, dst_dim1, mem_dim0, mem_dim1, %M, %K, const]
// 7 9 -1 0 -1 0 0 = 0
// 0 11 0 -1 0 -1 0 = 0
// 1 0 0 0 0 0 0 >= 0
// -1 0 0 0 0 0 100 >= 0
// 0 1 0 0 0 0 0 >= 0
// 0 -1 0 0 0 0 50 >= 0
//
// The equalities in the above relations correspond to the access maps while
// the inequalities corresspond to the iteration domain constraints.
//
// The dependence relation formed:
//
// [src_dim0, src_dim1, dst_dim0, dst_dim1, %M, %N, %K, const]
// 2 -4 -7 -9 1 1 0 0 = 0
// 0 3 0 -11 -1 0 1 0 = 0
// 1 0 0 0 0 0 0 0 >= 0
// -1 0 0 0 0 0 0 100 >= 0
// 0 1 0 0 0 0 0 0 >= 0
// 0 -1 0 0 0 0 0 50 >= 0
// 0 0 1 0 0 0 0 0 >= 0
// 0 0 -1 0 0 0 0 100 >= 0
// 0 0 0 1 0 0 0 0 >= 0
// 0 0 0 -1 0 0 0 50 >= 0
//
//
// TODO: Support AffineExprs mod/floordiv/ceildiv.
DependenceResult mlir::affine::checkMemrefAccessDependence(
const MemRefAccess &srcAccess, const MemRefAccess &dstAccess,
unsigned loopDepth, FlatAffineValueConstraints *dependenceConstraints,
SmallVector<DependenceComponent, 2> *dependenceComponents, bool allowRAR) {
LLVM_DEBUG(llvm::dbgs() << "Checking for dependence at depth: "
<< Twine(loopDepth) << " between:\n";);
LLVM_DEBUG(srcAccess.opInst->dump());
LLVM_DEBUG(dstAccess.opInst->dump());
// Return 'NoDependence' if these accesses do not access the same memref.
if (srcAccess.memref != dstAccess.memref)
return DependenceResult::NoDependence;
// Return 'NoDependence' if one of these accesses is not an
// AffineWriteOpInterface.
if (!allowRAR && !isa<AffineWriteOpInterface>(srcAccess.opInst) &&
!isa<AffineWriteOpInterface>(dstAccess.opInst))
return DependenceResult::NoDependence;
// We can't analyze further if the ops lie in different affine scopes or have
// no common block in an affine scope.
if (getAffineScope(srcAccess.opInst) != getAffineScope(dstAccess.opInst))
return DependenceResult::Failure;
if (!getCommonBlockInAffineScope(srcAccess.opInst, dstAccess.opInst))
return DependenceResult::Failure;
// Create access relation from each MemRefAccess.
FlatAffineRelation srcRel, dstRel;
if (failed(srcAccess.getAccessRelation(srcRel)))
return DependenceResult::Failure;
if (failed(dstAccess.getAccessRelation(dstRel)))
return DependenceResult::Failure;
FlatAffineValueConstraints srcDomain = srcRel.getDomainSet();
FlatAffineValueConstraints dstDomain = dstRel.getDomainSet();
// Return 'NoDependence' if loopDepth > numCommonLoops and if the ancestor
// operation of 'srcAccess' does not properly dominate the ancestor
// operation of 'dstAccess' in the same common operation block.
// Note: this check is skipped if 'allowRAR' is true, because because RAR
// deps can exist irrespective of lexicographic ordering b/w src and dst.
unsigned numCommonLoops = getNumCommonLoops(srcDomain, dstDomain);
assert(loopDepth <= numCommonLoops + 1);
if (!allowRAR && loopDepth > numCommonLoops &&
!srcAppearsBeforeDstInAncestralBlock(srcAccess, dstAccess)) {
return DependenceResult::NoDependence;
}
// Compute the dependence relation by composing `srcRel` with the inverse of
// `dstRel`. Doing this builds a relation between iteration domain of
// `srcAccess` to the iteration domain of `dstAccess` which access the same
// memory locations.
dstRel.inverse();
dstRel.compose(srcRel);
// Add 'src' happens before 'dst' ordering constraints.
addOrderingConstraints(srcDomain, dstDomain, loopDepth, &dstRel);
// Return 'NoDependence' if the solution space is empty: no dependence.
if (dstRel.isEmpty())
return DependenceResult::NoDependence;
// Compute dependence direction vector and return true.
if (dependenceComponents != nullptr)
computeDirectionVector(srcDomain, dstDomain, loopDepth, &dstRel,
dependenceComponents);
LLVM_DEBUG(llvm::dbgs() << "Dependence polyhedron:\n");
LLVM_DEBUG(dstRel.dump());
if (dependenceConstraints)
*dependenceConstraints = dstRel;
return DependenceResult::HasDependence;
}
/// Gathers dependence components for dependences between all ops in loop nest
/// rooted at 'forOp' at loop depths in range [1, maxLoopDepth].
void mlir::affine::getDependenceComponents(
AffineForOp forOp, unsigned maxLoopDepth,
std::vector<SmallVector<DependenceComponent, 2>> *depCompsVec) {
// Collect all load and store ops in loop nest rooted at 'forOp'.
SmallVector<Operation *, 8> loadAndStoreOps;
forOp->walk([&](Operation *op) {
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op))
loadAndStoreOps.push_back(op);
});
unsigned numOps = loadAndStoreOps.size();
for (unsigned d = 1; d <= maxLoopDepth; ++d) {
for (unsigned i = 0; i < numOps; ++i) {
auto *srcOp = loadAndStoreOps[i];
MemRefAccess srcAccess(srcOp);
for (unsigned j = 0; j < numOps; ++j) {
auto *dstOp = loadAndStoreOps[j];
MemRefAccess dstAccess(dstOp);
SmallVector<DependenceComponent, 2> depComps;
// TODO: Explore whether it would be profitable to pre-compute and store
// deps instead of repeatedly checking.
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, d, /*dependenceConstraints=*/nullptr,
&depComps);
if (hasDependence(result))
depCompsVec->push_back(depComps);
}
}
}
}
|