summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Bufferization/Transforms/BufferUtils.cpp
blob: f8231cac778af6c81f2ca3692a323a01020429d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//===- BufferUtils.cpp - buffer transformation utilities ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for buffer optimization passes.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Bufferization/Transforms/BufferUtils.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/IR/Operation.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/LoopLikeInterface.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallString.h"
#include <optional>

using namespace mlir;
using namespace mlir::bufferization;

//===----------------------------------------------------------------------===//
// BufferPlacementAllocs
//===----------------------------------------------------------------------===//

/// Get the start operation to place the given alloc value withing the
// specified placement block.
Operation *BufferPlacementAllocs::getStartOperation(Value allocValue,
                                                    Block *placementBlock,
                                                    const Liveness &liveness) {
  // We have to ensure that we place the alloc before its first use in this
  // block.
  const LivenessBlockInfo &livenessInfo = *liveness.getLiveness(placementBlock);
  Operation *startOperation = livenessInfo.getStartOperation(allocValue);
  // Check whether the start operation lies in the desired placement block.
  // If not, we will use the terminator as this is the last operation in
  // this block.
  if (startOperation->getBlock() != placementBlock) {
    Operation *opInPlacementBlock =
        placementBlock->findAncestorOpInBlock(*startOperation);
    startOperation = opInPlacementBlock ? opInPlacementBlock
                                        : placementBlock->getTerminator();
  }

  return startOperation;
}

/// Initializes the internal list by discovering all supported allocation
/// nodes.
BufferPlacementAllocs::BufferPlacementAllocs(Operation *op) { build(op); }

/// Searches for and registers all supported allocation entries.
void BufferPlacementAllocs::build(Operation *op) {
  op->walk([&](MemoryEffectOpInterface opInterface) {
    // Try to find a single allocation result.
    SmallVector<MemoryEffects::EffectInstance, 2> effects;
    opInterface.getEffects(effects);

    SmallVector<MemoryEffects::EffectInstance, 2> allocateResultEffects;
    llvm::copy_if(
        effects, std::back_inserter(allocateResultEffects),
        [=](MemoryEffects::EffectInstance &it) {
          Value value = it.getValue();
          return isa<MemoryEffects::Allocate>(it.getEffect()) && value &&
                 isa<OpResult>(value) &&
                 it.getResource() !=
                     SideEffects::AutomaticAllocationScopeResource::get();
        });
    // If there is one result only, we will be able to move the allocation and
    // (possibly existing) deallocation ops.
    if (allocateResultEffects.size() != 1)
      return;
    // Get allocation result.
    Value allocValue = allocateResultEffects[0].getValue();
    // Find the associated dealloc value and register the allocation entry.
    std::optional<Operation *> dealloc = memref::findDealloc(allocValue);
    // If the allocation has > 1 dealloc associated with it, skip handling it.
    if (!dealloc)
      return;
    allocs.push_back(std::make_tuple(allocValue, *dealloc));
  });
}

//===----------------------------------------------------------------------===//
// BufferPlacementTransformationBase
//===----------------------------------------------------------------------===//

/// Constructs a new transformation base using the given root operation.
BufferPlacementTransformationBase::BufferPlacementTransformationBase(
    Operation *op)
    : aliases(op), allocs(op), liveness(op) {}

/// Returns true if the given operation represents a loop by testing whether it
/// implements the `LoopLikeOpInterface` or the `RegionBranchOpInterface`. In
/// the case of a `RegionBranchOpInterface`, it checks all region-based control-
/// flow edges for cycles.
bool BufferPlacementTransformationBase::isLoop(Operation *op) {
  // If the operation implements the `LoopLikeOpInterface` it can be considered
  // a loop.
  if (isa<LoopLikeOpInterface>(op))
    return true;

  // If the operation does not implement the `RegionBranchOpInterface`, it is
  // (currently) not possible to detect a loop.
  RegionBranchOpInterface regionInterface;
  if (!(regionInterface = dyn_cast<RegionBranchOpInterface>(op)))
    return false;

  // Recurses into a region using the current region interface to find potential
  // cycles.
  SmallPtrSet<Region *, 4> visitedRegions;
  std::function<bool(Region *)> recurse = [&](Region *current) {
    if (!current)
      return false;
    // If we have found a back edge, the parent operation induces a loop.
    if (!visitedRegions.insert(current).second)
      return true;
    // Recurses into all region successors.
    SmallVector<RegionSuccessor, 2> successors;
    regionInterface.getSuccessorRegions(current->getRegionNumber(), successors);
    for (RegionSuccessor &regionEntry : successors)
      if (recurse(regionEntry.getSuccessor()))
        return true;
    return false;
  };

  // Start with all entry regions and test whether they induce a loop.
  SmallVector<RegionSuccessor, 2> successorRegions;
  regionInterface.getSuccessorRegions(/*index=*/std::nullopt, successorRegions);
  for (RegionSuccessor &regionEntry : successorRegions) {
    if (recurse(regionEntry.getSuccessor()))
      return true;
    visitedRegions.clear();
  }

  return false;
}

//===----------------------------------------------------------------------===//
// BufferPlacementTransformationBase
//===----------------------------------------------------------------------===//

FailureOr<memref::GlobalOp>
bufferization::getGlobalFor(arith::ConstantOp constantOp, uint64_t alignment,
                            Attribute memorySpace) {
  auto type = cast<RankedTensorType>(constantOp.getType());
  auto moduleOp = constantOp->getParentOfType<ModuleOp>();
  if (!moduleOp)
    return failure();

  // If we already have a global for this constant value, no need to do
  // anything else.
  for (Operation &op : moduleOp.getRegion().getOps()) {
    auto globalOp = dyn_cast<memref::GlobalOp>(&op);
    if (!globalOp)
      continue;
    if (!globalOp.getInitialValue().has_value())
      continue;
    uint64_t opAlignment = globalOp.getAlignment().value_or(0);
    Attribute initialValue = globalOp.getInitialValue().value();
    if (opAlignment == alignment && initialValue == constantOp.getValue())
      return globalOp;
  }

  // Create a builder without an insertion point. We will insert using the
  // symbol table to guarantee unique names.
  OpBuilder globalBuilder(moduleOp.getContext());
  SymbolTable symbolTable(moduleOp);

  // Create a pretty name.
  SmallString<64> buf;
  llvm::raw_svector_ostream os(buf);
  interleave(type.getShape(), os, "x");
  os << "x" << type.getElementType();

  // Add an optional alignment to the global memref.
  IntegerAttr memrefAlignment =
      alignment > 0 ? IntegerAttr::get(globalBuilder.getI64Type(), alignment)
                    : IntegerAttr();

  BufferizeTypeConverter typeConverter;
  auto memrefType = cast<MemRefType>(typeConverter.convertType(type));
  if (memorySpace)
    memrefType = MemRefType::Builder(memrefType).setMemorySpace(memorySpace);
  auto global = globalBuilder.create<memref::GlobalOp>(
      constantOp.getLoc(), (Twine("__constant_") + os.str()).str(),
      /*sym_visibility=*/globalBuilder.getStringAttr("private"),
      /*type=*/memrefType,
      /*initial_value=*/cast<ElementsAttr>(constantOp.getValue()),
      /*constant=*/true,
      /*alignment=*/memrefAlignment);
  symbolTable.insert(global);
  // The symbol table inserts at the end of the module, but globals are a bit
  // nicer if they are at the beginning.
  global->moveBefore(&moduleOp.front());
  return global;
}