summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/AffineOps/AffineOps.cpp
blob: bfe72101e8524b4e839146ce2c9eef3add678d98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
//===- AffineOps.cpp - MLIR Affine Operations -----------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/InliningUtils.h"
#include "mlir/Transforms/SideEffectsInterface.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Support/Debug.h"

using namespace mlir;
using llvm::dbgs;

#define DEBUG_TYPE "affine-analysis"

//===----------------------------------------------------------------------===//
// AffineOpsDialect Interfaces
//===----------------------------------------------------------------------===//

namespace {
/// This class defines the interface for handling inlining with affine
/// operations.
struct AffineInlinerInterface : public DialectInlinerInterface {
  using DialectInlinerInterface::DialectInlinerInterface;

  //===--------------------------------------------------------------------===//
  // Analysis Hooks
  //===--------------------------------------------------------------------===//

  /// Returns true if the given region 'src' can be inlined into the region
  /// 'dest' that is attached to an operation registered to the current dialect.
  bool isLegalToInline(Region *dest, Region *src,
                       BlockAndValueMapping &valueMapping) const final {
    // Conservatively don't allow inlining into affine structures.
    return false;
  }

  /// Returns true if the given operation 'op', that is registered to this
  /// dialect, can be inlined into the given region, false otherwise.
  bool isLegalToInline(Operation *op, Region *region,
                       BlockAndValueMapping &valueMapping) const final {
    // Always allow inlining affine operations into the top-level region of a
    // function. There are some edge cases when inlining *into* affine
    // structures, but that is handled in the other 'isLegalToInline' hook
    // above.
    // TODO: We should be able to inline into other regions than functions.
    return isa<FuncOp>(region->getParentOp());
  }

  /// Affine regions should be analyzed recursively.
  bool shouldAnalyzeRecursively(Operation *op) const final { return true; }
};

// TODO(mlir): Extend for other ops in this dialect.
struct AffineSideEffectsInterface : public SideEffectsDialectInterface {
  using SideEffectsDialectInterface::SideEffectsDialectInterface;

  SideEffecting isSideEffecting(Operation *op) const override {
    if (isa<AffineIfOp>(op)) {
      return Recursive;
    }
    return SideEffectsDialectInterface::isSideEffecting(op);
  };
};

} // end anonymous namespace

//===----------------------------------------------------------------------===//
// AffineOpsDialect
//===----------------------------------------------------------------------===//

AffineOpsDialect::AffineOpsDialect(MLIRContext *context)
    : Dialect(getDialectNamespace(), context) {
  addOperations<AffineApplyOp, AffineDmaStartOp, AffineDmaWaitOp, AffineLoadOp,
                AffineStoreOp,
#define GET_OP_LIST
#include "mlir/Dialect/AffineOps/AffineOps.cpp.inc"
                >();
  addInterfaces<AffineInlinerInterface, AffineSideEffectsInterface>();
}

/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *AffineOpsDialect::materializeConstant(OpBuilder &builder,
                                                 Attribute value, Type type,
                                                 Location loc) {
  return builder.create<ConstantOp>(loc, type, value);
}

/// A utility function to check if a given region is attached to a function.
static bool isFunctionRegion(Region *region) {
  return llvm::isa<FuncOp>(region->getParentOp());
}

/// A utility function to check if a value is defined at the top level of a
/// function. A value of index type defined at the top level is always a valid
/// symbol.
bool mlir::isTopLevelValue(ValuePtr value) {
  if (auto arg = dyn_cast<BlockArgument>(value))
    return isFunctionRegion(arg->getOwner()->getParent());
  return isFunctionRegion(value->getDefiningOp()->getParentRegion());
}

// Value can be used as a dimension id if it is valid as a symbol, or
// it is an induction variable, or it is a result of affine apply operation
// with dimension id arguments.
bool mlir::isValidDim(ValuePtr value) {
  // The value must be an index type.
  if (!value->getType().isIndex())
    return false;

  if (auto *op = value->getDefiningOp()) {
    // Top level operation or constant operation is ok.
    if (isFunctionRegion(op->getParentRegion()) || isa<ConstantOp>(op))
      return true;
    // Affine apply operation is ok if all of its operands are ok.
    if (auto applyOp = dyn_cast<AffineApplyOp>(op))
      return applyOp.isValidDim();
    // The dim op is okay if its operand memref/tensor is defined at the top
    // level.
    if (auto dimOp = dyn_cast<DimOp>(op))
      return isTopLevelValue(dimOp.getOperand());
    return false;
  }
  // This value has to be a block argument for a FuncOp or an affine.for.
  auto *parentOp = cast<BlockArgument>(value)->getOwner()->getParentOp();
  return isa<FuncOp>(parentOp) || isa<AffineForOp>(parentOp);
}

/// Returns true if the 'index' dimension of the `memref` defined by
/// `memrefDefOp` is a statically  shaped one or defined using a valid symbol.
template <typename AnyMemRefDefOp>
bool isMemRefSizeValidSymbol(AnyMemRefDefOp memrefDefOp, unsigned index) {
  auto memRefType = memrefDefOp.getType();
  // Statically shaped.
  if (!ShapedType::isDynamic(memRefType.getDimSize(index)))
    return true;
  // Get the position of the dimension among dynamic dimensions;
  unsigned dynamicDimPos = memRefType.getDynamicDimIndex(index);
  return isValidSymbol(
      *(memrefDefOp.getDynamicSizes().begin() + dynamicDimPos));
}

/// Returns true if the result of the dim op is a valid symbol.
static bool isDimOpValidSymbol(DimOp dimOp) {
  // The dim op is okay if its operand memref/tensor is defined at the top
  // level.
  if (isTopLevelValue(dimOp.getOperand()))
    return true;

  // The dim op is also okay if its operand memref/tensor is a view/subview
  // whose corresponding size is a valid symbol.
  unsigned index = dimOp.getIndex();
  if (auto viewOp = dyn_cast<ViewOp>(dimOp.getOperand()->getDefiningOp()))
    return isMemRefSizeValidSymbol<ViewOp>(viewOp, index);
  if (auto subViewOp = dyn_cast<SubViewOp>(dimOp.getOperand()->getDefiningOp()))
    return isMemRefSizeValidSymbol<SubViewOp>(subViewOp, index);
  if (auto allocOp = dyn_cast<AllocOp>(dimOp.getOperand()->getDefiningOp()))
    return isMemRefSizeValidSymbol<AllocOp>(allocOp, index);
  return false;
}

// Value can be used as a symbol if it is a constant, or it is defined at
// the top level, or it is a result of affine apply operation with symbol
// arguments, or a result of the dim op on a memref satisfying certain
// constraints.
bool mlir::isValidSymbol(ValuePtr value) {
  // The value must be an index type.
  if (!value->getType().isIndex())
    return false;

  if (auto *op = value->getDefiningOp()) {
    // Top level operation or constant operation is ok.
    if (isFunctionRegion(op->getParentRegion()) || isa<ConstantOp>(op))
      return true;
    // Affine apply operation is ok if all of its operands are ok.
    if (auto applyOp = dyn_cast<AffineApplyOp>(op))
      return applyOp.isValidSymbol();
    if (auto dimOp = dyn_cast<DimOp>(op)) {
      return isDimOpValidSymbol(dimOp);
    }
  }
  // Otherwise, check that the value is a top level value.
  return isTopLevelValue(value);
}

// Returns true if 'value' is a valid index to an affine operation (e.g.
// affine.load, affine.store, affine.dma_start, affine.dma_wait).
// Returns false otherwise.
static bool isValidAffineIndexOperand(ValuePtr value) {
  return isValidDim(value) || isValidSymbol(value);
}

/// Utility function to verify that a set of operands are valid dimension and
/// symbol identifiers. The operands should be laid out such that the dimension
/// operands are before the symbol operands. This function returns failure if
/// there was an invalid operand. An operation is provided to emit any necessary
/// errors.
template <typename OpTy>
static LogicalResult
verifyDimAndSymbolIdentifiers(OpTy &op, Operation::operand_range operands,
                              unsigned numDims) {
  unsigned opIt = 0;
  for (auto operand : operands) {
    if (opIt++ < numDims) {
      if (!isValidDim(operand))
        return op.emitOpError("operand cannot be used as a dimension id");
    } else if (!isValidSymbol(operand)) {
      return op.emitOpError("operand cannot be used as a symbol");
    }
  }
  return success();
}

//===----------------------------------------------------------------------===//
// AffineApplyOp
//===----------------------------------------------------------------------===//

void AffineApplyOp::build(Builder *builder, OperationState &result,
                          AffineMap map, ValueRange operands) {
  result.addOperands(operands);
  result.types.append(map.getNumResults(), builder->getIndexType());
  result.addAttribute("map", AffineMapAttr::get(map));
}

ParseResult AffineApplyOp::parse(OpAsmParser &parser, OperationState &result) {
  auto &builder = parser.getBuilder();
  auto indexTy = builder.getIndexType();

  AffineMapAttr mapAttr;
  unsigned numDims;
  if (parser.parseAttribute(mapAttr, "map", result.attributes) ||
      parseDimAndSymbolList(parser, result.operands, numDims) ||
      parser.parseOptionalAttrDict(result.attributes))
    return failure();
  auto map = mapAttr.getValue();

  if (map.getNumDims() != numDims ||
      numDims + map.getNumSymbols() != result.operands.size()) {
    return parser.emitError(parser.getNameLoc(),
                            "dimension or symbol index mismatch");
  }

  result.types.append(map.getNumResults(), indexTy);
  return success();
}

void AffineApplyOp::print(OpAsmPrinter &p) {
  p << "affine.apply " << getAttr("map");
  printDimAndSymbolList(operand_begin(), operand_end(),
                        getAffineMap().getNumDims(), p);
  p.printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/{"map"});
}

LogicalResult AffineApplyOp::verify() {
  // Check that affine map attribute was specified.
  auto affineMapAttr = getAttrOfType<AffineMapAttr>("map");
  if (!affineMapAttr)
    return emitOpError("requires an affine map");

  // Check input and output dimensions match.
  auto map = affineMapAttr.getValue();

  // Verify that operand count matches affine map dimension and symbol count.
  if (getNumOperands() != map.getNumDims() + map.getNumSymbols())
    return emitOpError(
        "operand count and affine map dimension and symbol count must match");

  // Verify that all operands are of `index` type.
  for (Type t : getOperandTypes()) {
    if (!t.isIndex())
      return emitOpError("operands must be of type 'index'");
  }

  if (!getResult()->getType().isIndex())
    return emitOpError("result must be of type 'index'");

  // Verify that the map only produces one result.
  if (map.getNumResults() != 1)
    return emitOpError("mapping must produce one value");

  return success();
}

// The result of the affine apply operation can be used as a dimension id if all
// its operands are valid dimension ids.
bool AffineApplyOp::isValidDim() {
  return llvm::all_of(getOperands(),
                      [](ValuePtr op) { return mlir::isValidDim(op); });
}

// The result of the affine apply operation can be used as a symbol if all its
// operands are symbols.
bool AffineApplyOp::isValidSymbol() {
  return llvm::all_of(getOperands(),
                      [](ValuePtr op) { return mlir::isValidSymbol(op); });
}

OpFoldResult AffineApplyOp::fold(ArrayRef<Attribute> operands) {
  auto map = getAffineMap();

  // Fold dims and symbols to existing values.
  auto expr = map.getResult(0);
  if (auto dim = expr.dyn_cast<AffineDimExpr>())
    return getOperand(dim.getPosition());
  if (auto sym = expr.dyn_cast<AffineSymbolExpr>())
    return getOperand(map.getNumDims() + sym.getPosition());

  // Otherwise, default to folding the map.
  SmallVector<Attribute, 1> result;
  if (failed(map.constantFold(operands, result)))
    return {};
  return result[0];
}

AffineDimExpr AffineApplyNormalizer::renumberOneDim(ValuePtr v) {
  DenseMap<ValuePtr, unsigned>::iterator iterPos;
  bool inserted = false;
  std::tie(iterPos, inserted) =
      dimValueToPosition.insert(std::make_pair(v, dimValueToPosition.size()));
  if (inserted) {
    reorderedDims.push_back(v);
  }
  return getAffineDimExpr(iterPos->second, v->getContext())
      .cast<AffineDimExpr>();
}

AffineMap AffineApplyNormalizer::renumber(const AffineApplyNormalizer &other) {
  SmallVector<AffineExpr, 8> dimRemapping;
  for (auto v : other.reorderedDims) {
    auto kvp = other.dimValueToPosition.find(v);
    if (dimRemapping.size() <= kvp->second)
      dimRemapping.resize(kvp->second + 1);
    dimRemapping[kvp->second] = renumberOneDim(kvp->first);
  }
  unsigned numSymbols = concatenatedSymbols.size();
  unsigned numOtherSymbols = other.concatenatedSymbols.size();
  SmallVector<AffineExpr, 8> symRemapping(numOtherSymbols);
  for (unsigned idx = 0; idx < numOtherSymbols; ++idx) {
    symRemapping[idx] =
        getAffineSymbolExpr(idx + numSymbols, other.affineMap.getContext());
  }
  concatenatedSymbols.insert(concatenatedSymbols.end(),
                             other.concatenatedSymbols.begin(),
                             other.concatenatedSymbols.end());
  auto map = other.affineMap;
  return map.replaceDimsAndSymbols(dimRemapping, symRemapping,
                                   reorderedDims.size(),
                                   concatenatedSymbols.size());
}

// Gather the positions of the operands that are produced by an AffineApplyOp.
static llvm::SetVector<unsigned>
indicesFromAffineApplyOp(ArrayRef<ValuePtr> operands) {
  llvm::SetVector<unsigned> res;
  for (auto en : llvm::enumerate(operands))
    if (isa_and_nonnull<AffineApplyOp>(en.value()->getDefiningOp()))
      res.insert(en.index());
  return res;
}

// Support the special case of a symbol coming from an AffineApplyOp that needs
// to be composed into the current AffineApplyOp.
// This case is handled by rewriting all such symbols into dims for the purpose
// of allowing mathematical AffineMap composition.
// Returns an AffineMap where symbols that come from an AffineApplyOp have been
// rewritten as dims and are ordered after the original dims.
// TODO(andydavis,ntv): This promotion makes AffineMap lose track of which
// symbols are represented as dims. This loss is static but can still be
// recovered dynamically (with `isValidSymbol`). Still this is annoying for the
// semi-affine map case. A dynamic canonicalization of all dims that are valid
// symbols (a.k.a `canonicalizePromotedSymbols`) into symbols helps and even
// results in better simplifications and foldings. But we should evaluate
// whether this behavior is what we really want after using more.
static AffineMap promoteComposedSymbolsAsDims(AffineMap map,
                                              ArrayRef<ValuePtr> symbols) {
  if (symbols.empty()) {
    return map;
  }

  // Sanity check on symbols.
  for (auto sym : symbols) {
    assert(isValidSymbol(sym) && "Expected only valid symbols");
    (void)sym;
  }

  // Extract the symbol positions that come from an AffineApplyOp and
  // needs to be rewritten as dims.
  auto symPositions = indicesFromAffineApplyOp(symbols);
  if (symPositions.empty()) {
    return map;
  }

  // Create the new map by replacing each symbol at pos by the next new dim.
  unsigned numDims = map.getNumDims();
  unsigned numSymbols = map.getNumSymbols();
  unsigned numNewDims = 0;
  unsigned numNewSymbols = 0;
  SmallVector<AffineExpr, 8> symReplacements(numSymbols);
  for (unsigned i = 0; i < numSymbols; ++i) {
    symReplacements[i] =
        symPositions.count(i) > 0
            ? getAffineDimExpr(numDims + numNewDims++, map.getContext())
            : getAffineSymbolExpr(numNewSymbols++, map.getContext());
  }
  assert(numSymbols >= numNewDims);
  AffineMap newMap = map.replaceDimsAndSymbols(
      {}, symReplacements, numDims + numNewDims, numNewSymbols);

  return newMap;
}

/// The AffineNormalizer composes AffineApplyOp recursively. Its purpose is to
/// keep a correspondence between the mathematical `map` and the `operands` of
/// a given AffineApplyOp. This correspondence is maintained by iterating over
/// the operands and forming an `auxiliaryMap` that can be composed
/// mathematically with `map`. To keep this correspondence in cases where
/// symbols are produced by affine.apply operations, we perform a local rewrite
/// of symbols as dims.
///
/// Rationale for locally rewriting symbols as dims:
/// ================================================
/// The mathematical composition of AffineMap must always concatenate symbols
/// because it does not have enough information to do otherwise. For example,
/// composing `(d0)[s0] -> (d0 + s0)` with itself must produce
/// `(d0)[s0, s1] -> (d0 + s0 + s1)`.
///
/// The result is only equivalent to `(d0)[s0] -> (d0 + 2 * s0)` when
/// applied to the same mlir::Value for both s0 and s1.
/// As a consequence mathematical composition of AffineMap always concatenates
/// symbols.
///
/// When AffineMaps are used in AffineApplyOp however, they may specify
/// composition via symbols, which is ambiguous mathematically. This corner case
/// is handled by locally rewriting such symbols that come from AffineApplyOp
/// into dims and composing through dims.
/// TODO(andydavis, ntv): Composition via symbols comes at a significant code
/// complexity. Alternatively we should investigate whether we want to
/// explicitly disallow symbols coming from affine.apply and instead force the
/// user to compose symbols beforehand. The annoyances may be small (i.e. 1 or 2
/// extra API calls for such uses, which haven't popped up until now) and the
/// benefit potentially big: simpler and more maintainable code for a
/// non-trivial, recursive, procedure.
AffineApplyNormalizer::AffineApplyNormalizer(AffineMap map,
                                             ArrayRef<ValuePtr> operands)
    : AffineApplyNormalizer() {
  static_assert(kMaxAffineApplyDepth > 0, "kMaxAffineApplyDepth must be > 0");
  assert(map.getNumInputs() == operands.size() &&
         "number of operands does not match the number of map inputs");

  LLVM_DEBUG(map.print(dbgs() << "\nInput map: "));

  // Promote symbols that come from an AffineApplyOp to dims by rewriting the
  // map to always refer to:
  //   (dims, symbols coming from AffineApplyOp, other symbols).
  // The order of operands can remain unchanged.
  // This is a simplification that relies on 2 ordering properties:
  //   1. rewritten symbols always appear after the original dims in the map;
  //   2. operands are traversed in order and either dispatched to:
  //      a. auxiliaryExprs (dims and symbols rewritten as dims);
  //      b. concatenatedSymbols (all other symbols)
  // This allows operand order to remain unchanged.
  unsigned numDimsBeforeRewrite = map.getNumDims();
  map = promoteComposedSymbolsAsDims(map,
                                     operands.take_back(map.getNumSymbols()));

  LLVM_DEBUG(map.print(dbgs() << "\nRewritten map: "));

  SmallVector<AffineExpr, 8> auxiliaryExprs;
  bool furtherCompose = (affineApplyDepth() <= kMaxAffineApplyDepth);
  // We fully spell out the 2 cases below. In this particular instance a little
  // code duplication greatly improves readability.
  // Note that the first branch would disappear if we only supported full
  // composition (i.e. infinite kMaxAffineApplyDepth).
  if (!furtherCompose) {
    // 1. Only dispatch dims or symbols.
    for (auto en : llvm::enumerate(operands)) {
      auto t = en.value();
      assert(t->getType().isIndex());
      bool isDim = (en.index() < map.getNumDims());
      if (isDim) {
        // a. The mathematical composition of AffineMap composes dims.
        auxiliaryExprs.push_back(renumberOneDim(t));
      } else {
        // b. The mathematical composition of AffineMap concatenates symbols.
        //    We do the same for symbol operands.
        concatenatedSymbols.push_back(t);
      }
    }
  } else {
    assert(numDimsBeforeRewrite <= operands.size());
    // 2. Compose AffineApplyOps and dispatch dims or symbols.
    for (unsigned i = 0, e = operands.size(); i < e; ++i) {
      auto t = operands[i];
      auto affineApply = dyn_cast_or_null<AffineApplyOp>(t->getDefiningOp());
      if (affineApply) {
        // a. Compose affine.apply operations.
        LLVM_DEBUG(affineApply.getOperation()->print(
            dbgs() << "\nCompose AffineApplyOp recursively: "));
        AffineMap affineApplyMap = affineApply.getAffineMap();
        SmallVector<ValuePtr, 8> affineApplyOperands(
            affineApply.getOperands().begin(), affineApply.getOperands().end());
        AffineApplyNormalizer normalizer(affineApplyMap, affineApplyOperands);

        LLVM_DEBUG(normalizer.affineMap.print(
            dbgs() << "\nRenumber into current normalizer: "));

        auto renumberedMap = renumber(normalizer);

        LLVM_DEBUG(
            renumberedMap.print(dbgs() << "\nRecursive composition yields: "));

        auxiliaryExprs.push_back(renumberedMap.getResult(0));
      } else {
        if (i < numDimsBeforeRewrite) {
          // b. The mathematical composition of AffineMap composes dims.
          auxiliaryExprs.push_back(renumberOneDim(t));
        } else {
          // c. The mathematical composition of AffineMap concatenates symbols.
          //    We do the same for symbol operands.
          concatenatedSymbols.push_back(t);
        }
      }
    }
  }

  // Early exit if `map` is already composed.
  if (auxiliaryExprs.empty()) {
    affineMap = map;
    return;
  }

  assert(concatenatedSymbols.size() >= map.getNumSymbols() &&
         "Unexpected number of concatenated symbols");
  auto numDims = dimValueToPosition.size();
  auto numSymbols = concatenatedSymbols.size() - map.getNumSymbols();
  auto auxiliaryMap = AffineMap::get(numDims, numSymbols, auxiliaryExprs);

  LLVM_DEBUG(map.print(dbgs() << "\nCompose map: "));
  LLVM_DEBUG(auxiliaryMap.print(dbgs() << "\nWith map: "));
  LLVM_DEBUG(map.compose(auxiliaryMap).print(dbgs() << "\nResult: "));

  // TODO(andydavis,ntv): Disabling simplification results in major speed gains.
  // Another option is to cache the results as it is expected a lot of redundant
  // work is performed in practice.
  affineMap = simplifyAffineMap(map.compose(auxiliaryMap));

  LLVM_DEBUG(affineMap.print(dbgs() << "\nSimplified result: "));
  LLVM_DEBUG(dbgs() << "\n");
}

void AffineApplyNormalizer::normalize(
    AffineMap *otherMap, SmallVectorImpl<ValuePtr> *otherOperands) {
  AffineApplyNormalizer other(*otherMap, *otherOperands);
  *otherMap = renumber(other);

  otherOperands->reserve(reorderedDims.size() + concatenatedSymbols.size());
  otherOperands->assign(reorderedDims.begin(), reorderedDims.end());
  otherOperands->append(concatenatedSymbols.begin(), concatenatedSymbols.end());
}

/// Implements `map` and `operands` composition and simplification to support
/// `makeComposedAffineApply`. This can be called to achieve the same effects
/// on `map` and `operands` without creating an AffineApplyOp that needs to be
/// immediately deleted.
static void composeAffineMapAndOperands(AffineMap *map,
                                        SmallVectorImpl<ValuePtr> *operands) {
  AffineApplyNormalizer normalizer(*map, *operands);
  auto normalizedMap = normalizer.getAffineMap();
  auto normalizedOperands = normalizer.getOperands();
  canonicalizeMapAndOperands(&normalizedMap, &normalizedOperands);
  *map = normalizedMap;
  *operands = normalizedOperands;
  assert(*map);
}

void mlir::fullyComposeAffineMapAndOperands(
    AffineMap *map, SmallVectorImpl<ValuePtr> *operands) {
  while (llvm::any_of(*operands, [](ValuePtr v) {
    return isa_and_nonnull<AffineApplyOp>(v->getDefiningOp());
  })) {
    composeAffineMapAndOperands(map, operands);
  }
}

AffineApplyOp mlir::makeComposedAffineApply(OpBuilder &b, Location loc,
                                            AffineMap map,
                                            ArrayRef<ValuePtr> operands) {
  AffineMap normalizedMap = map;
  SmallVector<ValuePtr, 8> normalizedOperands(operands.begin(), operands.end());
  composeAffineMapAndOperands(&normalizedMap, &normalizedOperands);
  assert(normalizedMap);
  return b.create<AffineApplyOp>(loc, normalizedMap, normalizedOperands);
}

// A symbol may appear as a dim in affine.apply operations. This function
// canonicalizes dims that are valid symbols into actual symbols.
template <class MapOrSet>
static void canonicalizePromotedSymbols(MapOrSet *mapOrSet,
                                        SmallVectorImpl<ValuePtr> *operands) {
  if (!mapOrSet || operands->empty())
    return;

  assert(mapOrSet->getNumInputs() == operands->size() &&
         "map/set inputs must match number of operands");

  auto *context = mapOrSet->getContext();
  SmallVector<ValuePtr, 8> resultOperands;
  resultOperands.reserve(operands->size());
  SmallVector<ValuePtr, 8> remappedSymbols;
  remappedSymbols.reserve(operands->size());
  unsigned nextDim = 0;
  unsigned nextSym = 0;
  unsigned oldNumSyms = mapOrSet->getNumSymbols();
  SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims());
  for (unsigned i = 0, e = mapOrSet->getNumInputs(); i != e; ++i) {
    if (i < mapOrSet->getNumDims()) {
      if (isValidSymbol((*operands)[i])) {
        // This is a valid symbol that appears as a dim, canonicalize it.
        dimRemapping[i] = getAffineSymbolExpr(oldNumSyms + nextSym++, context);
        remappedSymbols.push_back((*operands)[i]);
      } else {
        dimRemapping[i] = getAffineDimExpr(nextDim++, context);
        resultOperands.push_back((*operands)[i]);
      }
    } else {
      resultOperands.push_back((*operands)[i]);
    }
  }

  resultOperands.append(remappedSymbols.begin(), remappedSymbols.end());
  *operands = resultOperands;
  *mapOrSet = mapOrSet->replaceDimsAndSymbols(dimRemapping, {}, nextDim,
                                              oldNumSyms + nextSym);

  assert(mapOrSet->getNumInputs() == operands->size() &&
         "map/set inputs must match number of operands");
}

// Works for either an affine map or an integer set.
template <class MapOrSet>
static void
canonicalizeMapOrSetAndOperands(MapOrSet *mapOrSet,
                                SmallVectorImpl<ValuePtr> *operands) {
  static_assert(std::is_same<MapOrSet, AffineMap>::value ||
                    std::is_same<MapOrSet, IntegerSet>::value,
                "Argument must be either of AffineMap or IntegerSet type");

  if (!mapOrSet || operands->empty())
    return;

  assert(mapOrSet->getNumInputs() == operands->size() &&
         "map/set inputs must match number of operands");

  canonicalizePromotedSymbols<MapOrSet>(mapOrSet, operands);

  // Check to see what dims are used.
  llvm::SmallBitVector usedDims(mapOrSet->getNumDims());
  llvm::SmallBitVector usedSyms(mapOrSet->getNumSymbols());
  mapOrSet->walkExprs([&](AffineExpr expr) {
    if (auto dimExpr = expr.dyn_cast<AffineDimExpr>())
      usedDims[dimExpr.getPosition()] = true;
    else if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>())
      usedSyms[symExpr.getPosition()] = true;
  });

  auto *context = mapOrSet->getContext();

  SmallVector<ValuePtr, 8> resultOperands;
  resultOperands.reserve(operands->size());

  llvm::SmallDenseMap<ValuePtr, AffineExpr, 8> seenDims;
  SmallVector<AffineExpr, 8> dimRemapping(mapOrSet->getNumDims());
  unsigned nextDim = 0;
  for (unsigned i = 0, e = mapOrSet->getNumDims(); i != e; ++i) {
    if (usedDims[i]) {
      // Remap dim positions for duplicate operands.
      auto it = seenDims.find((*operands)[i]);
      if (it == seenDims.end()) {
        dimRemapping[i] = getAffineDimExpr(nextDim++, context);
        resultOperands.push_back((*operands)[i]);
        seenDims.insert(std::make_pair((*operands)[i], dimRemapping[i]));
      } else {
        dimRemapping[i] = it->second;
      }
    }
  }
  llvm::SmallDenseMap<ValuePtr, AffineExpr, 8> seenSymbols;
  SmallVector<AffineExpr, 8> symRemapping(mapOrSet->getNumSymbols());
  unsigned nextSym = 0;
  for (unsigned i = 0, e = mapOrSet->getNumSymbols(); i != e; ++i) {
    if (!usedSyms[i])
      continue;
    // Handle constant operands (only needed for symbolic operands since
    // constant operands in dimensional positions would have already been
    // promoted to symbolic positions above).
    IntegerAttr operandCst;
    if (matchPattern((*operands)[i + mapOrSet->getNumDims()],
                     m_Constant(&operandCst))) {
      symRemapping[i] =
          getAffineConstantExpr(operandCst.getValue().getSExtValue(), context);
      continue;
    }
    // Remap symbol positions for duplicate operands.
    auto it = seenSymbols.find((*operands)[i + mapOrSet->getNumDims()]);
    if (it == seenSymbols.end()) {
      symRemapping[i] = getAffineSymbolExpr(nextSym++, context);
      resultOperands.push_back((*operands)[i + mapOrSet->getNumDims()]);
      seenSymbols.insert(std::make_pair((*operands)[i + mapOrSet->getNumDims()],
                                        symRemapping[i]));
    } else {
      symRemapping[i] = it->second;
    }
  }
  *mapOrSet = mapOrSet->replaceDimsAndSymbols(dimRemapping, symRemapping,
                                              nextDim, nextSym);
  *operands = resultOperands;
}

void mlir::canonicalizeMapAndOperands(AffineMap *map,
                                      SmallVectorImpl<ValuePtr> *operands) {
  canonicalizeMapOrSetAndOperands<AffineMap>(map, operands);
}

void mlir::canonicalizeSetAndOperands(IntegerSet *set,
                                      SmallVectorImpl<ValuePtr> *operands) {
  canonicalizeMapOrSetAndOperands<IntegerSet>(set, operands);
}

namespace {
/// Simplify AffineApply, AffineLoad, and AffineStore operations by composing
/// maps that supply results into them.
///
template <typename AffineOpTy>
struct SimplifyAffineOp : public OpRewritePattern<AffineOpTy> {
  using OpRewritePattern<AffineOpTy>::OpRewritePattern;

  /// Replace the affine op with another instance of it with the supplied
  /// map and mapOperands.
  void replaceAffineOp(PatternRewriter &rewriter, AffineOpTy affineOp,
                       AffineMap map, ArrayRef<ValuePtr> mapOperands) const;

  PatternMatchResult matchAndRewrite(AffineOpTy affineOp,
                                     PatternRewriter &rewriter) const override {
    static_assert(std::is_same<AffineOpTy, AffineLoadOp>::value ||
                      std::is_same<AffineOpTy, AffinePrefetchOp>::value ||
                      std::is_same<AffineOpTy, AffineStoreOp>::value ||
                      std::is_same<AffineOpTy, AffineApplyOp>::value,
                  "affine load/store/apply op expected");
    auto map = affineOp.getAffineMap();
    AffineMap oldMap = map;
    auto oldOperands = affineOp.getMapOperands();
    SmallVector<ValuePtr, 8> resultOperands(oldOperands);
    composeAffineMapAndOperands(&map, &resultOperands);
    if (map == oldMap && std::equal(oldOperands.begin(), oldOperands.end(),
                                    resultOperands.begin()))
      return this->matchFailure();

    replaceAffineOp(rewriter, affineOp, map, resultOperands);
    return this->matchSuccess();
  }
};

// Specialize the template to account for the different build signatures for
// affine load, store, and apply ops.
template <>
void SimplifyAffineOp<AffineLoadOp>::replaceAffineOp(
    PatternRewriter &rewriter, AffineLoadOp load, AffineMap map,
    ArrayRef<ValuePtr> mapOperands) const {
  rewriter.replaceOpWithNewOp<AffineLoadOp>(load, load.getMemRef(), map,
                                            mapOperands);
}
template <>
void SimplifyAffineOp<AffinePrefetchOp>::replaceAffineOp(
    PatternRewriter &rewriter, AffinePrefetchOp prefetch, AffineMap map,
    ArrayRef<ValuePtr> mapOperands) const {
  rewriter.replaceOpWithNewOp<AffinePrefetchOp>(
      prefetch, prefetch.memref(), map, mapOperands,
      prefetch.localityHint().getZExtValue(), prefetch.isWrite(),
      prefetch.isDataCache());
}
template <>
void SimplifyAffineOp<AffineStoreOp>::replaceAffineOp(
    PatternRewriter &rewriter, AffineStoreOp store, AffineMap map,
    ArrayRef<ValuePtr> mapOperands) const {
  rewriter.replaceOpWithNewOp<AffineStoreOp>(
      store, store.getValueToStore(), store.getMemRef(), map, mapOperands);
}
template <>
void SimplifyAffineOp<AffineApplyOp>::replaceAffineOp(
    PatternRewriter &rewriter, AffineApplyOp apply, AffineMap map,
    ArrayRef<ValuePtr> mapOperands) const {
  rewriter.replaceOpWithNewOp<AffineApplyOp>(apply, map, mapOperands);
}
} // end anonymous namespace.

void AffineApplyOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<SimplifyAffineOp<AffineApplyOp>>(context);
}

//===----------------------------------------------------------------------===//
// Common canonicalization pattern support logic
//===----------------------------------------------------------------------===//

/// This is a common class used for patterns of the form
/// "someop(memrefcast) -> someop".  It folds the source of any memref_cast
/// into the root operation directly.
static LogicalResult foldMemRefCast(Operation *op) {
  bool folded = false;
  for (OpOperand &operand : op->getOpOperands()) {
    auto cast = dyn_cast_or_null<MemRefCastOp>(operand.get()->getDefiningOp());
    if (cast && !cast.getOperand()->getType().isa<UnrankedMemRefType>()) {
      operand.set(cast.getOperand());
      folded = true;
    }
  }
  return success(folded);
}

//===----------------------------------------------------------------------===//
// AffineDmaStartOp
//===----------------------------------------------------------------------===//

// TODO(b/133776335) Check that map operands are loop IVs or symbols.
void AffineDmaStartOp::build(Builder *builder, OperationState &result,
                             ValuePtr srcMemRef, AffineMap srcMap,
                             ValueRange srcIndices, ValuePtr destMemRef,
                             AffineMap dstMap, ValueRange destIndices,
                             ValuePtr tagMemRef, AffineMap tagMap,
                             ValueRange tagIndices, ValuePtr numElements,
                             ValuePtr stride, ValuePtr elementsPerStride) {
  result.addOperands(srcMemRef);
  result.addAttribute(getSrcMapAttrName(), AffineMapAttr::get(srcMap));
  result.addOperands(srcIndices);
  result.addOperands(destMemRef);
  result.addAttribute(getDstMapAttrName(), AffineMapAttr::get(dstMap));
  result.addOperands(destIndices);
  result.addOperands(tagMemRef);
  result.addAttribute(getTagMapAttrName(), AffineMapAttr::get(tagMap));
  result.addOperands(tagIndices);
  result.addOperands(numElements);
  if (stride) {
    result.addOperands({stride, elementsPerStride});
  }
}

void AffineDmaStartOp::print(OpAsmPrinter &p) {
  p << "affine.dma_start " << *getSrcMemRef() << '[';
  p.printAffineMapOfSSAIds(getSrcMapAttr(), getSrcIndices());
  p << "], " << *getDstMemRef() << '[';
  p.printAffineMapOfSSAIds(getDstMapAttr(), getDstIndices());
  p << "], " << *getTagMemRef() << '[';
  p.printAffineMapOfSSAIds(getTagMapAttr(), getTagIndices());
  p << "], " << *getNumElements();
  if (isStrided()) {
    p << ", " << *getStride();
    p << ", " << *getNumElementsPerStride();
  }
  p << " : " << getSrcMemRefType() << ", " << getDstMemRefType() << ", "
    << getTagMemRefType();
}

// Parse AffineDmaStartOp.
// Ex:
//   affine.dma_start %src[%i, %j], %dst[%k, %l], %tag[%index], %size,
//     %stride, %num_elt_per_stride
//       : memref<3076 x f32, 0>, memref<1024 x f32, 2>, memref<1 x i32>
//
ParseResult AffineDmaStartOp::parse(OpAsmParser &parser,
                                    OperationState &result) {
  OpAsmParser::OperandType srcMemRefInfo;
  AffineMapAttr srcMapAttr;
  SmallVector<OpAsmParser::OperandType, 4> srcMapOperands;
  OpAsmParser::OperandType dstMemRefInfo;
  AffineMapAttr dstMapAttr;
  SmallVector<OpAsmParser::OperandType, 4> dstMapOperands;
  OpAsmParser::OperandType tagMemRefInfo;
  AffineMapAttr tagMapAttr;
  SmallVector<OpAsmParser::OperandType, 4> tagMapOperands;
  OpAsmParser::OperandType numElementsInfo;
  SmallVector<OpAsmParser::OperandType, 2> strideInfo;

  SmallVector<Type, 3> types;
  auto indexType = parser.getBuilder().getIndexType();

  // Parse and resolve the following list of operands:
  // *) dst memref followed by its affine maps operands (in square brackets).
  // *) src memref followed by its affine map operands (in square brackets).
  // *) tag memref followed by its affine map operands (in square brackets).
  // *) number of elements transferred by DMA operation.
  if (parser.parseOperand(srcMemRefInfo) ||
      parser.parseAffineMapOfSSAIds(srcMapOperands, srcMapAttr,
                                    getSrcMapAttrName(), result.attributes) ||
      parser.parseComma() || parser.parseOperand(dstMemRefInfo) ||
      parser.parseAffineMapOfSSAIds(dstMapOperands, dstMapAttr,
                                    getDstMapAttrName(), result.attributes) ||
      parser.parseComma() || parser.parseOperand(tagMemRefInfo) ||
      parser.parseAffineMapOfSSAIds(tagMapOperands, tagMapAttr,
                                    getTagMapAttrName(), result.attributes) ||
      parser.parseComma() || parser.parseOperand(numElementsInfo))
    return failure();

  // Parse optional stride and elements per stride.
  if (parser.parseTrailingOperandList(strideInfo)) {
    return failure();
  }
  if (!strideInfo.empty() && strideInfo.size() != 2) {
    return parser.emitError(parser.getNameLoc(),
                            "expected two stride related operands");
  }
  bool isStrided = strideInfo.size() == 2;

  if (parser.parseColonTypeList(types))
    return failure();

  if (types.size() != 3)
    return parser.emitError(parser.getNameLoc(), "expected three types");

  if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) ||
      parser.resolveOperands(srcMapOperands, indexType, result.operands) ||
      parser.resolveOperand(dstMemRefInfo, types[1], result.operands) ||
      parser.resolveOperands(dstMapOperands, indexType, result.operands) ||
      parser.resolveOperand(tagMemRefInfo, types[2], result.operands) ||
      parser.resolveOperands(tagMapOperands, indexType, result.operands) ||
      parser.resolveOperand(numElementsInfo, indexType, result.operands))
    return failure();

  if (isStrided) {
    if (parser.resolveOperands(strideInfo, indexType, result.operands))
      return failure();
  }

  // Check that src/dst/tag operand counts match their map.numInputs.
  if (srcMapOperands.size() != srcMapAttr.getValue().getNumInputs() ||
      dstMapOperands.size() != dstMapAttr.getValue().getNumInputs() ||
      tagMapOperands.size() != tagMapAttr.getValue().getNumInputs())
    return parser.emitError(parser.getNameLoc(),
                            "memref operand count not equal to map.numInputs");
  return success();
}

LogicalResult AffineDmaStartOp::verify() {
  if (!getOperand(getSrcMemRefOperandIndex())->getType().isa<MemRefType>())
    return emitOpError("expected DMA source to be of memref type");
  if (!getOperand(getDstMemRefOperandIndex())->getType().isa<MemRefType>())
    return emitOpError("expected DMA destination to be of memref type");
  if (!getOperand(getTagMemRefOperandIndex())->getType().isa<MemRefType>())
    return emitOpError("expected DMA tag to be of memref type");

  // DMAs from different memory spaces supported.
  if (getSrcMemorySpace() == getDstMemorySpace()) {
    return emitOpError("DMA should be between different memory spaces");
  }
  unsigned numInputsAllMaps = getSrcMap().getNumInputs() +
                              getDstMap().getNumInputs() +
                              getTagMap().getNumInputs();
  if (getNumOperands() != numInputsAllMaps + 3 + 1 &&
      getNumOperands() != numInputsAllMaps + 3 + 1 + 2) {
    return emitOpError("incorrect number of operands");
  }

  for (auto idx : getSrcIndices()) {
    if (!idx->getType().isIndex())
      return emitOpError("src index to dma_start must have 'index' type");
    if (!isValidAffineIndexOperand(idx))
      return emitOpError("src index must be a dimension or symbol identifier");
  }
  for (auto idx : getDstIndices()) {
    if (!idx->getType().isIndex())
      return emitOpError("dst index to dma_start must have 'index' type");
    if (!isValidAffineIndexOperand(idx))
      return emitOpError("dst index must be a dimension or symbol identifier");
  }
  for (auto idx : getTagIndices()) {
    if (!idx->getType().isIndex())
      return emitOpError("tag index to dma_start must have 'index' type");
    if (!isValidAffineIndexOperand(idx))
      return emitOpError("tag index must be a dimension or symbol identifier");
  }
  return success();
}

LogicalResult AffineDmaStartOp::fold(ArrayRef<Attribute> cstOperands,
                                     SmallVectorImpl<OpFoldResult> &results) {
  /// dma_start(memrefcast) -> dma_start
  return foldMemRefCast(*this);
}

//===----------------------------------------------------------------------===//
// AffineDmaWaitOp
//===----------------------------------------------------------------------===//

// TODO(b/133776335) Check that map operands are loop IVs or symbols.
void AffineDmaWaitOp::build(Builder *builder, OperationState &result,
                            ValuePtr tagMemRef, AffineMap tagMap,
                            ValueRange tagIndices, ValuePtr numElements) {
  result.addOperands(tagMemRef);
  result.addAttribute(getTagMapAttrName(), AffineMapAttr::get(tagMap));
  result.addOperands(tagIndices);
  result.addOperands(numElements);
}

void AffineDmaWaitOp::print(OpAsmPrinter &p) {
  p << "affine.dma_wait " << *getTagMemRef() << '[';
  SmallVector<ValuePtr, 2> operands(getTagIndices());
  p.printAffineMapOfSSAIds(getTagMapAttr(), operands);
  p << "], ";
  p.printOperand(getNumElements());
  p << " : " << getTagMemRef()->getType();
}

// Parse AffineDmaWaitOp.
// Eg:
//   affine.dma_wait %tag[%index], %num_elements
//     : memref<1 x i32, (d0) -> (d0), 4>
//
ParseResult AffineDmaWaitOp::parse(OpAsmParser &parser,
                                   OperationState &result) {
  OpAsmParser::OperandType tagMemRefInfo;
  AffineMapAttr tagMapAttr;
  SmallVector<OpAsmParser::OperandType, 2> tagMapOperands;
  Type type;
  auto indexType = parser.getBuilder().getIndexType();
  OpAsmParser::OperandType numElementsInfo;

  // Parse tag memref, its map operands, and dma size.
  if (parser.parseOperand(tagMemRefInfo) ||
      parser.parseAffineMapOfSSAIds(tagMapOperands, tagMapAttr,
                                    getTagMapAttrName(), result.attributes) ||
      parser.parseComma() || parser.parseOperand(numElementsInfo) ||
      parser.parseColonType(type) ||
      parser.resolveOperand(tagMemRefInfo, type, result.operands) ||
      parser.resolveOperands(tagMapOperands, indexType, result.operands) ||
      parser.resolveOperand(numElementsInfo, indexType, result.operands))
    return failure();

  if (!type.isa<MemRefType>())
    return parser.emitError(parser.getNameLoc(),
                            "expected tag to be of memref type");

  if (tagMapOperands.size() != tagMapAttr.getValue().getNumInputs())
    return parser.emitError(parser.getNameLoc(),
                            "tag memref operand count != to map.numInputs");
  return success();
}

LogicalResult AffineDmaWaitOp::verify() {
  if (!getOperand(0)->getType().isa<MemRefType>())
    return emitOpError("expected DMA tag to be of memref type");
  for (auto idx : getTagIndices()) {
    if (!idx->getType().isIndex())
      return emitOpError("index to dma_wait must have 'index' type");
    if (!isValidAffineIndexOperand(idx))
      return emitOpError("index must be a dimension or symbol identifier");
  }
  return success();
}

LogicalResult AffineDmaWaitOp::fold(ArrayRef<Attribute> cstOperands,
                                    SmallVectorImpl<OpFoldResult> &results) {
  /// dma_wait(memrefcast) -> dma_wait
  return foldMemRefCast(*this);
}

//===----------------------------------------------------------------------===//
// AffineForOp
//===----------------------------------------------------------------------===//

void AffineForOp::build(Builder *builder, OperationState &result,
                        ValueRange lbOperands, AffineMap lbMap,
                        ValueRange ubOperands, AffineMap ubMap, int64_t step) {
  assert(((!lbMap && lbOperands.empty()) ||
          lbOperands.size() == lbMap.getNumInputs()) &&
         "lower bound operand count does not match the affine map");
  assert(((!ubMap && ubOperands.empty()) ||
          ubOperands.size() == ubMap.getNumInputs()) &&
         "upper bound operand count does not match the affine map");
  assert(step > 0 && "step has to be a positive integer constant");

  // Add an attribute for the step.
  result.addAttribute(getStepAttrName(),
                      builder->getIntegerAttr(builder->getIndexType(), step));

  // Add the lower bound.
  result.addAttribute(getLowerBoundAttrName(), AffineMapAttr::get(lbMap));
  result.addOperands(lbOperands);

  // Add the upper bound.
  result.addAttribute(getUpperBoundAttrName(), AffineMapAttr::get(ubMap));
  result.addOperands(ubOperands);

  // Create a region and a block for the body.  The argument of the region is
  // the loop induction variable.
  Region *bodyRegion = result.addRegion();
  Block *body = new Block();
  body->addArgument(IndexType::get(builder->getContext()));
  bodyRegion->push_back(body);
  ensureTerminator(*bodyRegion, *builder, result.location);

  // Set the operands list as resizable so that we can freely modify the bounds.
  result.setOperandListToResizable();
}

void AffineForOp::build(Builder *builder, OperationState &result, int64_t lb,
                        int64_t ub, int64_t step) {
  auto lbMap = AffineMap::getConstantMap(lb, builder->getContext());
  auto ubMap = AffineMap::getConstantMap(ub, builder->getContext());
  return build(builder, result, {}, lbMap, {}, ubMap, step);
}

static LogicalResult verify(AffineForOp op) {
  // Check that the body defines as single block argument for the induction
  // variable.
  auto *body = op.getBody();
  if (body->getNumArguments() != 1 ||
      !body->getArgument(0)->getType().isIndex())
    return op.emitOpError(
        "expected body to have a single index argument for the "
        "induction variable");

  // Verify that there are enough operands for the bounds.
  AffineMap lowerBoundMap = op.getLowerBoundMap(),
            upperBoundMap = op.getUpperBoundMap();
  if (op.getNumOperands() !=
      (lowerBoundMap.getNumInputs() + upperBoundMap.getNumInputs()))
    return op.emitOpError(
        "operand count must match with affine map dimension and symbol count");

  // Verify that the bound operands are valid dimension/symbols.
  /// Lower bound.
  if (failed(verifyDimAndSymbolIdentifiers(op, op.getLowerBoundOperands(),
                                           op.getLowerBoundMap().getNumDims())))
    return failure();
  /// Upper bound.
  if (failed(verifyDimAndSymbolIdentifiers(op, op.getUpperBoundOperands(),
                                           op.getUpperBoundMap().getNumDims())))
    return failure();
  return success();
}

/// Parse a for operation loop bounds.
static ParseResult parseBound(bool isLower, OperationState &result,
                              OpAsmParser &p) {
  // 'min' / 'max' prefixes are generally syntactic sugar, but are required if
  // the map has multiple results.
  bool failedToParsedMinMax =
      failed(p.parseOptionalKeyword(isLower ? "max" : "min"));

  auto &builder = p.getBuilder();
  auto boundAttrName = isLower ? AffineForOp::getLowerBoundAttrName()
                               : AffineForOp::getUpperBoundAttrName();

  // Parse ssa-id as identity map.
  SmallVector<OpAsmParser::OperandType, 1> boundOpInfos;
  if (p.parseOperandList(boundOpInfos))
    return failure();

  if (!boundOpInfos.empty()) {
    // Check that only one operand was parsed.
    if (boundOpInfos.size() > 1)
      return p.emitError(p.getNameLoc(),
                         "expected only one loop bound operand");

    // TODO: improve error message when SSA value is not of index type.
    // Currently it is 'use of value ... expects different type than prior uses'
    if (p.resolveOperand(boundOpInfos.front(), builder.getIndexType(),
                         result.operands))
      return failure();

    // Create an identity map using symbol id. This representation is optimized
    // for storage. Analysis passes may expand it into a multi-dimensional map
    // if desired.
    AffineMap map = builder.getSymbolIdentityMap();
    result.addAttribute(boundAttrName, AffineMapAttr::get(map));
    return success();
  }

  // Get the attribute location.
  llvm::SMLoc attrLoc = p.getCurrentLocation();

  Attribute boundAttr;
  if (p.parseAttribute(boundAttr, builder.getIndexType(), boundAttrName,
                       result.attributes))
    return failure();

  // Parse full form - affine map followed by dim and symbol list.
  if (auto affineMapAttr = boundAttr.dyn_cast<AffineMapAttr>()) {
    unsigned currentNumOperands = result.operands.size();
    unsigned numDims;
    if (parseDimAndSymbolList(p, result.operands, numDims))
      return failure();

    auto map = affineMapAttr.getValue();
    if (map.getNumDims() != numDims)
      return p.emitError(
          p.getNameLoc(),
          "dim operand count and integer set dim count must match");

    unsigned numDimAndSymbolOperands =
        result.operands.size() - currentNumOperands;
    if (numDims + map.getNumSymbols() != numDimAndSymbolOperands)
      return p.emitError(
          p.getNameLoc(),
          "symbol operand count and integer set symbol count must match");

    // If the map has multiple results, make sure that we parsed the min/max
    // prefix.
    if (map.getNumResults() > 1 && failedToParsedMinMax) {
      if (isLower) {
        return p.emitError(attrLoc, "lower loop bound affine map with "
                                    "multiple results requires 'max' prefix");
      }
      return p.emitError(attrLoc, "upper loop bound affine map with multiple "
                                  "results requires 'min' prefix");
    }
    return success();
  }

  // Parse custom assembly form.
  if (auto integerAttr = boundAttr.dyn_cast<IntegerAttr>()) {
    result.attributes.pop_back();
    result.addAttribute(
        boundAttrName,
        AffineMapAttr::get(builder.getConstantAffineMap(integerAttr.getInt())));
    return success();
  }

  return p.emitError(
      p.getNameLoc(),
      "expected valid affine map representation for loop bounds");
}

static ParseResult parseAffineForOp(OpAsmParser &parser,
                                    OperationState &result) {
  auto &builder = parser.getBuilder();
  OpAsmParser::OperandType inductionVariable;
  // Parse the induction variable followed by '='.
  if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual())
    return failure();

  // Parse loop bounds.
  if (parseBound(/*isLower=*/true, result, parser) ||
      parser.parseKeyword("to", " between bounds") ||
      parseBound(/*isLower=*/false, result, parser))
    return failure();

  // Parse the optional loop step, we default to 1 if one is not present.
  if (parser.parseOptionalKeyword("step")) {
    result.addAttribute(
        AffineForOp::getStepAttrName(),
        builder.getIntegerAttr(builder.getIndexType(), /*value=*/1));
  } else {
    llvm::SMLoc stepLoc = parser.getCurrentLocation();
    IntegerAttr stepAttr;
    if (parser.parseAttribute(stepAttr, builder.getIndexType(),
                              AffineForOp::getStepAttrName().data(),
                              result.attributes))
      return failure();

    if (stepAttr.getValue().getSExtValue() < 0)
      return parser.emitError(
          stepLoc,
          "expected step to be representable as a positive signed integer");
  }

  // Parse the body region.
  Region *body = result.addRegion();
  if (parser.parseRegion(*body, inductionVariable, builder.getIndexType()))
    return failure();

  AffineForOp::ensureTerminator(*body, builder, result.location);

  // Parse the optional attribute list.
  if (parser.parseOptionalAttrDict(result.attributes))
    return failure();

  // Set the operands list as resizable so that we can freely modify the bounds.
  result.setOperandListToResizable();
  return success();
}

static void printBound(AffineMapAttr boundMap,
                       Operation::operand_range boundOperands,
                       const char *prefix, OpAsmPrinter &p) {
  AffineMap map = boundMap.getValue();

  // Check if this bound should be printed using custom assembly form.
  // The decision to restrict printing custom assembly form to trivial cases
  // comes from the will to roundtrip MLIR binary -> text -> binary in a
  // lossless way.
  // Therefore, custom assembly form parsing and printing is only supported for
  // zero-operand constant maps and single symbol operand identity maps.
  if (map.getNumResults() == 1) {
    AffineExpr expr = map.getResult(0);

    // Print constant bound.
    if (map.getNumDims() == 0 && map.getNumSymbols() == 0) {
      if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
        p << constExpr.getValue();
        return;
      }
    }

    // Print bound that consists of a single SSA symbol if the map is over a
    // single symbol.
    if (map.getNumDims() == 0 && map.getNumSymbols() == 1) {
      if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>()) {
        p.printOperand(*boundOperands.begin());
        return;
      }
    }
  } else {
    // Map has multiple results. Print 'min' or 'max' prefix.
    p << prefix << ' ';
  }

  // Print the map and its operands.
  p << boundMap;
  printDimAndSymbolList(boundOperands.begin(), boundOperands.end(),
                        map.getNumDims(), p);
}

static void print(OpAsmPrinter &p, AffineForOp op) {
  p << "affine.for ";
  p.printOperand(op.getBody()->getArgument(0));
  p << " = ";
  printBound(op.getLowerBoundMapAttr(), op.getLowerBoundOperands(), "max", p);
  p << " to ";
  printBound(op.getUpperBoundMapAttr(), op.getUpperBoundOperands(), "min", p);

  if (op.getStep() != 1)
    p << " step " << op.getStep();
  p.printRegion(op.region(),
                /*printEntryBlockArgs=*/false,
                /*printBlockTerminators=*/false);
  p.printOptionalAttrDict(op.getAttrs(),
                          /*elidedAttrs=*/{op.getLowerBoundAttrName(),
                                           op.getUpperBoundAttrName(),
                                           op.getStepAttrName()});
}

/// Fold the constant bounds of a loop.
static LogicalResult foldLoopBounds(AffineForOp forOp) {
  auto foldLowerOrUpperBound = [&forOp](bool lower) {
    // Check to see if each of the operands is the result of a constant.  If
    // so, get the value.  If not, ignore it.
    SmallVector<Attribute, 8> operandConstants;
    auto boundOperands =
        lower ? forOp.getLowerBoundOperands() : forOp.getUpperBoundOperands();
    for (auto operand : boundOperands) {
      Attribute operandCst;
      matchPattern(operand, m_Constant(&operandCst));
      operandConstants.push_back(operandCst);
    }

    AffineMap boundMap =
        lower ? forOp.getLowerBoundMap() : forOp.getUpperBoundMap();
    assert(boundMap.getNumResults() >= 1 &&
           "bound maps should have at least one result");
    SmallVector<Attribute, 4> foldedResults;
    if (failed(boundMap.constantFold(operandConstants, foldedResults)))
      return failure();

    // Compute the max or min as applicable over the results.
    assert(!foldedResults.empty() && "bounds should have at least one result");
    auto maxOrMin = foldedResults[0].cast<IntegerAttr>().getValue();
    for (unsigned i = 1, e = foldedResults.size(); i < e; i++) {
      auto foldedResult = foldedResults[i].cast<IntegerAttr>().getValue();
      maxOrMin = lower ? llvm::APIntOps::smax(maxOrMin, foldedResult)
                       : llvm::APIntOps::smin(maxOrMin, foldedResult);
    }
    lower ? forOp.setConstantLowerBound(maxOrMin.getSExtValue())
          : forOp.setConstantUpperBound(maxOrMin.getSExtValue());
    return success();
  };

  // Try to fold the lower bound.
  bool folded = false;
  if (!forOp.hasConstantLowerBound())
    folded |= succeeded(foldLowerOrUpperBound(/*lower=*/true));

  // Try to fold the upper bound.
  if (!forOp.hasConstantUpperBound())
    folded |= succeeded(foldLowerOrUpperBound(/*lower=*/false));
  return success(folded);
}

/// Canonicalize the bounds of the given loop.
static LogicalResult canonicalizeLoopBounds(AffineForOp forOp) {
  SmallVector<ValuePtr, 4> lbOperands(forOp.getLowerBoundOperands());
  SmallVector<ValuePtr, 4> ubOperands(forOp.getUpperBoundOperands());

  auto lbMap = forOp.getLowerBoundMap();
  auto ubMap = forOp.getUpperBoundMap();
  auto prevLbMap = lbMap;
  auto prevUbMap = ubMap;

  canonicalizeMapAndOperands(&lbMap, &lbOperands);
  canonicalizeMapAndOperands(&ubMap, &ubOperands);

  // Any canonicalization change always leads to updated map(s).
  if (lbMap == prevLbMap && ubMap == prevUbMap)
    return failure();

  if (lbMap != prevLbMap)
    forOp.setLowerBound(lbOperands, lbMap);
  if (ubMap != prevUbMap)
    forOp.setUpperBound(ubOperands, ubMap);
  return success();
}

namespace {
/// This is a pattern to fold trivially empty loops.
struct AffineForEmptyLoopFolder : public OpRewritePattern<AffineForOp> {
  using OpRewritePattern<AffineForOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(AffineForOp forOp,
                                     PatternRewriter &rewriter) const override {
    // Check that the body only contains a terminator.
    if (!has_single_element(*forOp.getBody()))
      return matchFailure();
    rewriter.eraseOp(forOp);
    return matchSuccess();
  }
};
} // end anonymous namespace

void AffineForOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                              MLIRContext *context) {
  results.insert<AffineForEmptyLoopFolder>(context);
}

LogicalResult AffineForOp::fold(ArrayRef<Attribute> operands,
                                SmallVectorImpl<OpFoldResult> &results) {
  bool folded = succeeded(foldLoopBounds(*this));
  folded |= succeeded(canonicalizeLoopBounds(*this));
  return success(folded);
}

AffineBound AffineForOp::getLowerBound() {
  auto lbMap = getLowerBoundMap();
  return AffineBound(AffineForOp(*this), 0, lbMap.getNumInputs(), lbMap);
}

AffineBound AffineForOp::getUpperBound() {
  auto lbMap = getLowerBoundMap();
  auto ubMap = getUpperBoundMap();
  return AffineBound(AffineForOp(*this), lbMap.getNumInputs(), getNumOperands(),
                     ubMap);
}

void AffineForOp::setLowerBound(ValueRange lbOperands, AffineMap map) {
  assert(lbOperands.size() == map.getNumInputs());
  assert(map.getNumResults() >= 1 && "bound map has at least one result");

  SmallVector<ValuePtr, 4> newOperands(lbOperands.begin(), lbOperands.end());

  auto ubOperands = getUpperBoundOperands();
  newOperands.append(ubOperands.begin(), ubOperands.end());
  getOperation()->setOperands(newOperands);

  setAttr(getLowerBoundAttrName(), AffineMapAttr::get(map));
}

void AffineForOp::setUpperBound(ValueRange ubOperands, AffineMap map) {
  assert(ubOperands.size() == map.getNumInputs());
  assert(map.getNumResults() >= 1 && "bound map has at least one result");

  SmallVector<ValuePtr, 4> newOperands(getLowerBoundOperands());
  newOperands.append(ubOperands.begin(), ubOperands.end());
  getOperation()->setOperands(newOperands);

  setAttr(getUpperBoundAttrName(), AffineMapAttr::get(map));
}

void AffineForOp::setLowerBoundMap(AffineMap map) {
  auto lbMap = getLowerBoundMap();
  assert(lbMap.getNumDims() == map.getNumDims() &&
         lbMap.getNumSymbols() == map.getNumSymbols());
  assert(map.getNumResults() >= 1 && "bound map has at least one result");
  (void)lbMap;
  setAttr(getLowerBoundAttrName(), AffineMapAttr::get(map));
}

void AffineForOp::setUpperBoundMap(AffineMap map) {
  auto ubMap = getUpperBoundMap();
  assert(ubMap.getNumDims() == map.getNumDims() &&
         ubMap.getNumSymbols() == map.getNumSymbols());
  assert(map.getNumResults() >= 1 && "bound map has at least one result");
  (void)ubMap;
  setAttr(getUpperBoundAttrName(), AffineMapAttr::get(map));
}

bool AffineForOp::hasConstantLowerBound() {
  return getLowerBoundMap().isSingleConstant();
}

bool AffineForOp::hasConstantUpperBound() {
  return getUpperBoundMap().isSingleConstant();
}

int64_t AffineForOp::getConstantLowerBound() {
  return getLowerBoundMap().getSingleConstantResult();
}

int64_t AffineForOp::getConstantUpperBound() {
  return getUpperBoundMap().getSingleConstantResult();
}

void AffineForOp::setConstantLowerBound(int64_t value) {
  setLowerBound({}, AffineMap::getConstantMap(value, getContext()));
}

void AffineForOp::setConstantUpperBound(int64_t value) {
  setUpperBound({}, AffineMap::getConstantMap(value, getContext()));
}

AffineForOp::operand_range AffineForOp::getLowerBoundOperands() {
  return {operand_begin(), operand_begin() + getLowerBoundMap().getNumInputs()};
}

AffineForOp::operand_range AffineForOp::getUpperBoundOperands() {
  return {operand_begin() + getLowerBoundMap().getNumInputs(), operand_end()};
}

bool AffineForOp::matchingBoundOperandList() {
  auto lbMap = getLowerBoundMap();
  auto ubMap = getUpperBoundMap();
  if (lbMap.getNumDims() != ubMap.getNumDims() ||
      lbMap.getNumSymbols() != ubMap.getNumSymbols())
    return false;

  unsigned numOperands = lbMap.getNumInputs();
  for (unsigned i = 0, e = lbMap.getNumInputs(); i < e; i++) {
    // Compare ValuePtr 's.
    if (getOperand(i) != getOperand(numOperands + i))
      return false;
  }
  return true;
}

Region &AffineForOp::getLoopBody() { return region(); }

bool AffineForOp::isDefinedOutsideOfLoop(ValuePtr value) {
  return !region().isAncestor(value->getParentRegion());
}

LogicalResult AffineForOp::moveOutOfLoop(ArrayRef<Operation *> ops) {
  for (auto *op : ops)
    op->moveBefore(*this);
  return success();
}

/// Returns if the provided value is the induction variable of a AffineForOp.
bool mlir::isForInductionVar(ValuePtr val) {
  return getForInductionVarOwner(val) != AffineForOp();
}

/// Returns the loop parent of an induction variable. If the provided value is
/// not an induction variable, then return nullptr.
AffineForOp mlir::getForInductionVarOwner(ValuePtr val) {
  auto ivArg = dyn_cast<BlockArgument>(val);
  if (!ivArg || !ivArg->getOwner())
    return AffineForOp();
  auto *containingInst = ivArg->getOwner()->getParent()->getParentOp();
  return dyn_cast<AffineForOp>(containingInst);
}

/// Extracts the induction variables from a list of AffineForOps and returns
/// them.
void mlir::extractForInductionVars(ArrayRef<AffineForOp> forInsts,
                                   SmallVectorImpl<ValuePtr> *ivs) {
  ivs->reserve(forInsts.size());
  for (auto forInst : forInsts)
    ivs->push_back(forInst.getInductionVar());
}

//===----------------------------------------------------------------------===//
// AffineIfOp
//===----------------------------------------------------------------------===//

static LogicalResult verify(AffineIfOp op) {
  // Verify that we have a condition attribute.
  auto conditionAttr =
      op.getAttrOfType<IntegerSetAttr>(op.getConditionAttrName());
  if (!conditionAttr)
    return op.emitOpError(
        "requires an integer set attribute named 'condition'");

  // Verify that there are enough operands for the condition.
  IntegerSet condition = conditionAttr.getValue();
  if (op.getNumOperands() != condition.getNumInputs())
    return op.emitOpError(
        "operand count and condition integer set dimension and "
        "symbol count must match");

  // Verify that the operands are valid dimension/symbols.
  if (failed(verifyDimAndSymbolIdentifiers(
          op, op.getOperation()->getNonSuccessorOperands(),
          condition.getNumDims())))
    return failure();

  // Verify that the entry of each child region does not have arguments.
  for (auto &region : op.getOperation()->getRegions()) {
    for (auto &b : region)
      if (b.getNumArguments() != 0)
        return op.emitOpError(
            "requires that child entry blocks have no arguments");
  }
  return success();
}

ParseResult parseAffineIfOp(OpAsmParser &parser, OperationState &result) {
  // Parse the condition attribute set.
  IntegerSetAttr conditionAttr;
  unsigned numDims;
  if (parser.parseAttribute(conditionAttr, AffineIfOp::getConditionAttrName(),
                            result.attributes) ||
      parseDimAndSymbolList(parser, result.operands, numDims))
    return failure();

  // Verify the condition operands.
  auto set = conditionAttr.getValue();
  if (set.getNumDims() != numDims)
    return parser.emitError(
        parser.getNameLoc(),
        "dim operand count and integer set dim count must match");
  if (numDims + set.getNumSymbols() != result.operands.size())
    return parser.emitError(
        parser.getNameLoc(),
        "symbol operand count and integer set symbol count must match");

  // Create the regions for 'then' and 'else'.  The latter must be created even
  // if it remains empty for the validity of the operation.
  result.regions.reserve(2);
  Region *thenRegion = result.addRegion();
  Region *elseRegion = result.addRegion();

  // Parse the 'then' region.
  if (parser.parseRegion(*thenRegion, {}, {}))
    return failure();
  AffineIfOp::ensureTerminator(*thenRegion, parser.getBuilder(),
                               result.location);

  // If we find an 'else' keyword then parse the 'else' region.
  if (!parser.parseOptionalKeyword("else")) {
    if (parser.parseRegion(*elseRegion, {}, {}))
      return failure();
    AffineIfOp::ensureTerminator(*elseRegion, parser.getBuilder(),
                                 result.location);
  }

  // Parse the optional attribute list.
  if (parser.parseOptionalAttrDict(result.attributes))
    return failure();

  return success();
}

void print(OpAsmPrinter &p, AffineIfOp op) {
  auto conditionAttr =
      op.getAttrOfType<IntegerSetAttr>(op.getConditionAttrName());
  p << "affine.if " << conditionAttr;
  printDimAndSymbolList(op.operand_begin(), op.operand_end(),
                        conditionAttr.getValue().getNumDims(), p);
  p.printRegion(op.thenRegion(),
                /*printEntryBlockArgs=*/false,
                /*printBlockTerminators=*/false);

  // Print the 'else' regions if it has any blocks.
  auto &elseRegion = op.elseRegion();
  if (!elseRegion.empty()) {
    p << " else";
    p.printRegion(elseRegion,
                  /*printEntryBlockArgs=*/false,
                  /*printBlockTerminators=*/false);
  }

  // Print the attribute list.
  p.printOptionalAttrDict(op.getAttrs(),
                          /*elidedAttrs=*/op.getConditionAttrName());
}

IntegerSet AffineIfOp::getIntegerSet() {
  return getAttrOfType<IntegerSetAttr>(getConditionAttrName()).getValue();
}
void AffineIfOp::setIntegerSet(IntegerSet newSet) {
  setAttr(getConditionAttrName(), IntegerSetAttr::get(newSet));
}

void AffineIfOp::setConditional(IntegerSet set, ValueRange operands) {
  setIntegerSet(set);
  getOperation()->setOperands(operands);
}

void AffineIfOp::build(Builder *builder, OperationState &result, IntegerSet set,
                       ValueRange args, bool withElseRegion) {
  result.addOperands(args);
  result.addAttribute(getConditionAttrName(), IntegerSetAttr::get(set));
  Region *thenRegion = result.addRegion();
  Region *elseRegion = result.addRegion();
  AffineIfOp::ensureTerminator(*thenRegion, *builder, result.location);
  if (withElseRegion)
    AffineIfOp::ensureTerminator(*elseRegion, *builder, result.location);
}

/// Canonicalize an affine if op's conditional (integer set + operands).
LogicalResult AffineIfOp::fold(ArrayRef<Attribute>,
                               SmallVectorImpl<OpFoldResult> &) {
  auto set = getIntegerSet();
  SmallVector<ValuePtr, 4> operands(getOperands());
  canonicalizeSetAndOperands(&set, &operands);

  // Any canonicalization change always leads to either a reduction in the
  // number of operands or a change in the number of symbolic operands
  // (promotion of dims to symbols).
  if (operands.size() < getIntegerSet().getNumInputs() ||
      set.getNumSymbols() > getIntegerSet().getNumSymbols()) {
    setConditional(set, operands);
    return success();
  }

  return failure();
}

//===----------------------------------------------------------------------===//
// AffineLoadOp
//===----------------------------------------------------------------------===//

void AffineLoadOp::build(Builder *builder, OperationState &result,
                         AffineMap map, ValueRange operands) {
  assert(operands.size() == 1 + map.getNumInputs() && "inconsistent operands");
  result.addOperands(operands);
  if (map)
    result.addAttribute(getMapAttrName(), AffineMapAttr::get(map));
  auto memrefType = operands[0]->getType().cast<MemRefType>();
  result.types.push_back(memrefType.getElementType());
}

void AffineLoadOp::build(Builder *builder, OperationState &result,
                         ValuePtr memref, AffineMap map,
                         ValueRange mapOperands) {
  assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info");
  result.addOperands(memref);
  result.addOperands(mapOperands);
  auto memrefType = memref->getType().cast<MemRefType>();
  result.addAttribute(getMapAttrName(), AffineMapAttr::get(map));
  result.types.push_back(memrefType.getElementType());
}

void AffineLoadOp::build(Builder *builder, OperationState &result,
                         ValuePtr memref, ValueRange indices) {
  auto memrefType = memref->getType().cast<MemRefType>();
  auto rank = memrefType.getRank();
  // Create identity map for memrefs with at least one dimension or () -> ()
  // for zero-dimensional memrefs.
  auto map = rank ? builder->getMultiDimIdentityMap(rank)
                  : builder->getEmptyAffineMap();
  build(builder, result, memref, map, indices);
}

ParseResult AffineLoadOp::parse(OpAsmParser &parser, OperationState &result) {
  auto &builder = parser.getBuilder();
  auto indexTy = builder.getIndexType();

  MemRefType type;
  OpAsmParser::OperandType memrefInfo;
  AffineMapAttr mapAttr;
  SmallVector<OpAsmParser::OperandType, 1> mapOperands;
  return failure(
      parser.parseOperand(memrefInfo) ||
      parser.parseAffineMapOfSSAIds(mapOperands, mapAttr, getMapAttrName(),
                                    result.attributes) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(type) ||
      parser.resolveOperand(memrefInfo, type, result.operands) ||
      parser.resolveOperands(mapOperands, indexTy, result.operands) ||
      parser.addTypeToList(type.getElementType(), result.types));
}

void AffineLoadOp::print(OpAsmPrinter &p) {
  p << "affine.load " << *getMemRef() << '[';
  if (AffineMapAttr mapAttr = getAttrOfType<AffineMapAttr>(getMapAttrName()))
    p.printAffineMapOfSSAIds(mapAttr, getMapOperands());
  p << ']';
  p.printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/{getMapAttrName()});
  p << " : " << getMemRefType();
}

LogicalResult AffineLoadOp::verify() {
  if (getType() != getMemRefType().getElementType())
    return emitOpError("result type must match element type of memref");

  auto mapAttr = getAttrOfType<AffineMapAttr>(getMapAttrName());
  if (mapAttr) {
    AffineMap map = getAttrOfType<AffineMapAttr>(getMapAttrName()).getValue();
    if (map.getNumResults() != getMemRefType().getRank())
      return emitOpError("affine.load affine map num results must equal"
                         " memref rank");
    if (map.getNumInputs() != getNumOperands() - 1)
      return emitOpError("expects as many subscripts as affine map inputs");
  } else {
    if (getMemRefType().getRank() != getNumOperands() - 1)
      return emitOpError(
          "expects the number of subscripts to be equal to memref rank");
  }

  for (auto idx : getMapOperands()) {
    if (!idx->getType().isIndex())
      return emitOpError("index to load must have 'index' type");
    if (!isValidAffineIndexOperand(idx))
      return emitOpError("index must be a dimension or symbol identifier");
  }
  return success();
}

void AffineLoadOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<SimplifyAffineOp<AffineLoadOp>>(context);
}

OpFoldResult AffineLoadOp::fold(ArrayRef<Attribute> cstOperands) {
  /// load(memrefcast) -> load
  if (succeeded(foldMemRefCast(*this)))
    return getResult();
  return OpFoldResult();
}

//===----------------------------------------------------------------------===//
// AffineStoreOp
//===----------------------------------------------------------------------===//

void AffineStoreOp::build(Builder *builder, OperationState &result,
                          ValuePtr valueToStore, ValuePtr memref, AffineMap map,
                          ValueRange mapOperands) {
  assert(map.getNumInputs() == mapOperands.size() && "inconsistent index info");
  result.addOperands(valueToStore);
  result.addOperands(memref);
  result.addOperands(mapOperands);
  result.addAttribute(getMapAttrName(), AffineMapAttr::get(map));
}

// Use identity map.
void AffineStoreOp::build(Builder *builder, OperationState &result,
                          ValuePtr valueToStore, ValuePtr memref,
                          ValueRange indices) {
  auto memrefType = memref->getType().cast<MemRefType>();
  auto rank = memrefType.getRank();
  // Create identity map for memrefs with at least one dimension or () -> ()
  // for zero-dimensional memrefs.
  auto map = rank ? builder->getMultiDimIdentityMap(rank)
                  : builder->getEmptyAffineMap();
  build(builder, result, valueToStore, memref, map, indices);
}

ParseResult AffineStoreOp::parse(OpAsmParser &parser, OperationState &result) {
  auto indexTy = parser.getBuilder().getIndexType();

  MemRefType type;
  OpAsmParser::OperandType storeValueInfo;
  OpAsmParser::OperandType memrefInfo;
  AffineMapAttr mapAttr;
  SmallVector<OpAsmParser::OperandType, 1> mapOperands;
  return failure(parser.parseOperand(storeValueInfo) || parser.parseComma() ||
                 parser.parseOperand(memrefInfo) ||
                 parser.parseAffineMapOfSSAIds(mapOperands, mapAttr,
                                               getMapAttrName(),
                                               result.attributes) ||
                 parser.parseOptionalAttrDict(result.attributes) ||
                 parser.parseColonType(type) ||
                 parser.resolveOperand(storeValueInfo, type.getElementType(),
                                       result.operands) ||
                 parser.resolveOperand(memrefInfo, type, result.operands) ||
                 parser.resolveOperands(mapOperands, indexTy, result.operands));
}

void AffineStoreOp::print(OpAsmPrinter &p) {
  p << "affine.store " << *getValueToStore();
  p << ", " << *getMemRef() << '[';
  if (AffineMapAttr mapAttr = getAttrOfType<AffineMapAttr>(getMapAttrName()))
    p.printAffineMapOfSSAIds(mapAttr, getMapOperands());
  p << ']';
  p.printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/{getMapAttrName()});
  p << " : " << getMemRefType();
}

LogicalResult AffineStoreOp::verify() {
  // First operand must have same type as memref element type.
  if (getValueToStore()->getType() != getMemRefType().getElementType())
    return emitOpError("first operand must have same type memref element type");

  auto mapAttr = getAttrOfType<AffineMapAttr>(getMapAttrName());
  if (mapAttr) {
    AffineMap map = mapAttr.getValue();
    if (map.getNumResults() != getMemRefType().getRank())
      return emitOpError("affine.store affine map num results must equal"
                         " memref rank");
    if (map.getNumInputs() != getNumOperands() - 2)
      return emitOpError("expects as many subscripts as affine map inputs");
  } else {
    if (getMemRefType().getRank() != getNumOperands() - 2)
      return emitOpError(
          "expects the number of subscripts to be equal to memref rank");
  }

  for (auto idx : getMapOperands()) {
    if (!idx->getType().isIndex())
      return emitOpError("index to store must have 'index' type");
    if (!isValidAffineIndexOperand(idx))
      return emitOpError("index must be a dimension or symbol identifier");
  }
  return success();
}

void AffineStoreOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<SimplifyAffineOp<AffineStoreOp>>(context);
}

LogicalResult AffineStoreOp::fold(ArrayRef<Attribute> cstOperands,
                                  SmallVectorImpl<OpFoldResult> &results) {
  /// store(memrefcast) -> store
  return foldMemRefCast(*this);
}

//===----------------------------------------------------------------------===//
// AffineMinOp
//===----------------------------------------------------------------------===//
//
//   %0 = affine.min (d0) -> (1000, d0 + 512) (%i0)
//

static ParseResult parseAffineMinOp(OpAsmParser &parser,
                                    OperationState &result) {
  auto &builder = parser.getBuilder();
  auto indexType = builder.getIndexType();
  SmallVector<OpAsmParser::OperandType, 8> dim_infos;
  SmallVector<OpAsmParser::OperandType, 8> sym_infos;
  AffineMapAttr mapAttr;
  return failure(
      parser.parseAttribute(mapAttr, AffineMinOp::getMapAttrName(),
                            result.attributes) ||
      parser.parseOperandList(dim_infos, OpAsmParser::Delimiter::Paren) ||
      parser.parseOperandList(sym_infos,
                              OpAsmParser::Delimiter::OptionalSquare) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.resolveOperands(dim_infos, indexType, result.operands) ||
      parser.resolveOperands(sym_infos, indexType, result.operands) ||
      parser.addTypeToList(indexType, result.types));
}

static void print(OpAsmPrinter &p, AffineMinOp op) {
  p << op.getOperationName() << ' '
    << op.getAttr(AffineMinOp::getMapAttrName());
  auto operands = op.getOperands();
  unsigned numDims = op.map().getNumDims();
  p << '(' << operands.take_front(numDims) << ')';

  if (operands.size() != numDims)
    p << '[' << operands.drop_front(numDims) << ']';
  p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"map"});
}

static LogicalResult verify(AffineMinOp op) {
  // Verify that operand count matches affine map dimension and symbol count.
  if (op.getNumOperands() != op.map().getNumDims() + op.map().getNumSymbols())
    return op.emitOpError(
        "operand count and affine map dimension and symbol count must match");
  return success();
}

OpFoldResult AffineMinOp::fold(ArrayRef<Attribute> operands) {
  // Fold the affine map.
  // TODO(andydavis, ntv) Fold more cases: partial static information,
  // min(some_affine, some_affine + constant, ...).
  SmallVector<Attribute, 2> results;
  if (failed(map().constantFold(operands, results)))
    return {};

  // Compute and return min of folded map results.
  int64_t min = std::numeric_limits<int64_t>::max();
  int minIndex = -1;
  for (unsigned i = 0, e = results.size(); i < e; ++i) {
    auto intAttr = results[i].cast<IntegerAttr>();
    if (intAttr.getInt() < min) {
      min = intAttr.getInt();
      minIndex = i;
    }
  }
  if (minIndex < 0)
    return {};
  return results[minIndex];
}

//===----------------------------------------------------------------------===//
// AffinePrefetchOp
//===----------------------------------------------------------------------===//

//
// affine.prefetch %0[%i, %j + 5], read, locality<3>, data : memref<400x400xi32>
//
static ParseResult parseAffinePrefetchOp(OpAsmParser &parser,
                                         OperationState &result) {
  auto &builder = parser.getBuilder();
  auto indexTy = builder.getIndexType();

  MemRefType type;
  OpAsmParser::OperandType memrefInfo;
  IntegerAttr hintInfo;
  auto i32Type = parser.getBuilder().getIntegerType(32);
  StringRef readOrWrite, cacheType;

  AffineMapAttr mapAttr;
  SmallVector<OpAsmParser::OperandType, 1> mapOperands;
  if (parser.parseOperand(memrefInfo) ||
      parser.parseAffineMapOfSSAIds(mapOperands, mapAttr,
                                    AffinePrefetchOp::getMapAttrName(),
                                    result.attributes) ||
      parser.parseComma() || parser.parseKeyword(&readOrWrite) ||
      parser.parseComma() || parser.parseKeyword("locality") ||
      parser.parseLess() ||
      parser.parseAttribute(hintInfo, i32Type,
                            AffinePrefetchOp::getLocalityHintAttrName(),
                            result.attributes) ||
      parser.parseGreater() || parser.parseComma() ||
      parser.parseKeyword(&cacheType) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(type) ||
      parser.resolveOperand(memrefInfo, type, result.operands) ||
      parser.resolveOperands(mapOperands, indexTy, result.operands))
    return failure();

  if (!readOrWrite.equals("read") && !readOrWrite.equals("write"))
    return parser.emitError(parser.getNameLoc(),
                            "rw specifier has to be 'read' or 'write'");
  result.addAttribute(
      AffinePrefetchOp::getIsWriteAttrName(),
      parser.getBuilder().getBoolAttr(readOrWrite.equals("write")));

  if (!cacheType.equals("data") && !cacheType.equals("instr"))
    return parser.emitError(parser.getNameLoc(),
                            "cache type has to be 'data' or 'instr'");

  result.addAttribute(
      AffinePrefetchOp::getIsDataCacheAttrName(),
      parser.getBuilder().getBoolAttr(cacheType.equals("data")));

  return success();
}

void print(OpAsmPrinter &p, AffinePrefetchOp op) {
  p << AffinePrefetchOp::getOperationName() << " " << *op.memref() << '[';
  AffineMapAttr mapAttr = op.getAttrOfType<AffineMapAttr>(op.getMapAttrName());
  if (mapAttr) {
    SmallVector<ValuePtr, 2> operands(op.getMapOperands());
    p.printAffineMapOfSSAIds(mapAttr, operands);
  }
  p << ']' << ", " << (op.isWrite() ? "write" : "read") << ", "
    << "locality<" << op.localityHint() << ">, "
    << (op.isDataCache() ? "data" : "instr");
  p.printOptionalAttrDict(
      op.getAttrs(),
      /*elidedAttrs=*/{op.getMapAttrName(), op.getLocalityHintAttrName(),
                       op.getIsDataCacheAttrName(), op.getIsWriteAttrName()});
  p << " : " << op.getMemRefType();
}

LogicalResult verify(AffinePrefetchOp op) {
  auto mapAttr = op.getAttrOfType<AffineMapAttr>(op.getMapAttrName());
  if (mapAttr) {
    AffineMap map = mapAttr.getValue();
    if (map.getNumResults() != op.getMemRefType().getRank())
      return op.emitOpError("affine.prefetch affine map num results must equal"
                            " memref rank");
    if (map.getNumInputs() + 1 != op.getNumOperands())
      return op.emitOpError("too few operands");
  } else {
    if (op.getNumOperands() != 1)
      return op.emitOpError("too few operands");
  }

  for (auto idx : op.getMapOperands()) {
    if (!isValidAffineIndexOperand(idx))
      return op.emitOpError("index must be a dimension or symbol identifier");
  }
  return success();
}

void AffinePrefetchOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  // prefetch(memrefcast) -> prefetch
  results.insert<SimplifyAffineOp<AffinePrefetchOp>>(context);
}

LogicalResult AffinePrefetchOp::fold(ArrayRef<Attribute> cstOperands,
                                     SmallVectorImpl<OpFoldResult> &results) {
  /// prefetch(memrefcast) -> prefetch
  return foldMemRefCast(*this);
}

//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//

#define GET_OP_CLASSES
#include "mlir/Dialect/AffineOps/AffineOps.cpp.inc"