1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
|
//===- Utils.cpp ---- Utilities for affine dialect transformation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous transformation utilities for the Affine
// dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/Affine/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Affine/LoopUtils.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <optional>
#define DEBUG_TYPE "affine-utils"
using namespace mlir;
using namespace affine;
using namespace presburger;
namespace {
/// Visit affine expressions recursively and build the sequence of operations
/// that correspond to it. Visitation functions return an Value of the
/// expression subtree they visited or `nullptr` on error.
class AffineApplyExpander
: public AffineExprVisitor<AffineApplyExpander, Value> {
public:
/// This internal class expects arguments to be non-null, checks must be
/// performed at the call site.
AffineApplyExpander(OpBuilder &builder, ValueRange dimValues,
ValueRange symbolValues, Location loc)
: builder(builder), dimValues(dimValues), symbolValues(symbolValues),
loc(loc) {}
template <typename OpTy>
Value buildBinaryExpr(AffineBinaryOpExpr expr) {
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
if (!lhs || !rhs)
return nullptr;
auto op = builder.create<OpTy>(loc, lhs, rhs);
return op.getResult();
}
Value visitAddExpr(AffineBinaryOpExpr expr) {
return buildBinaryExpr<arith::AddIOp>(expr);
}
Value visitMulExpr(AffineBinaryOpExpr expr) {
return buildBinaryExpr<arith::MulIOp>(expr);
}
/// Euclidean modulo operation: negative RHS is not allowed.
/// Remainder of the euclidean integer division is always non-negative.
///
/// Implemented as
///
/// a mod b =
/// let remainder = srem a, b;
/// negative = a < 0 in
/// select negative, remainder + b, remainder.
Value visitModExpr(AffineBinaryOpExpr expr) {
if (auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>()) {
if (rhsConst.getValue() <= 0) {
emitError(loc, "modulo by non-positive value is not supported");
return nullptr;
}
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value remainder = builder.create<arith::RemSIOp>(loc, lhs, rhs);
Value zeroCst = builder.create<arith::ConstantIndexOp>(loc, 0);
Value isRemainderNegative = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, remainder, zeroCst);
Value correctedRemainder =
builder.create<arith::AddIOp>(loc, remainder, rhs);
Value result = builder.create<arith::SelectOp>(
loc, isRemainderNegative, correctedRemainder, remainder);
return result;
}
/// Floor division operation (rounds towards negative infinity).
///
/// For positive divisors, it can be implemented without branching and with a
/// single division operation as
///
/// a floordiv b =
/// let negative = a < 0 in
/// let absolute = negative ? -a - 1 : a in
/// let quotient = absolute / b in
/// negative ? -quotient - 1 : quotient
///
/// Note: this lowering does not use arith.floordivsi because the lowering of
/// that to arith.divsi (see populateCeilFloorDivExpandOpsPatterns) generates
/// not one but two arith.divsi. That could be changed to one divsi, but one
/// way or another, going through arith.floordivsi will result in more complex
/// IR because arith.floordivsi is more general than affine floordiv in that
/// it supports negative RHS.
Value visitFloorDivExpr(AffineBinaryOpExpr expr) {
if (auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>()) {
if (rhsConst.getValue() <= 0) {
emitError(loc, "division by non-positive value is not supported");
return nullptr;
}
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value zeroCst = builder.create<arith::ConstantIndexOp>(loc, 0);
Value noneCst = builder.create<arith::ConstantIndexOp>(loc, -1);
Value negative = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, lhs, zeroCst);
Value negatedDecremented = builder.create<arith::SubIOp>(loc, noneCst, lhs);
Value dividend =
builder.create<arith::SelectOp>(loc, negative, negatedDecremented, lhs);
Value quotient = builder.create<arith::DivSIOp>(loc, dividend, rhs);
Value correctedQuotient =
builder.create<arith::SubIOp>(loc, noneCst, quotient);
Value result = builder.create<arith::SelectOp>(loc, negative,
correctedQuotient, quotient);
return result;
}
/// Ceiling division operation (rounds towards positive infinity).
///
/// For positive divisors, it can be implemented without branching and with a
/// single division operation as
///
/// a ceildiv b =
/// let negative = a <= 0 in
/// let absolute = negative ? -a : a - 1 in
/// let quotient = absolute / b in
/// negative ? -quotient : quotient + 1
///
/// Note: not using arith.ceildivsi for the same reason as explained in the
/// visitFloorDivExpr comment.
Value visitCeilDivExpr(AffineBinaryOpExpr expr) {
if (auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>()) {
if (rhsConst.getValue() <= 0) {
emitError(loc, "division by non-positive value is not supported");
return nullptr;
}
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value zeroCst = builder.create<arith::ConstantIndexOp>(loc, 0);
Value oneCst = builder.create<arith::ConstantIndexOp>(loc, 1);
Value nonPositive = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sle, lhs, zeroCst);
Value negated = builder.create<arith::SubIOp>(loc, zeroCst, lhs);
Value decremented = builder.create<arith::SubIOp>(loc, lhs, oneCst);
Value dividend =
builder.create<arith::SelectOp>(loc, nonPositive, negated, decremented);
Value quotient = builder.create<arith::DivSIOp>(loc, dividend, rhs);
Value negatedQuotient =
builder.create<arith::SubIOp>(loc, zeroCst, quotient);
Value incrementedQuotient =
builder.create<arith::AddIOp>(loc, quotient, oneCst);
Value result = builder.create<arith::SelectOp>(
loc, nonPositive, negatedQuotient, incrementedQuotient);
return result;
}
Value visitConstantExpr(AffineConstantExpr expr) {
auto op = builder.create<arith::ConstantIndexOp>(loc, expr.getValue());
return op.getResult();
}
Value visitDimExpr(AffineDimExpr expr) {
assert(expr.getPosition() < dimValues.size() &&
"affine dim position out of range");
return dimValues[expr.getPosition()];
}
Value visitSymbolExpr(AffineSymbolExpr expr) {
assert(expr.getPosition() < symbolValues.size() &&
"symbol dim position out of range");
return symbolValues[expr.getPosition()];
}
private:
OpBuilder &builder;
ValueRange dimValues;
ValueRange symbolValues;
Location loc;
};
} // namespace
/// Create a sequence of operations that implement the `expr` applied to the
/// given dimension and symbol values.
mlir::Value mlir::affine::expandAffineExpr(OpBuilder &builder, Location loc,
AffineExpr expr,
ValueRange dimValues,
ValueRange symbolValues) {
return AffineApplyExpander(builder, dimValues, symbolValues, loc).visit(expr);
}
/// Create a sequence of operations that implement the `affineMap` applied to
/// the given `operands` (as it it were an AffineApplyOp).
std::optional<SmallVector<Value, 8>>
mlir::affine::expandAffineMap(OpBuilder &builder, Location loc,
AffineMap affineMap, ValueRange operands) {
auto numDims = affineMap.getNumDims();
auto expanded = llvm::to_vector<8>(
llvm::map_range(affineMap.getResults(),
[numDims, &builder, loc, operands](AffineExpr expr) {
return expandAffineExpr(builder, loc, expr,
operands.take_front(numDims),
operands.drop_front(numDims));
}));
if (llvm::all_of(expanded, [](Value v) { return v; }))
return expanded;
return std::nullopt;
}
/// Promotes the `then` or the `else` block of `ifOp` (depending on whether
/// `elseBlock` is false or true) into `ifOp`'s containing block, and discards
/// the rest of the op.
static void promoteIfBlock(AffineIfOp ifOp, bool elseBlock) {
if (elseBlock)
assert(ifOp.hasElse() && "else block expected");
Block *destBlock = ifOp->getBlock();
Block *srcBlock = elseBlock ? ifOp.getElseBlock() : ifOp.getThenBlock();
destBlock->getOperations().splice(
Block::iterator(ifOp), srcBlock->getOperations(), srcBlock->begin(),
std::prev(srcBlock->end()));
ifOp.erase();
}
/// Returns the outermost affine.for/parallel op that the `ifOp` is invariant
/// on. The `ifOp` could be hoisted and placed right before such an operation.
/// This method assumes that the ifOp has been canonicalized (to be correct and
/// effective).
static Operation *getOutermostInvariantForOp(AffineIfOp ifOp) {
// Walk up the parents past all for op that this conditional is invariant on.
auto ifOperands = ifOp.getOperands();
auto *res = ifOp.getOperation();
while (!isa<func::FuncOp>(res->getParentOp())) {
auto *parentOp = res->getParentOp();
if (auto forOp = dyn_cast<AffineForOp>(parentOp)) {
if (llvm::is_contained(ifOperands, forOp.getInductionVar()))
break;
} else if (auto parallelOp = dyn_cast<AffineParallelOp>(parentOp)) {
for (auto iv : parallelOp.getIVs())
if (llvm::is_contained(ifOperands, iv))
break;
} else if (!isa<AffineIfOp>(parentOp)) {
// Won't walk up past anything other than affine.for/if ops.
break;
}
// You can always hoist up past any affine.if ops.
res = parentOp;
}
return res;
}
/// A helper for the mechanics of mlir::hoistAffineIfOp. Hoists `ifOp` just over
/// `hoistOverOp`. Returns the new hoisted op if any hoisting happened,
/// otherwise the same `ifOp`.
static AffineIfOp hoistAffineIfOp(AffineIfOp ifOp, Operation *hoistOverOp) {
// No hoisting to do.
if (hoistOverOp == ifOp)
return ifOp;
// Create the hoisted 'if' first. Then, clone the op we are hoisting over for
// the else block. Then drop the else block of the original 'if' in the 'then'
// branch while promoting its then block, and analogously drop the 'then'
// block of the original 'if' from the 'else' branch while promoting its else
// block.
IRMapping operandMap;
OpBuilder b(hoistOverOp);
auto hoistedIfOp = b.create<AffineIfOp>(ifOp.getLoc(), ifOp.getIntegerSet(),
ifOp.getOperands(),
/*elseBlock=*/true);
// Create a clone of hoistOverOp to use for the else branch of the hoisted
// conditional. The else block may get optimized away if empty.
Operation *hoistOverOpClone = nullptr;
// We use this unique name to identify/find `ifOp`'s clone in the else
// version.
StringAttr idForIfOp = b.getStringAttr("__mlir_if_hoisting");
operandMap.clear();
b.setInsertionPointAfter(hoistOverOp);
// We'll set an attribute to identify this op in a clone of this sub-tree.
ifOp->setAttr(idForIfOp, b.getBoolAttr(true));
hoistOverOpClone = b.clone(*hoistOverOp, operandMap);
// Promote the 'then' block of the original affine.if in the then version.
promoteIfBlock(ifOp, /*elseBlock=*/false);
// Move the then version to the hoisted if op's 'then' block.
auto *thenBlock = hoistedIfOp.getThenBlock();
thenBlock->getOperations().splice(thenBlock->begin(),
hoistOverOp->getBlock()->getOperations(),
Block::iterator(hoistOverOp));
// Find the clone of the original affine.if op in the else version.
AffineIfOp ifCloneInElse;
hoistOverOpClone->walk([&](AffineIfOp ifClone) {
if (!ifClone->getAttr(idForIfOp))
return WalkResult::advance();
ifCloneInElse = ifClone;
return WalkResult::interrupt();
});
assert(ifCloneInElse && "if op clone should exist");
// For the else block, promote the else block of the original 'if' if it had
// one; otherwise, the op itself is to be erased.
if (!ifCloneInElse.hasElse())
ifCloneInElse.erase();
else
promoteIfBlock(ifCloneInElse, /*elseBlock=*/true);
// Move the else version into the else block of the hoisted if op.
auto *elseBlock = hoistedIfOp.getElseBlock();
elseBlock->getOperations().splice(
elseBlock->begin(), hoistOverOpClone->getBlock()->getOperations(),
Block::iterator(hoistOverOpClone));
return hoistedIfOp;
}
LogicalResult
mlir::affine::affineParallelize(AffineForOp forOp,
ArrayRef<LoopReduction> parallelReductions) {
// Fail early if there are iter arguments that are not reductions.
unsigned numReductions = parallelReductions.size();
if (numReductions != forOp.getNumIterOperands())
return failure();
Location loc = forOp.getLoc();
OpBuilder outsideBuilder(forOp);
AffineMap lowerBoundMap = forOp.getLowerBoundMap();
ValueRange lowerBoundOperands = forOp.getLowerBoundOperands();
AffineMap upperBoundMap = forOp.getUpperBoundMap();
ValueRange upperBoundOperands = forOp.getUpperBoundOperands();
// Creating empty 1-D affine.parallel op.
auto reducedValues = llvm::to_vector<4>(llvm::map_range(
parallelReductions, [](const LoopReduction &red) { return red.value; }));
auto reductionKinds = llvm::to_vector<4>(llvm::map_range(
parallelReductions, [](const LoopReduction &red) { return red.kind; }));
AffineParallelOp newPloop = outsideBuilder.create<AffineParallelOp>(
loc, ValueRange(reducedValues).getTypes(), reductionKinds,
llvm::ArrayRef(lowerBoundMap), lowerBoundOperands,
llvm::ArrayRef(upperBoundMap), upperBoundOperands,
llvm::ArrayRef(forOp.getStep()));
// Steal the body of the old affine for op.
newPloop.getRegion().takeBody(forOp.getRegion());
Operation *yieldOp = &newPloop.getBody()->back();
// Handle the initial values of reductions because the parallel loop always
// starts from the neutral value.
SmallVector<Value> newResults;
newResults.reserve(numReductions);
for (unsigned i = 0; i < numReductions; ++i) {
Value init = forOp.getIterOperands()[i];
// This works because we are only handling single-op reductions at the
// moment. A switch on reduction kind or a mechanism to collect operations
// participating in the reduction will be necessary for multi-op reductions.
Operation *reductionOp = yieldOp->getOperand(i).getDefiningOp();
assert(reductionOp && "yielded value is expected to be produced by an op");
outsideBuilder.getInsertionBlock()->getOperations().splice(
outsideBuilder.getInsertionPoint(), newPloop.getBody()->getOperations(),
reductionOp);
reductionOp->setOperands({init, newPloop->getResult(i)});
forOp->getResult(i).replaceAllUsesWith(reductionOp->getResult(0));
}
// Update the loop terminator to yield reduced values bypassing the reduction
// operation itself (now moved outside of the loop) and erase the block
// arguments that correspond to reductions. Note that the loop always has one
// "main" induction variable whenc coming from a non-parallel for.
unsigned numIVs = 1;
yieldOp->setOperands(reducedValues);
newPloop.getBody()->eraseArguments(numIVs, numReductions);
forOp.erase();
return success();
}
// Returns success if any hoisting happened.
LogicalResult mlir::affine::hoistAffineIfOp(AffineIfOp ifOp, bool *folded) {
// Bail out early if the ifOp returns a result. TODO: Consider how to
// properly support this case.
if (ifOp.getNumResults() != 0)
return failure();
// Apply canonicalization patterns and folding - this is necessary for the
// hoisting check to be correct (operands should be composed), and to be more
// effective (no unused operands). Since the pattern rewriter's folding is
// entangled with application of patterns, we may fold/end up erasing the op,
// in which case we return with `folded` being set.
RewritePatternSet patterns(ifOp.getContext());
AffineIfOp::getCanonicalizationPatterns(patterns, ifOp.getContext());
FrozenRewritePatternSet frozenPatterns(std::move(patterns));
GreedyRewriteConfig config;
config.strictMode = GreedyRewriteStrictness::ExistingOps;
bool erased;
(void)applyOpPatternsAndFold(ifOp.getOperation(), frozenPatterns, config,
/*changed=*/nullptr, &erased);
if (erased) {
if (folded)
*folded = true;
return failure();
}
if (folded)
*folded = false;
// The folding above should have ensured this, but the affine.if's
// canonicalization is missing composition of affine.applys into it.
assert(llvm::all_of(ifOp.getOperands(),
[](Value v) {
return isTopLevelValue(v) || isAffineForInductionVar(v);
}) &&
"operands not composed");
// We are going hoist as high as possible.
// TODO: this could be customized in the future.
auto *hoistOverOp = getOutermostInvariantForOp(ifOp);
AffineIfOp hoistedIfOp = ::hoistAffineIfOp(ifOp, hoistOverOp);
// Nothing to hoist over.
if (hoistedIfOp == ifOp)
return failure();
// Canonicalize to remove dead else blocks (happens whenever an 'if' moves up
// a sequence of affine.fors that are all perfectly nested).
(void)applyPatternsAndFoldGreedily(
hoistedIfOp->getParentWithTrait<OpTrait::IsIsolatedFromAbove>(),
frozenPatterns);
return success();
}
// Return the min expr after replacing the given dim.
AffineExpr mlir::affine::substWithMin(AffineExpr e, AffineExpr dim,
AffineExpr min, AffineExpr max,
bool positivePath) {
if (e == dim)
return positivePath ? min : max;
if (auto bin = e.dyn_cast<AffineBinaryOpExpr>()) {
AffineExpr lhs = bin.getLHS();
AffineExpr rhs = bin.getRHS();
if (bin.getKind() == mlir::AffineExprKind::Add)
return substWithMin(lhs, dim, min, max, positivePath) +
substWithMin(rhs, dim, min, max, positivePath);
auto c1 = bin.getLHS().dyn_cast<AffineConstantExpr>();
auto c2 = bin.getRHS().dyn_cast<AffineConstantExpr>();
if (c1 && c1.getValue() < 0)
return getAffineBinaryOpExpr(
bin.getKind(), c1, substWithMin(rhs, dim, min, max, !positivePath));
if (c2 && c2.getValue() < 0)
return getAffineBinaryOpExpr(
bin.getKind(), substWithMin(lhs, dim, min, max, !positivePath), c2);
return getAffineBinaryOpExpr(
bin.getKind(), substWithMin(lhs, dim, min, max, positivePath),
substWithMin(rhs, dim, min, max, positivePath));
}
return e;
}
void mlir::affine::normalizeAffineParallel(AffineParallelOp op) {
// Loops with min/max in bounds are not normalized at the moment.
if (op.hasMinMaxBounds())
return;
AffineMap lbMap = op.getLowerBoundsMap();
SmallVector<int64_t, 8> steps = op.getSteps();
// No need to do any work if the parallel op is already normalized.
bool isAlreadyNormalized =
llvm::all_of(llvm::zip(steps, lbMap.getResults()), [](auto tuple) {
int64_t step = std::get<0>(tuple);
auto lbExpr =
std::get<1>(tuple).template dyn_cast<AffineConstantExpr>();
return lbExpr && lbExpr.getValue() == 0 && step == 1;
});
if (isAlreadyNormalized)
return;
AffineValueMap ranges;
AffineValueMap::difference(op.getUpperBoundsValueMap(),
op.getLowerBoundsValueMap(), &ranges);
auto builder = OpBuilder::atBlockBegin(op.getBody());
auto zeroExpr = builder.getAffineConstantExpr(0);
SmallVector<AffineExpr, 8> lbExprs;
SmallVector<AffineExpr, 8> ubExprs;
for (unsigned i = 0, e = steps.size(); i < e; ++i) {
int64_t step = steps[i];
// Adjust the lower bound to be 0.
lbExprs.push_back(zeroExpr);
// Adjust the upper bound expression: 'range / step'.
AffineExpr ubExpr = ranges.getResult(i).ceilDiv(step);
ubExprs.push_back(ubExpr);
// Adjust the corresponding IV: 'lb + i * step'.
BlockArgument iv = op.getBody()->getArgument(i);
AffineExpr lbExpr = lbMap.getResult(i);
unsigned nDims = lbMap.getNumDims();
auto expr = lbExpr + builder.getAffineDimExpr(nDims) * step;
auto map = AffineMap::get(/*dimCount=*/nDims + 1,
/*symbolCount=*/lbMap.getNumSymbols(), expr);
// Use an 'affine.apply' op that will be simplified later in subsequent
// canonicalizations.
OperandRange lbOperands = op.getLowerBoundsOperands();
OperandRange dimOperands = lbOperands.take_front(nDims);
OperandRange symbolOperands = lbOperands.drop_front(nDims);
SmallVector<Value, 8> applyOperands{dimOperands};
applyOperands.push_back(iv);
applyOperands.append(symbolOperands.begin(), symbolOperands.end());
auto apply = builder.create<AffineApplyOp>(op.getLoc(), map, applyOperands);
iv.replaceAllUsesExcept(apply, apply);
}
SmallVector<int64_t, 8> newSteps(op.getNumDims(), 1);
op.setSteps(newSteps);
auto newLowerMap = AffineMap::get(
/*dimCount=*/0, /*symbolCount=*/0, lbExprs, op.getContext());
op.setLowerBounds({}, newLowerMap);
auto newUpperMap = AffineMap::get(ranges.getNumDims(), ranges.getNumSymbols(),
ubExprs, op.getContext());
op.setUpperBounds(ranges.getOperands(), newUpperMap);
}
LogicalResult mlir::affine::normalizeAffineFor(AffineForOp op,
bool promoteSingleIter) {
if (promoteSingleIter && succeeded(promoteIfSingleIteration(op)))
return success();
// Check if the forop is already normalized.
if (op.hasConstantLowerBound() && (op.getConstantLowerBound() == 0) &&
(op.getStep() == 1))
return success();
// Check if the lower bound has a single result only. Loops with a max lower
// bound can't be normalized without additional support like
// affine.execute_region's. If the lower bound does not have a single result
// then skip this op.
if (op.getLowerBoundMap().getNumResults() != 1)
return failure();
Location loc = op.getLoc();
OpBuilder opBuilder(op);
int64_t origLoopStep = op.getStep();
AffineBound lb = op.getLowerBound();
AffineMap originalLbMap = lb.getMap();
SmallVector<Value, 4> origLbOperands;
llvm::append_range(origLbOperands, lb.getOperands());
AffineBound ub = op.getUpperBound();
AffineMap originalUbMap = ub.getMap();
SmallVector<Value, 4> origUbOperands;
llvm::append_range(origUbOperands, ub.getOperands());
// Calculate upperBound for normalized loop.
SmallVector<Value, 4> ubOperands;
ubOperands.reserve(ub.getNumOperands() + lb.getNumOperands());
// Add dimension operands from upper/lower bound.
for (unsigned j = 0, e = originalUbMap.getNumDims(); j < e; ++j)
ubOperands.push_back(ub.getOperand(j));
for (unsigned j = 0, e = originalLbMap.getNumDims(); j < e; ++j)
ubOperands.push_back(lb.getOperand(j));
// Add symbol operands from upper/lower bound.
for (unsigned j = 0, e = originalUbMap.getNumSymbols(); j < e; ++j)
ubOperands.push_back(ub.getOperand(originalUbMap.getNumDims() + j));
for (unsigned j = 0, e = originalLbMap.getNumSymbols(); j < e; ++j)
ubOperands.push_back(lb.getOperand(originalLbMap.getNumDims() + j));
// Add original result expressions from lower/upper bound map.
SmallVector<AffineExpr, 1> origLbExprs(originalLbMap.getResults().begin(),
originalLbMap.getResults().end());
SmallVector<AffineExpr, 2> origUbExprs(originalUbMap.getResults().begin(),
originalUbMap.getResults().end());
SmallVector<AffineExpr, 4> newUbExprs;
// The original upperBound can have more than one result. For the new
// upperBound of this loop, take difference of all possible combinations of
// the ub results and lb result and ceildiv with the loop step. For e.g.,
//
// affine.for %i1 = 0 to min affine_map<(d0)[] -> (d0 + 32, 1024)>(%i0)
// will have an upperBound map as,
// affine_map<(d0)[] -> (((d0 + 32) - 0) ceildiv 1, (1024 - 0) ceildiv
// 1)>(%i0)
//
// Insert all combinations of upper/lower bound results.
for (unsigned i = 0, e = origUbExprs.size(); i < e; ++i) {
newUbExprs.push_back(
(origUbExprs[i] - origLbExprs[0]).ceilDiv(origLoopStep));
}
// Construct newUbMap.
AffineMap newUbMap = AffineMap::get(
originalLbMap.getNumDims() + originalUbMap.getNumDims(),
originalLbMap.getNumSymbols() + originalUbMap.getNumSymbols(), newUbExprs,
opBuilder.getContext());
canonicalizeMapAndOperands(&newUbMap, &ubOperands);
SmallVector<Value, 4> lbOperands(lb.getOperands().begin(),
lb.getOperands().begin() +
originalLbMap.getNumDims());
// Normalize the loop.
op.setUpperBound(ubOperands, newUbMap);
op.setLowerBound({}, opBuilder.getConstantAffineMap(0));
op.setStep(1);
// Calculate the Value of new loopIV. Create affine.apply for the value of
// the loopIV in normalized loop.
opBuilder.setInsertionPointToStart(op.getBody());
// Add an extra dim operand for loopIV.
lbOperands.push_back(op.getInductionVar());
// Add symbol operands from lower bound.
for (unsigned j = 0, e = originalLbMap.getNumSymbols(); j < e; ++j)
lbOperands.push_back(origLbOperands[originalLbMap.getNumDims() + j]);
AffineExpr origIVExpr =
opBuilder.getAffineDimExpr(originalLbMap.getNumDims());
AffineExpr newIVExpr = origIVExpr * origLoopStep + originalLbMap.getResult(0);
AffineMap ivMap = AffineMap::get(originalLbMap.getNumDims() + 1,
originalLbMap.getNumSymbols(), newIVExpr);
canonicalizeMapAndOperands(&ivMap, &lbOperands);
Operation *newIV = opBuilder.create<AffineApplyOp>(loc, ivMap, lbOperands);
op.getInductionVar().replaceAllUsesExcept(newIV->getResult(0), newIV);
return success();
}
/// Returns true if the memory operation of `destAccess` depends on `srcAccess`
/// inside of the innermost common surrounding affine loop between the two
/// accesses.
static bool mustReachAtInnermost(const MemRefAccess &srcAccess,
const MemRefAccess &destAccess) {
// Affine dependence analysis is possible only if both ops in the same
// AffineScope.
if (getAffineScope(srcAccess.opInst) != getAffineScope(destAccess.opInst))
return false;
unsigned nsLoops =
getNumCommonSurroundingLoops(*srcAccess.opInst, *destAccess.opInst);
DependenceResult result =
checkMemrefAccessDependence(srcAccess, destAccess, nsLoops + 1);
return hasDependence(result);
}
/// Returns true if `srcMemOp` may have an effect on `destMemOp` within the
/// scope of the outermost `minSurroundingLoops` loops that surround them.
/// `srcMemOp` and `destMemOp` are expected to be affine read/write ops.
static bool mayHaveEffect(Operation *srcMemOp, Operation *destMemOp,
unsigned minSurroundingLoops) {
MemRefAccess srcAccess(srcMemOp);
MemRefAccess destAccess(destMemOp);
// Affine dependence analysis here is applicable only if both ops operate on
// the same memref and if `srcMemOp` and `destMemOp` are in the same
// AffineScope. Also, we can only check if our affine scope is isolated from
// above; otherwise, values can from outside of the affine scope that the
// check below cannot analyze.
Region *srcScope = getAffineScope(srcMemOp);
if (srcAccess.memref == destAccess.memref &&
srcScope == getAffineScope(destMemOp)) {
unsigned nsLoops = getNumCommonSurroundingLoops(*srcMemOp, *destMemOp);
FlatAffineValueConstraints dependenceConstraints;
for (unsigned d = nsLoops + 1; d > minSurroundingLoops; d--) {
DependenceResult result = checkMemrefAccessDependence(
srcAccess, destAccess, d, &dependenceConstraints,
/*dependenceComponents=*/nullptr);
// A dependence failure or the presence of a dependence implies a
// side effect.
if (!noDependence(result))
return true;
}
// No side effect was seen.
return false;
}
// TODO: Check here if the memrefs alias: there is no side effect if
// `srcAccess.memref` and `destAccess.memref` don't alias.
return true;
}
template <typename EffectType, typename T>
bool mlir::affine::hasNoInterveningEffect(Operation *start, T memOp) {
auto isLocallyAllocated = [](Value memref) {
auto *defOp = memref.getDefiningOp();
return defOp && hasSingleEffect<MemoryEffects::Allocate>(defOp, memref);
};
// A boolean representing whether an intervening operation could have impacted
// memOp.
bool hasSideEffect = false;
// Check whether the effect on memOp can be caused by a given operation op.
Value memref = memOp.getMemRef();
std::function<void(Operation *)> checkOperation = [&](Operation *op) {
// If the effect has alreay been found, early exit,
if (hasSideEffect)
return;
if (auto memEffect = dyn_cast<MemoryEffectOpInterface>(op)) {
SmallVector<MemoryEffects::EffectInstance, 1> effects;
memEffect.getEffects(effects);
bool opMayHaveEffect = false;
for (auto effect : effects) {
// If op causes EffectType on a potentially aliasing location for
// memOp, mark as having the effect.
if (isa<EffectType>(effect.getEffect())) {
// TODO: This should be replaced with a check for no aliasing.
// Aliasing information should be passed to this method.
if (effect.getValue() && effect.getValue() != memref &&
isLocallyAllocated(memref) &&
isLocallyAllocated(effect.getValue()))
continue;
opMayHaveEffect = true;
break;
}
}
if (!opMayHaveEffect)
return;
// If the side effect comes from an affine read or write, try to
// prove the side effecting `op` cannot reach `memOp`.
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) {
// For ease, let's consider the case that `op` is a store and
// we're looking for other potential stores that overwrite memory after
// `start`, and before being read in `memOp`. In this case, we only
// need to consider other potential stores with depth >
// minSurroundingLoops since `start` would overwrite any store with a
// smaller number of surrounding loops before.
unsigned minSurroundingLoops =
getNumCommonSurroundingLoops(*start, *memOp);
if (mayHaveEffect(op, memOp, minSurroundingLoops))
hasSideEffect = true;
return;
}
// We have an op with a memory effect and we cannot prove if it
// intervenes.
hasSideEffect = true;
return;
}
if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) {
// Recurse into the regions for this op and check whether the internal
// operations may have the side effect `EffectType` on memOp.
for (Region ®ion : op->getRegions())
for (Block &block : region)
for (Operation &op : block)
checkOperation(&op);
return;
}
// Otherwise, conservatively assume generic operations have the effect
// on the operation
hasSideEffect = true;
};
// Check all paths from ancestor op `parent` to the operation `to` for the
// effect. It is known that `to` must be contained within `parent`.
auto until = [&](Operation *parent, Operation *to) {
// TODO check only the paths from `parent` to `to`.
// Currently we fallback and check the entire parent op, rather than
// just the paths from the parent path, stopping after reaching `to`.
// This is conservatively correct, but could be made more aggressive.
assert(parent->isAncestor(to));
checkOperation(parent);
};
// Check for all paths from operation `from` to operation `untilOp` for the
// given memory effect.
std::function<void(Operation *, Operation *)> recur =
[&](Operation *from, Operation *untilOp) {
assert(
from->getParentRegion()->isAncestor(untilOp->getParentRegion()) &&
"Checking for side effect between two operations without a common "
"ancestor");
// If the operations are in different regions, recursively consider all
// path from `from` to the parent of `to` and all paths from the parent
// of `to` to `to`.
if (from->getParentRegion() != untilOp->getParentRegion()) {
recur(from, untilOp->getParentOp());
until(untilOp->getParentOp(), untilOp);
return;
}
// Now, assuming that `from` and `to` exist in the same region, perform
// a CFG traversal to check all the relevant operations.
// Additional blocks to consider.
SmallVector<Block *, 2> todoBlocks;
{
// First consider the parent block of `from` an check all operations
// after `from`.
for (auto iter = ++from->getIterator(), end = from->getBlock()->end();
iter != end && &*iter != untilOp; ++iter) {
checkOperation(&*iter);
}
// If the parent of `from` doesn't contain `to`, add the successors
// to the list of blocks to check.
if (untilOp->getBlock() != from->getBlock())
for (Block *succ : from->getBlock()->getSuccessors())
todoBlocks.push_back(succ);
}
SmallPtrSet<Block *, 4> done;
// Traverse the CFG until hitting `to`.
while (!todoBlocks.empty()) {
Block *blk = todoBlocks.pop_back_val();
if (done.count(blk))
continue;
done.insert(blk);
for (auto &op : *blk) {
if (&op == untilOp)
break;
checkOperation(&op);
if (&op == blk->getTerminator())
for (Block *succ : blk->getSuccessors())
todoBlocks.push_back(succ);
}
}
};
recur(start, memOp);
return !hasSideEffect;
}
/// Attempt to eliminate loadOp by replacing it with a value stored into memory
/// which the load is guaranteed to retrieve. This check involves three
/// components: 1) The store and load must be on the same location 2) The store
/// must dominate (and therefore must always occur prior to) the load 3) No
/// other operations will overwrite the memory loaded between the given load
/// and store. If such a value exists, the replaced `loadOp` will be added to
/// `loadOpsToErase` and its memref will be added to `memrefsToErase`.
static LogicalResult forwardStoreToLoad(
AffineReadOpInterface loadOp, SmallVectorImpl<Operation *> &loadOpsToErase,
SmallPtrSetImpl<Value> &memrefsToErase, DominanceInfo &domInfo) {
// The store op candidate for forwarding that satisfies all conditions
// to replace the load, if any.
Operation *lastWriteStoreOp = nullptr;
for (auto *user : loadOp.getMemRef().getUsers()) {
auto storeOp = dyn_cast<AffineWriteOpInterface>(user);
if (!storeOp)
continue;
MemRefAccess srcAccess(storeOp);
MemRefAccess destAccess(loadOp);
// 1. Check if the store and the load have mathematically equivalent
// affine access functions; this implies that they statically refer to the
// same single memref element. As an example this filters out cases like:
// store %A[%i0 + 1]
// load %A[%i0]
// store %A[%M]
// load %A[%N]
// Use the AffineValueMap difference based memref access equality checking.
if (srcAccess != destAccess)
continue;
// 2. The store has to dominate the load op to be candidate.
if (!domInfo.dominates(storeOp, loadOp))
continue;
// 3. The store must reach the load. Access function equivalence only
// guarantees this for accesses in the same block. The load could be in a
// nested block that is unreachable.
if (storeOp->getBlock() != loadOp->getBlock() &&
!mustReachAtInnermost(srcAccess, destAccess))
continue;
// 4. Ensure there is no intermediate operation which could replace the
// value in memory.
if (!affine::hasNoInterveningEffect<MemoryEffects::Write>(storeOp, loadOp))
continue;
// We now have a candidate for forwarding.
assert(lastWriteStoreOp == nullptr &&
"multiple simultaneous replacement stores");
lastWriteStoreOp = storeOp;
}
if (!lastWriteStoreOp)
return failure();
// Perform the actual store to load forwarding.
Value storeVal =
cast<AffineWriteOpInterface>(lastWriteStoreOp).getValueToStore();
// Check if 2 values have the same shape. This is needed for affine vector
// loads and stores.
if (storeVal.getType() != loadOp.getValue().getType())
return failure();
loadOp.getValue().replaceAllUsesWith(storeVal);
// Record the memref for a later sweep to optimize away.
memrefsToErase.insert(loadOp.getMemRef());
// Record this to erase later.
loadOpsToErase.push_back(loadOp);
return success();
}
template bool
mlir::affine::hasNoInterveningEffect<mlir::MemoryEffects::Read,
affine::AffineReadOpInterface>(
mlir::Operation *, affine::AffineReadOpInterface);
// This attempts to find stores which have no impact on the final result.
// A writing op writeA will be eliminated if there exists an op writeB if
// 1) writeA and writeB have mathematically equivalent affine access functions.
// 2) writeB postdominates writeA.
// 3) There is no potential read between writeA and writeB.
static void findUnusedStore(AffineWriteOpInterface writeA,
SmallVectorImpl<Operation *> &opsToErase,
PostDominanceInfo &postDominanceInfo) {
for (Operation *user : writeA.getMemRef().getUsers()) {
// Only consider writing operations.
auto writeB = dyn_cast<AffineWriteOpInterface>(user);
if (!writeB)
continue;
// The operations must be distinct.
if (writeB == writeA)
continue;
// Both operations must lie in the same region.
if (writeB->getParentRegion() != writeA->getParentRegion())
continue;
// Both operations must write to the same memory.
MemRefAccess srcAccess(writeB);
MemRefAccess destAccess(writeA);
if (srcAccess != destAccess)
continue;
// writeB must postdominate writeA.
if (!postDominanceInfo.postDominates(writeB, writeA))
continue;
// There cannot be an operation which reads from memory between
// the two writes.
if (!affine::hasNoInterveningEffect<MemoryEffects::Read>(writeA, writeB))
continue;
opsToErase.push_back(writeA);
break;
}
}
// The load to load forwarding / redundant load elimination is similar to the
// store to load forwarding.
// loadA will be be replaced with loadB if:
// 1) loadA and loadB have mathematically equivalent affine access functions.
// 2) loadB dominates loadA.
// 3) There is no write between loadA and loadB.
static void loadCSE(AffineReadOpInterface loadA,
SmallVectorImpl<Operation *> &loadOpsToErase,
DominanceInfo &domInfo) {
SmallVector<AffineReadOpInterface, 4> loadCandidates;
for (auto *user : loadA.getMemRef().getUsers()) {
auto loadB = dyn_cast<AffineReadOpInterface>(user);
if (!loadB || loadB == loadA)
continue;
MemRefAccess srcAccess(loadB);
MemRefAccess destAccess(loadA);
// 1. The accesses have to be to the same location.
if (srcAccess != destAccess) {
continue;
}
// 2. The store has to dominate the load op to be candidate.
if (!domInfo.dominates(loadB, loadA))
continue;
// 3. There is no write between loadA and loadB.
if (!affine::hasNoInterveningEffect<MemoryEffects::Write>(
loadB.getOperation(), loadA))
continue;
// Check if two values have the same shape. This is needed for affine vector
// loads.
if (loadB.getValue().getType() != loadA.getValue().getType())
continue;
loadCandidates.push_back(loadB);
}
// Of the legal load candidates, use the one that dominates all others
// to minimize the subsequent need to loadCSE
Value loadB;
for (AffineReadOpInterface option : loadCandidates) {
if (llvm::all_of(loadCandidates, [&](AffineReadOpInterface depStore) {
return depStore == option ||
domInfo.dominates(option.getOperation(),
depStore.getOperation());
})) {
loadB = option.getValue();
break;
}
}
if (loadB) {
loadA.getValue().replaceAllUsesWith(loadB);
// Record this to erase later.
loadOpsToErase.push_back(loadA);
}
}
// The store to load forwarding and load CSE rely on three conditions:
//
// 1) store/load providing a replacement value and load being replaced need to
// have mathematically equivalent affine access functions (checked after full
// composition of load/store operands); this implies that they access the same
// single memref element for all iterations of the common surrounding loop,
//
// 2) the store/load op should dominate the load op,
//
// 3) no operation that may write to memory read by the load being replaced can
// occur after executing the instruction (load or store) providing the
// replacement value and before the load being replaced (thus potentially
// allowing overwriting the memory read by the load).
//
// The above conditions are simple to check, sufficient, and powerful for most
// cases in practice - they are sufficient, but not necessary --- since they
// don't reason about loops that are guaranteed to execute at least once or
// multiple sources to forward from.
//
// TODO: more forwarding can be done when support for
// loop/conditional live-out SSA values is available.
// TODO: do general dead store elimination for memref's. This pass
// currently only eliminates the stores only if no other loads/uses (other
// than dealloc) remain.
//
void mlir::affine::affineScalarReplace(func::FuncOp f, DominanceInfo &domInfo,
PostDominanceInfo &postDomInfo) {
// Load op's whose results were replaced by those forwarded from stores.
SmallVector<Operation *, 8> opsToErase;
// A list of memref's that are potentially dead / could be eliminated.
SmallPtrSet<Value, 4> memrefsToErase;
// Walk all load's and perform store to load forwarding.
f.walk([&](AffineReadOpInterface loadOp) {
if (failed(
forwardStoreToLoad(loadOp, opsToErase, memrefsToErase, domInfo))) {
loadCSE(loadOp, opsToErase, domInfo);
}
});
// Erase all load op's whose results were replaced with store fwd'ed ones.
for (auto *op : opsToErase)
op->erase();
opsToErase.clear();
// Walk all store's and perform unused store elimination
f.walk([&](AffineWriteOpInterface storeOp) {
findUnusedStore(storeOp, opsToErase, postDomInfo);
});
// Erase all store op's which don't impact the program
for (auto *op : opsToErase)
op->erase();
// Check if the store fwd'ed memrefs are now left with only stores and
// deallocs and can thus be completely deleted. Note: the canonicalize pass
// should be able to do this as well, but we'll do it here since we collected
// these anyway.
for (auto memref : memrefsToErase) {
// If the memref hasn't been locally alloc'ed, skip.
Operation *defOp = memref.getDefiningOp();
if (!defOp || !hasSingleEffect<MemoryEffects::Allocate>(defOp, memref))
// TODO: if the memref was returned by a 'call' operation, we
// could still erase it if the call had no side-effects.
continue;
if (llvm::any_of(memref.getUsers(), [&](Operation *ownerOp) {
return !isa<AffineWriteOpInterface>(ownerOp) &&
!hasSingleEffect<MemoryEffects::Free>(ownerOp, memref);
}))
continue;
// Erase all stores, the dealloc, and the alloc on the memref.
for (auto *user : llvm::make_early_inc_range(memref.getUsers()))
user->erase();
defOp->erase();
}
}
// Perform the replacement in `op`.
LogicalResult mlir::affine::replaceAllMemRefUsesWith(
Value oldMemRef, Value newMemRef, Operation *op,
ArrayRef<Value> extraIndices, AffineMap indexRemap,
ArrayRef<Value> extraOperands, ArrayRef<Value> symbolOperands,
bool allowNonDereferencingOps) {
unsigned newMemRefRank = cast<MemRefType>(newMemRef.getType()).getRank();
(void)newMemRefRank; // unused in opt mode
unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.getType()).getRank();
(void)oldMemRefRank; // unused in opt mode
if (indexRemap) {
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
"symbolic operand count mismatch");
assert(indexRemap.getNumInputs() ==
extraOperands.size() + oldMemRefRank + symbolOperands.size());
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
} else {
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
}
// Assert same elemental type.
assert(cast<MemRefType>(oldMemRef.getType()).getElementType() ==
cast<MemRefType>(newMemRef.getType()).getElementType());
SmallVector<unsigned, 2> usePositions;
for (const auto &opEntry : llvm::enumerate(op->getOperands())) {
if (opEntry.value() == oldMemRef)
usePositions.push_back(opEntry.index());
}
// If memref doesn't appear, nothing to do.
if (usePositions.empty())
return success();
if (usePositions.size() > 1) {
// TODO: extend it for this case when needed (rare).
assert(false && "multiple dereferencing uses in a single op not supported");
return failure();
}
unsigned memRefOperandPos = usePositions.front();
OpBuilder builder(op);
// The following checks if op is dereferencing memref and performs the access
// index rewrites.
auto affMapAccInterface = dyn_cast<AffineMapAccessInterface>(op);
if (!affMapAccInterface) {
if (!allowNonDereferencingOps) {
// Failure: memref used in a non-dereferencing context (potentially
// escapes); no replacement in these cases unless allowNonDereferencingOps
// is set.
return failure();
}
op->setOperand(memRefOperandPos, newMemRef);
return success();
}
// Perform index rewrites for the dereferencing op and then replace the op
NamedAttribute oldMapAttrPair =
affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef);
AffineMap oldMap = cast<AffineMapAttr>(oldMapAttrPair.getValue()).getValue();
unsigned oldMapNumInputs = oldMap.getNumInputs();
SmallVector<Value, 4> oldMapOperands(
op->operand_begin() + memRefOperandPos + 1,
op->operand_begin() + memRefOperandPos + 1 + oldMapNumInputs);
// Apply 'oldMemRefOperands = oldMap(oldMapOperands)'.
SmallVector<Value, 4> oldMemRefOperands;
SmallVector<Value, 4> affineApplyOps;
oldMemRefOperands.reserve(oldMemRefRank);
if (oldMap != builder.getMultiDimIdentityMap(oldMap.getNumDims())) {
for (auto resultExpr : oldMap.getResults()) {
auto singleResMap = AffineMap::get(oldMap.getNumDims(),
oldMap.getNumSymbols(), resultExpr);
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
oldMapOperands);
oldMemRefOperands.push_back(afOp);
affineApplyOps.push_back(afOp);
}
} else {
oldMemRefOperands.assign(oldMapOperands.begin(), oldMapOperands.end());
}
// Construct new indices as a remap of the old ones if a remapping has been
// provided. The indices of a memref come right after it, i.e.,
// at position memRefOperandPos + 1.
SmallVector<Value, 4> remapOperands;
remapOperands.reserve(extraOperands.size() + oldMemRefRank +
symbolOperands.size());
remapOperands.append(extraOperands.begin(), extraOperands.end());
remapOperands.append(oldMemRefOperands.begin(), oldMemRefOperands.end());
remapOperands.append(symbolOperands.begin(), symbolOperands.end());
SmallVector<Value, 4> remapOutputs;
remapOutputs.reserve(oldMemRefRank);
if (indexRemap &&
indexRemap != builder.getMultiDimIdentityMap(indexRemap.getNumDims())) {
// Remapped indices.
for (auto resultExpr : indexRemap.getResults()) {
auto singleResMap = AffineMap::get(
indexRemap.getNumDims(), indexRemap.getNumSymbols(), resultExpr);
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
remapOperands);
remapOutputs.push_back(afOp);
affineApplyOps.push_back(afOp);
}
} else {
// No remapping specified.
remapOutputs.assign(remapOperands.begin(), remapOperands.end());
}
SmallVector<Value, 4> newMapOperands;
newMapOperands.reserve(newMemRefRank);
// Prepend 'extraIndices' in 'newMapOperands'.
for (Value extraIndex : extraIndices) {
assert((isValidDim(extraIndex) || isValidSymbol(extraIndex)) &&
"invalid memory op index");
newMapOperands.push_back(extraIndex);
}
// Append 'remapOutputs' to 'newMapOperands'.
newMapOperands.append(remapOutputs.begin(), remapOutputs.end());
// Create new fully composed AffineMap for new op to be created.
assert(newMapOperands.size() == newMemRefRank);
auto newMap = builder.getMultiDimIdentityMap(newMemRefRank);
// TODO: Avoid creating/deleting temporary AffineApplyOps here.
fullyComposeAffineMapAndOperands(&newMap, &newMapOperands);
newMap = simplifyAffineMap(newMap);
canonicalizeMapAndOperands(&newMap, &newMapOperands);
// Remove any affine.apply's that became dead as a result of composition.
for (Value value : affineApplyOps)
if (value.use_empty())
value.getDefiningOp()->erase();
OperationState state(op->getLoc(), op->getName());
// Construct the new operation using this memref.
state.operands.reserve(op->getNumOperands() + extraIndices.size());
// Insert the non-memref operands.
state.operands.append(op->operand_begin(),
op->operand_begin() + memRefOperandPos);
// Insert the new memref value.
state.operands.push_back(newMemRef);
// Insert the new memref map operands.
state.operands.append(newMapOperands.begin(), newMapOperands.end());
// Insert the remaining operands unmodified.
state.operands.append(op->operand_begin() + memRefOperandPos + 1 +
oldMapNumInputs,
op->operand_end());
// Result types don't change. Both memref's are of the same elemental type.
state.types.reserve(op->getNumResults());
for (auto result : op->getResults())
state.types.push_back(result.getType());
// Add attribute for 'newMap', other Attributes do not change.
auto newMapAttr = AffineMapAttr::get(newMap);
for (auto namedAttr : op->getAttrs()) {
if (namedAttr.getName() == oldMapAttrPair.getName())
state.attributes.push_back({namedAttr.getName(), newMapAttr});
else
state.attributes.push_back(namedAttr);
}
// Create the new operation.
auto *repOp = builder.create(state);
op->replaceAllUsesWith(repOp);
op->erase();
return success();
}
LogicalResult mlir::affine::replaceAllMemRefUsesWith(
Value oldMemRef, Value newMemRef, ArrayRef<Value> extraIndices,
AffineMap indexRemap, ArrayRef<Value> extraOperands,
ArrayRef<Value> symbolOperands, Operation *domOpFilter,
Operation *postDomOpFilter, bool allowNonDereferencingOps,
bool replaceInDeallocOp) {
unsigned newMemRefRank = cast<MemRefType>(newMemRef.getType()).getRank();
(void)newMemRefRank; // unused in opt mode
unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.getType()).getRank();
(void)oldMemRefRank;
if (indexRemap) {
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
"symbol operand count mismatch");
assert(indexRemap.getNumInputs() ==
extraOperands.size() + oldMemRefRank + symbolOperands.size());
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
} else {
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
}
// Assert same elemental type.
assert(cast<MemRefType>(oldMemRef.getType()).getElementType() ==
cast<MemRefType>(newMemRef.getType()).getElementType());
std::unique_ptr<DominanceInfo> domInfo;
std::unique_ptr<PostDominanceInfo> postDomInfo;
if (domOpFilter)
domInfo = std::make_unique<DominanceInfo>(
domOpFilter->getParentOfType<func::FuncOp>());
if (postDomOpFilter)
postDomInfo = std::make_unique<PostDominanceInfo>(
postDomOpFilter->getParentOfType<func::FuncOp>());
// Walk all uses of old memref; collect ops to perform replacement. We use a
// DenseSet since an operation could potentially have multiple uses of a
// memref (although rare), and the replacement later is going to erase ops.
DenseSet<Operation *> opsToReplace;
for (auto *op : oldMemRef.getUsers()) {
// Skip this use if it's not dominated by domOpFilter.
if (domOpFilter && !domInfo->dominates(domOpFilter, op))
continue;
// Skip this use if it's not post-dominated by postDomOpFilter.
if (postDomOpFilter && !postDomInfo->postDominates(postDomOpFilter, op))
continue;
// Skip dealloc's - no replacement is necessary, and a memref replacement
// at other uses doesn't hurt these dealloc's.
if (hasSingleEffect<MemoryEffects::Free>(op, oldMemRef) &&
!replaceInDeallocOp)
continue;
// Check if the memref was used in a non-dereferencing context. It is fine
// for the memref to be used in a non-dereferencing way outside of the
// region where this replacement is happening.
if (!isa<AffineMapAccessInterface>(*op)) {
if (!allowNonDereferencingOps) {
LLVM_DEBUG(llvm::dbgs()
<< "Memref replacement failed: non-deferencing memref op: \n"
<< *op << '\n');
return failure();
}
// Non-dereferencing ops with the MemRefsNormalizable trait are
// supported for replacement.
if (!op->hasTrait<OpTrait::MemRefsNormalizable>()) {
LLVM_DEBUG(llvm::dbgs() << "Memref replacement failed: use without a "
"memrefs normalizable trait: \n"
<< *op << '\n');
return failure();
}
}
// We'll first collect and then replace --- since replacement erases the op
// that has the use, and that op could be postDomFilter or domFilter itself!
opsToReplace.insert(op);
}
for (auto *op : opsToReplace) {
if (failed(replaceAllMemRefUsesWith(
oldMemRef, newMemRef, op, extraIndices, indexRemap, extraOperands,
symbolOperands, allowNonDereferencingOps)))
llvm_unreachable("memref replacement guaranteed to succeed here");
}
return success();
}
/// Given an operation, inserts one or more single result affine
/// apply operations, results of which are exclusively used by this operation
/// operation. The operands of these newly created affine apply ops are
/// guaranteed to be loop iterators or terminal symbols of a function.
///
/// Before
///
/// affine.for %i = 0 to #map(%N)
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
/// "send"(%idx, %A, ...)
/// "compute"(%idx)
///
/// After
///
/// affine.for %i = 0 to #map(%N)
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
/// "send"(%idx, %A, ...)
/// %idx_ = affine.apply (d0) -> (d0 mod 2) (%i)
/// "compute"(%idx_)
///
/// This allows applying different transformations on send and compute (for eg.
/// different shifts/delays).
///
/// Returns nullptr either if none of opInst's operands were the result of an
/// affine.apply and thus there was no affine computation slice to create, or if
/// all the affine.apply op's supplying operands to this opInst did not have any
/// uses besides this opInst; otherwise returns the list of affine.apply
/// operations created in output argument `sliceOps`.
void mlir::affine::createAffineComputationSlice(
Operation *opInst, SmallVectorImpl<AffineApplyOp> *sliceOps) {
// Collect all operands that are results of affine apply ops.
SmallVector<Value, 4> subOperands;
subOperands.reserve(opInst->getNumOperands());
for (auto operand : opInst->getOperands())
if (isa_and_nonnull<AffineApplyOp>(operand.getDefiningOp()))
subOperands.push_back(operand);
// Gather sequence of AffineApplyOps reachable from 'subOperands'.
SmallVector<Operation *, 4> affineApplyOps;
getReachableAffineApplyOps(subOperands, affineApplyOps);
// Skip transforming if there are no affine maps to compose.
if (affineApplyOps.empty())
return;
// Check if all uses of the affine apply op's lie only in this op op, in
// which case there would be nothing to do.
bool localized = true;
for (auto *op : affineApplyOps) {
for (auto result : op->getResults()) {
for (auto *user : result.getUsers()) {
if (user != opInst) {
localized = false;
break;
}
}
}
}
if (localized)
return;
OpBuilder builder(opInst);
SmallVector<Value, 4> composedOpOperands(subOperands);
auto composedMap = builder.getMultiDimIdentityMap(composedOpOperands.size());
fullyComposeAffineMapAndOperands(&composedMap, &composedOpOperands);
// Create an affine.apply for each of the map results.
sliceOps->reserve(composedMap.getNumResults());
for (auto resultExpr : composedMap.getResults()) {
auto singleResMap = AffineMap::get(composedMap.getNumDims(),
composedMap.getNumSymbols(), resultExpr);
sliceOps->push_back(builder.create<AffineApplyOp>(
opInst->getLoc(), singleResMap, composedOpOperands));
}
// Construct the new operands that include the results from the composed
// affine apply op above instead of existing ones (subOperands). So, they
// differ from opInst's operands only for those operands in 'subOperands', for
// which they will be replaced by the corresponding one from 'sliceOps'.
SmallVector<Value, 4> newOperands(opInst->getOperands());
for (unsigned i = 0, e = newOperands.size(); i < e; i++) {
// Replace the subOperands from among the new operands.
unsigned j, f;
for (j = 0, f = subOperands.size(); j < f; j++) {
if (newOperands[i] == subOperands[j])
break;
}
if (j < subOperands.size()) {
newOperands[i] = (*sliceOps)[j];
}
}
for (unsigned idx = 0, e = newOperands.size(); idx < e; idx++) {
opInst->setOperand(idx, newOperands[idx]);
}
}
/// Enum to set patterns of affine expr in tiled-layout map.
/// TileFloorDiv: <dim expr> div <tile size>
/// TileMod: <dim expr> mod <tile size>
/// TileNone: None of the above
/// Example:
/// #tiled_2d_128x256 = affine_map<(d0, d1)
/// -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)>
/// "d0 div 128" and "d1 div 256" ==> TileFloorDiv
/// "d0 mod 128" and "d1 mod 256" ==> TileMod
enum TileExprPattern { TileFloorDiv, TileMod, TileNone };
/// Check if `map` is a tiled layout. In the tiled layout, specific k dimensions
/// being floordiv'ed by respective tile sizes appeare in a mod with the same
/// tile sizes, and no other expression involves those k dimensions. This
/// function stores a vector of tuples (`tileSizePos`) including AffineExpr for
/// tile size, positions of corresponding `floordiv` and `mod`. If it is not a
/// tiled layout, an empty vector is returned.
static LogicalResult getTileSizePos(
AffineMap map,
SmallVectorImpl<std::tuple<AffineExpr, unsigned, unsigned>> &tileSizePos) {
// Create `floordivExprs` which is a vector of tuples including LHS and RHS of
// `floordiv` and its position in `map` output.
// Example: #tiled_2d_128x256 = affine_map<(d0, d1)
// -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)>
// In this example, `floordivExprs` includes {d0, 128, 0} and {d1, 256, 1}.
SmallVector<std::tuple<AffineExpr, AffineExpr, unsigned>, 4> floordivExprs;
unsigned pos = 0;
for (AffineExpr expr : map.getResults()) {
if (expr.getKind() == AffineExprKind::FloorDiv) {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
if (binaryExpr.getRHS().isa<AffineConstantExpr>())
floordivExprs.emplace_back(
std::make_tuple(binaryExpr.getLHS(), binaryExpr.getRHS(), pos));
}
pos++;
}
// Not tiled layout if `floordivExprs` is empty.
if (floordivExprs.empty()) {
tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{};
return success();
}
// Check if LHS of `floordiv` is used in LHS of `mod`. If not used, `map` is
// not tiled layout.
for (std::tuple<AffineExpr, AffineExpr, unsigned> fexpr : floordivExprs) {
AffineExpr floordivExprLHS = std::get<0>(fexpr);
AffineExpr floordivExprRHS = std::get<1>(fexpr);
unsigned floordivPos = std::get<2>(fexpr);
// Walk affinexpr of `map` output except `fexpr`, and check if LHS and RHS
// of `fexpr` are used in LHS and RHS of `mod`. If LHS of `fexpr` is used
// other expr, the map is not tiled layout. Example of non tiled layout:
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 floordiv 256)>
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 128)>
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 256, d2 mod
// 256)>
bool found = false;
pos = 0;
for (AffineExpr expr : map.getResults()) {
bool notTiled = false;
if (pos != floordivPos) {
expr.walk([&](AffineExpr e) {
if (e == floordivExprLHS) {
if (expr.getKind() == AffineExprKind::Mod) {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
// If LHS and RHS of `mod` are the same with those of floordiv.
if (floordivExprLHS == binaryExpr.getLHS() &&
floordivExprRHS == binaryExpr.getRHS()) {
// Save tile size (RHS of `mod`), and position of `floordiv` and
// `mod` if same expr with `mod` is not found yet.
if (!found) {
tileSizePos.emplace_back(
std::make_tuple(binaryExpr.getRHS(), floordivPos, pos));
found = true;
} else {
// Non tiled layout: Have multilpe `mod` with the same LHS.
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
// mod 256, d2 mod 256)>
notTiled = true;
}
} else {
// Non tiled layout: RHS of `mod` is different from `floordiv`.
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
// mod 128)>
notTiled = true;
}
} else {
// Non tiled layout: LHS is the same, but not `mod`.
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
// floordiv 256)>
notTiled = true;
}
}
});
}
if (notTiled) {
tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{};
return success();
}
pos++;
}
}
return success();
}
/// Check if `dim` dimension of memrefType with `layoutMap` becomes dynamic
/// after normalization. Dimensions that include dynamic dimensions in the map
/// output will become dynamic dimensions. Return true if `dim` is dynamic
/// dimension.
///
/// Example:
/// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)>
///
/// If d1 is dynamic dimension, 2nd and 3rd dimension of map output are dynamic.
/// memref<4x?xf32, #map0> ==> memref<4x?x?xf32>
static bool
isNormalizedMemRefDynamicDim(unsigned dim, AffineMap layoutMap,
SmallVectorImpl<unsigned> &inMemrefTypeDynDims,
MLIRContext *context) {
bool isDynamicDim = false;
AffineExpr expr = layoutMap.getResults()[dim];
// Check if affine expr of the dimension includes dynamic dimension of input
// memrefType.
expr.walk([&inMemrefTypeDynDims, &isDynamicDim, &context](AffineExpr e) {
if (e.isa<AffineDimExpr>()) {
for (unsigned dm : inMemrefTypeDynDims) {
if (e == getAffineDimExpr(dm, context)) {
isDynamicDim = true;
}
}
}
});
return isDynamicDim;
}
/// Create affine expr to calculate dimension size for a tiled-layout map.
static AffineExpr createDimSizeExprForTiledLayout(AffineExpr oldMapOutput,
TileExprPattern pat) {
// Create map output for the patterns.
// "floordiv <tile size>" ==> "ceildiv <tile size>"
// "mod <tile size>" ==> "<tile size>"
AffineExpr newMapOutput;
AffineBinaryOpExpr binaryExpr = nullptr;
switch (pat) {
case TileExprPattern::TileMod:
binaryExpr = oldMapOutput.cast<AffineBinaryOpExpr>();
newMapOutput = binaryExpr.getRHS();
break;
case TileExprPattern::TileFloorDiv:
binaryExpr = oldMapOutput.cast<AffineBinaryOpExpr>();
newMapOutput = getAffineBinaryOpExpr(
AffineExprKind::CeilDiv, binaryExpr.getLHS(), binaryExpr.getRHS());
break;
default:
newMapOutput = oldMapOutput;
}
return newMapOutput;
}
/// Create new maps to calculate each dimension size of `newMemRefType`, and
/// create `newDynamicSizes` from them by using AffineApplyOp.
///
/// Steps for normalizing dynamic memrefs for a tiled layout map
/// Example:
/// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)>
/// %0 = dim %arg0, %c1 :memref<4x?xf32>
/// %1 = alloc(%0) : memref<4x?xf32, #map0>
///
/// (Before this function)
/// 1. Check if `map`(#map0) is a tiled layout using `getTileSizePos()`. Only
/// single layout map is supported.
///
/// 2. Create normalized memrefType using `isNormalizedMemRefDynamicDim()`. It
/// is memref<4x?x?xf32> in the above example.
///
/// (In this function)
/// 3. Create new maps to calculate each dimension of the normalized memrefType
/// using `createDimSizeExprForTiledLayout()`. In the tiled layout, the
/// dimension size can be calculated by replacing "floordiv <tile size>" with
/// "ceildiv <tile size>" and "mod <tile size>" with "<tile size>".
/// - New map in the above example
/// #map0 = affine_map<(d0, d1) -> (d0)>
/// #map1 = affine_map<(d0, d1) -> (d1 ceildiv 32)>
/// #map2 = affine_map<(d0, d1) -> (32)>
///
/// 4. Create AffineApplyOp to apply the new maps. The output of AffineApplyOp
/// is used in dynamicSizes of new AllocOp.
/// %0 = dim %arg0, %c1 : memref<4x?xf32>
/// %c4 = arith.constant 4 : index
/// %1 = affine.apply #map1(%c4, %0)
/// %2 = affine.apply #map2(%c4, %0)
static void createNewDynamicSizes(MemRefType oldMemRefType,
MemRefType newMemRefType, AffineMap map,
memref::AllocOp *allocOp, OpBuilder b,
SmallVectorImpl<Value> &newDynamicSizes) {
// Create new input for AffineApplyOp.
SmallVector<Value, 4> inAffineApply;
ArrayRef<int64_t> oldMemRefShape = oldMemRefType.getShape();
unsigned dynIdx = 0;
for (unsigned d = 0; d < oldMemRefType.getRank(); ++d) {
if (oldMemRefShape[d] < 0) {
// Use dynamicSizes of allocOp for dynamic dimension.
inAffineApply.emplace_back(allocOp->getDynamicSizes()[dynIdx]);
dynIdx++;
} else {
// Create ConstantOp for static dimension.
auto constantAttr = b.getIntegerAttr(b.getIndexType(), oldMemRefShape[d]);
inAffineApply.emplace_back(
b.create<arith::ConstantOp>(allocOp->getLoc(), constantAttr));
}
}
// Create new map to calculate each dimension size of new memref for each
// original map output. Only for dynamic dimesion of `newMemRefType`.
unsigned newDimIdx = 0;
ArrayRef<int64_t> newMemRefShape = newMemRefType.getShape();
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
(void)getTileSizePos(map, tileSizePos);
for (AffineExpr expr : map.getResults()) {
if (newMemRefShape[newDimIdx] < 0) {
// Create new maps to calculate each dimension size of new memref.
enum TileExprPattern pat = TileExprPattern::TileNone;
for (auto pos : tileSizePos) {
if (newDimIdx == std::get<1>(pos))
pat = TileExprPattern::TileFloorDiv;
else if (newDimIdx == std::get<2>(pos))
pat = TileExprPattern::TileMod;
}
AffineExpr newMapOutput = createDimSizeExprForTiledLayout(expr, pat);
AffineMap newMap =
AffineMap::get(map.getNumInputs(), map.getNumSymbols(), newMapOutput);
Value affineApp =
b.create<AffineApplyOp>(allocOp->getLoc(), newMap, inAffineApply);
newDynamicSizes.emplace_back(affineApp);
}
newDimIdx++;
}
}
// TODO: Currently works for static memrefs with a single layout map.
LogicalResult mlir::affine::normalizeMemRef(memref::AllocOp *allocOp) {
MemRefType memrefType = allocOp->getType();
OpBuilder b(*allocOp);
// Fetch a new memref type after normalizing the old memref to have an
// identity map layout.
MemRefType newMemRefType =
normalizeMemRefType(memrefType, allocOp->getSymbolOperands().size());
if (newMemRefType == memrefType)
// Either memrefType already had an identity map or the map couldn't be
// transformed to an identity map.
return failure();
Value oldMemRef = allocOp->getResult();
SmallVector<Value, 4> symbolOperands(allocOp->getSymbolOperands());
AffineMap layoutMap = memrefType.getLayout().getAffineMap();
memref::AllocOp newAlloc;
// Check if `layoutMap` is a tiled layout. Only single layout map is
// supported for normalizing dynamic memrefs.
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
(void)getTileSizePos(layoutMap, tileSizePos);
if (newMemRefType.getNumDynamicDims() > 0 && !tileSizePos.empty()) {
MemRefType oldMemRefType = cast<MemRefType>(oldMemRef.getType());
SmallVector<Value, 4> newDynamicSizes;
createNewDynamicSizes(oldMemRefType, newMemRefType, layoutMap, allocOp, b,
newDynamicSizes);
// Add the new dynamic sizes in new AllocOp.
newAlloc =
b.create<memref::AllocOp>(allocOp->getLoc(), newMemRefType,
newDynamicSizes, allocOp->getAlignmentAttr());
} else {
newAlloc = b.create<memref::AllocOp>(allocOp->getLoc(), newMemRefType,
allocOp->getAlignmentAttr());
}
// Replace all uses of the old memref.
if (failed(replaceAllMemRefUsesWith(oldMemRef, /*newMemRef=*/newAlloc,
/*extraIndices=*/{},
/*indexRemap=*/layoutMap,
/*extraOperands=*/{},
/*symbolOperands=*/symbolOperands,
/*domOpFilter=*/nullptr,
/*postDomOpFilter=*/nullptr,
/*allowNonDereferencingOps=*/true))) {
// If it failed (due to escapes for example), bail out.
newAlloc.erase();
return failure();
}
// Replace any uses of the original alloc op and erase it. All remaining uses
// have to be dealloc's; RAMUW above would've failed otherwise.
assert(llvm::all_of(oldMemRef.getUsers(), [&](Operation *op) {
return hasSingleEffect<MemoryEffects::Free>(op, oldMemRef);
}));
oldMemRef.replaceAllUsesWith(newAlloc);
allocOp->erase();
return success();
}
MemRefType mlir::affine::normalizeMemRefType(MemRefType memrefType,
unsigned numSymbolicOperands) {
unsigned rank = memrefType.getRank();
if (rank == 0)
return memrefType;
if (memrefType.getLayout().isIdentity()) {
// Either no maps is associated with this memref or this memref has
// a trivial (identity) map.
return memrefType;
}
AffineMap layoutMap = memrefType.getLayout().getAffineMap();
// We don't do any checks for one-to-one'ness; we assume that it is
// one-to-one.
// Normalize only static memrefs and dynamic memrefs with a tiled-layout map
// for now.
// TODO: Normalize the other types of dynamic memrefs.
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
(void)getTileSizePos(layoutMap, tileSizePos);
if (memrefType.getNumDynamicDims() > 0 && tileSizePos.empty())
return memrefType;
// We have a single map that is not an identity map. Create a new memref
// with the right shape and an identity layout map.
ArrayRef<int64_t> shape = memrefType.getShape();
// FlatAffineValueConstraint may later on use symbolicOperands.
FlatAffineValueConstraints fac(rank, numSymbolicOperands);
SmallVector<unsigned, 4> memrefTypeDynDims;
for (unsigned d = 0; d < rank; ++d) {
// Use constraint system only in static dimensions.
if (shape[d] > 0) {
fac.addBound(BoundType::LB, d, 0);
fac.addBound(BoundType::UB, d, shape[d] - 1);
} else {
memrefTypeDynDims.emplace_back(d);
}
}
// We compose this map with the original index (logical) space to derive
// the upper bounds for the new index space.
unsigned newRank = layoutMap.getNumResults();
if (failed(fac.composeMatchingMap(layoutMap)))
return memrefType;
// TODO: Handle semi-affine maps.
// Project out the old data dimensions.
fac.projectOut(newRank, fac.getNumVars() - newRank - fac.getNumLocalVars());
SmallVector<int64_t, 4> newShape(newRank);
MLIRContext *context = memrefType.getContext();
for (unsigned d = 0; d < newRank; ++d) {
// Check if this dimension is dynamic.
bool isDynDim =
isNormalizedMemRefDynamicDim(d, layoutMap, memrefTypeDynDims, context);
if (isDynDim) {
newShape[d] = ShapedType::kDynamic;
} else {
// The lower bound for the shape is always zero.
std::optional<int64_t> ubConst = fac.getConstantBound64(BoundType::UB, d);
// For a static memref and an affine map with no symbols, this is
// always bounded. However, when we have symbols, we may not be able to
// obtain a constant upper bound. Also, mapping to a negative space is
// invalid for normalization.
if (!ubConst.has_value() || *ubConst < 0) {
LLVM_DEBUG(llvm::dbgs()
<< "can't normalize map due to unknown/invalid upper bound");
return memrefType;
}
// If dimension of new memrefType is dynamic, the value is -1.
newShape[d] = *ubConst + 1;
}
}
// Create the new memref type after trivializing the old layout map.
MemRefType newMemRefType =
MemRefType::Builder(memrefType)
.setShape(newShape)
.setLayout(AffineMapAttr::get(
AffineMap::getMultiDimIdentityMap(newRank, context)));
return newMemRefType;
}
DivModValue mlir::affine::getDivMod(OpBuilder &b, Location loc, Value lhs,
Value rhs) {
DivModValue result;
AffineExpr d0, d1;
bindDims(b.getContext(), d0, d1);
result.quotient =
affine::makeComposedAffineApply(b, loc, d0.floorDiv(d1), {lhs, rhs});
result.remainder =
affine::makeComposedAffineApply(b, loc, d0 % d1, {lhs, rhs});
return result;
}
/// Create IR that computes the product of all elements in the set.
static FailureOr<OpFoldResult> getIndexProduct(OpBuilder &b, Location loc,
ArrayRef<Value> set) {
if (set.empty())
return failure();
OpFoldResult result = set[0];
AffineExpr s0, s1;
bindSymbols(b.getContext(), s0, s1);
for (unsigned i = 1, e = set.size(); i < e; i++)
result = makeComposedFoldedAffineApply(b, loc, s0 * s1, {result, set[i]});
return result;
}
FailureOr<SmallVector<Value>>
mlir::affine::delinearizeIndex(OpBuilder &b, Location loc, Value linearIndex,
ArrayRef<Value> basis) {
unsigned numDims = basis.size();
SmallVector<Value> divisors;
for (unsigned i = 1; i < numDims; i++) {
ArrayRef<Value> slice = basis.drop_front(i);
FailureOr<OpFoldResult> prod = getIndexProduct(b, loc, slice);
if (failed(prod))
return failure();
divisors.push_back(getValueOrCreateConstantIndexOp(b, loc, *prod));
}
SmallVector<Value> results;
results.reserve(divisors.size() + 1);
Value residual = linearIndex;
for (Value divisor : divisors) {
DivModValue divMod = getDivMod(b, loc, residual, divisor);
results.push_back(divMod.quotient);
residual = divMod.remainder;
}
results.push_back(residual);
return results;
}
|