1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
|
//===- Bufferize.cpp - Bufferization utilities ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Operation.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/Passes.h"
#include <optional>
namespace mlir {
namespace bufferization {
#define GEN_PASS_DEF_FINALIZINGBUFFERIZE
#define GEN_PASS_DEF_BUFFERIZATIONBUFFERIZE
#define GEN_PASS_DEF_ONESHOTBUFFERIZE
#include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc"
} // namespace bufferization
} // namespace mlir
#define DEBUG_TYPE "bufferize"
using namespace mlir;
using namespace mlir::bufferization;
//===----------------------------------------------------------------------===//
// BufferizeTypeConverter
//===----------------------------------------------------------------------===//
static Value materializeToTensor(OpBuilder &builder, TensorType type,
ValueRange inputs, Location loc) {
assert(inputs.size() == 1);
assert(inputs[0].getType().isa<BaseMemRefType>());
return builder.create<bufferization::ToTensorOp>(loc, type, inputs[0]);
}
/// Registers conversions into BufferizeTypeConverter
BufferizeTypeConverter::BufferizeTypeConverter() {
// Keep all types unchanged.
addConversion([](Type type) { return type; });
// Convert RankedTensorType to MemRefType.
addConversion([](RankedTensorType type) -> Type {
return MemRefType::get(type.getShape(), type.getElementType());
});
// Convert UnrankedTensorType to UnrankedMemRefType.
addConversion([](UnrankedTensorType type) -> Type {
return UnrankedMemRefType::get(type.getElementType(), 0);
});
addArgumentMaterialization(materializeToTensor);
addSourceMaterialization(materializeToTensor);
addTargetMaterialization([](OpBuilder &builder, BaseMemRefType type,
ValueRange inputs, Location loc) -> Value {
assert(inputs.size() == 1 && "expected exactly one input");
if (auto inputType = inputs[0].getType().dyn_cast<MemRefType>()) {
// MemRef to MemRef cast.
assert(inputType != type && "expected different types");
// Unranked to ranked and ranked to unranked casts must be explicit.
auto rankedDestType = type.dyn_cast<MemRefType>();
if (!rankedDestType)
return nullptr;
FailureOr<Value> replacement =
castOrReallocMemRefValue(builder, inputs[0], rankedDestType);
if (failed(replacement))
return nullptr;
return *replacement;
}
if (inputs[0].getType().isa<TensorType>()) {
// Tensor to MemRef cast.
return builder.create<bufferization::ToMemrefOp>(loc, type, inputs[0]);
}
llvm_unreachable("only tensor/memref input types supported");
});
}
void mlir::bufferization::populateBufferizeMaterializationLegality(
ConversionTarget &target) {
target.addLegalOp<bufferization::ToTensorOp, bufferization::ToMemrefOp>();
}
namespace {
// In a finalizing bufferize conversion, we know that all tensors have been
// converted to memrefs, thus, this op becomes an identity.
class BufferizeToTensorOp
: public OpConversionPattern<bufferization::ToTensorOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::ToTensorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOp(op, adaptor.getMemref());
return success();
}
};
} // namespace
namespace {
// In a finalizing bufferize conversion, we know that all tensors have been
// converted to memrefs, thus, this op becomes an identity.
class BufferizeToMemrefOp
: public OpConversionPattern<bufferization::ToMemrefOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::ToMemrefOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOp(op, adaptor.getTensor());
return success();
}
};
} // namespace
void mlir::bufferization::populateEliminateBufferizeMaterializationsPatterns(
BufferizeTypeConverter &typeConverter, RewritePatternSet &patterns) {
patterns.add<BufferizeToTensorOp, BufferizeToMemrefOp>(typeConverter,
patterns.getContext());
}
namespace {
struct FinalizingBufferizePass
: public bufferization::impl::FinalizingBufferizeBase<
FinalizingBufferizePass> {
using FinalizingBufferizeBase<
FinalizingBufferizePass>::FinalizingBufferizeBase;
void runOnOperation() override {
auto func = getOperation();
auto *context = &getContext();
BufferizeTypeConverter typeConverter;
RewritePatternSet patterns(context);
ConversionTarget target(*context);
populateEliminateBufferizeMaterializationsPatterns(typeConverter, patterns);
// If all result types are legal, and all block arguments are legal (ensured
// by func conversion above), then all types in the program are legal.
//
// We also check that the operand types are legal to avoid creating invalid
// IR. For example, this prevents
// populateEliminateBufferizeMaterializationsPatterns from updating the
// types of the operands to a return op without updating the enclosing
// function.
target.markUnknownOpDynamicallyLegal(
[&](Operation *op) { return typeConverter.isLegal(op); });
if (failed(applyFullConversion(func, target, std::move(patterns))))
signalPassFailure();
}
};
static LayoutMapOption parseLayoutMapOption(const std::string &s) {
if (s == "fully-dynamic-layout-map")
return LayoutMapOption::FullyDynamicLayoutMap;
if (s == "identity-layout-map")
return LayoutMapOption::IdentityLayoutMap;
if (s == "infer-layout-map")
return LayoutMapOption::InferLayoutMap;
llvm_unreachable("invalid layout map option");
}
static OneShotBufferizationOptions::AnalysisHeuristic
parseHeuristicOption(const std::string &s) {
if (s == "bottom-up")
return OneShotBufferizationOptions::AnalysisHeuristic::BottomUp;
if (s == "top-down")
return OneShotBufferizationOptions::AnalysisHeuristic::TopDown;
llvm_unreachable("invalid analysisheuristic option");
}
struct OneShotBufferizePass
: public bufferization::impl::OneShotBufferizeBase<OneShotBufferizePass> {
OneShotBufferizePass() = default;
explicit OneShotBufferizePass(const OneShotBufferizationOptions &options)
: options(options) {}
void getDependentDialects(DialectRegistry ®istry) const override {
registry
.insert<bufferization::BufferizationDialect, memref::MemRefDialect>();
registerAllocationOpInterfaceExternalModels(registry);
}
void runOnOperation() override {
OneShotBufferizationOptions opt;
if (!options) {
// Make new bufferization options if none were provided when creating the
// pass.
opt.allowReturnAllocs = allowReturnAllocs;
opt.allowUnknownOps = allowUnknownOps;
opt.analysisFuzzerSeed = analysisFuzzerSeed;
opt.analysisHeuristic = parseHeuristicOption(analysisHeuristic);
opt.copyBeforeWrite = copyBeforeWrite;
opt.createDeallocs = createDeallocs;
opt.functionBoundaryTypeConversion =
parseLayoutMapOption(functionBoundaryTypeConversion);
if (mustInferMemorySpace)
opt.defaultMemorySpace = std::nullopt;
opt.printConflicts = printConflicts;
opt.testAnalysisOnly = testAnalysisOnly;
opt.bufferizeFunctionBoundaries = bufferizeFunctionBoundaries;
// Configure type converter.
LayoutMapOption unknownTypeConversionOption =
parseLayoutMapOption(unknownTypeConversion);
opt.unknownTypeConverterFn = [=](Value value, Attribute memorySpace,
const BufferizationOptions &options) {
auto tensorType = value.getType().cast<TensorType>();
if (unknownTypeConversionOption == LayoutMapOption::IdentityLayoutMap)
return bufferization::getMemRefTypeWithStaticIdentityLayout(
tensorType, memorySpace);
assert(unknownTypeConversionOption ==
LayoutMapOption::FullyDynamicLayoutMap &&
"invalid layout map option");
return bufferization::getMemRefTypeWithFullyDynamicLayout(tensorType,
memorySpace);
};
// Configure op filter.
OpFilter::Entry::FilterFn filterFn = [&](Operation *op) {
// Filter may be specified via options.
if (this->dialectFilter.hasValue())
return llvm::is_contained(this->dialectFilter,
op->getDialect()->getNamespace());
// No filter specified: All other ops are allowed.
return true;
};
opt.opFilter.allowOperation(filterFn);
} else {
opt = *options;
}
BufferizationStatistics statistics;
ModuleOp moduleOp = getOperation();
if (opt.bufferizeFunctionBoundaries) {
if (failed(runOneShotModuleBufferize(moduleOp, opt, &statistics))) {
signalPassFailure();
return;
}
} else {
if (failed(runOneShotBufferize(moduleOp, opt, &statistics))) {
signalPassFailure();
return;
}
}
// Set pass statistics.
this->numBufferAlloc = statistics.numBufferAlloc;
this->numBufferDealloc = statistics.numBufferDealloc;
this->numTensorInPlace = statistics.numTensorInPlace;
this->numTensorOutOfPlace = statistics.numTensorOutOfPlace;
if (opt.testAnalysisOnly)
return;
OpPassManager cleanupPipeline("builtin.module");
cleanupPipeline.addPass(createCanonicalizerPass());
cleanupPipeline.addPass(createCSEPass());
cleanupPipeline.addPass(createLoopInvariantCodeMotionPass());
(void)runPipeline(cleanupPipeline, moduleOp);
}
private:
llvm::Optional<OneShotBufferizationOptions> options;
};
} // namespace
namespace {
struct BufferizationBufferizePass
: public bufferization::impl::BufferizationBufferizeBase<
BufferizationBufferizePass> {
void runOnOperation() override {
BufferizationOptions options = getPartialBufferizationOptions();
options.opFilter.allowDialect<BufferizationDialect>();
if (failed(bufferizeOp(getOperation(), options)))
signalPassFailure();
}
void getDependentDialects(DialectRegistry ®istry) const override {
registry
.insert<bufferization::BufferizationDialect, memref::MemRefDialect>();
}
};
} // namespace
std::unique_ptr<Pass> mlir::bufferization::createBufferizationBufferizePass() {
return std::make_unique<BufferizationBufferizePass>();
}
std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass() {
return std::make_unique<OneShotBufferizePass>();
}
std::unique_ptr<Pass> mlir::bufferization::createOneShotBufferizePass(
const OneShotBufferizationOptions &options) {
return std::make_unique<OneShotBufferizePass>(options);
}
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::bufferization::createFinalizingBufferizePass() {
return std::make_unique<FinalizingBufferizePass>();
}
//===----------------------------------------------------------------------===//
// BufferizableOpInterface-based Bufferization
//===----------------------------------------------------------------------===//
static bool isaTensor(Type t) { return t.isa<TensorType>(); }
/// Return true if the given op has a tensor result or a tensor operand.
static bool hasTensorSemantics(Operation *op) {
if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) {
bool hasTensorArg = any_of(funcOp.getArgumentTypes(), isaTensor);
bool hasTensorResult = any_of(funcOp.getResultTypes(), isaTensor);
return hasTensorArg || hasTensorResult;
}
bool hasTensorResult = any_of(op->getResultTypes(), isaTensor);
bool hasTensorOperand = any_of(op->getOperandTypes(), isaTensor);
return hasTensorResult || hasTensorOperand;
}
namespace {
/// A rewriter that keeps track of extra information during bufferization.
class BufferizationRewriter : public IRRewriter {
public:
BufferizationRewriter(MLIRContext *ctx, DenseSet<Operation *> &erasedOps,
DenseSet<Operation *> &toMemrefOps,
SmallVector<Operation *> &worklist,
const BufferizationOptions &options,
const OpFilter *opFilter,
BufferizationStatistics *statistics)
: IRRewriter(ctx), erasedOps(erasedOps), toMemrefOps(toMemrefOps),
worklist(worklist), analysisState(options), opFilter(opFilter),
statistics(statistics) {}
protected:
void notifyOperationRemoved(Operation *op) override {
IRRewriter::notifyOperationRemoved(op);
erasedOps.insert(op);
// Erase if present.
toMemrefOps.erase(op);
}
void notifyOperationInserted(Operation *op) override {
IRRewriter::notifyOperationInserted(op);
erasedOps.erase(op);
// Gather statistics about allocs and deallocs.
if (statistics) {
if (auto sideEffectingOp = dyn_cast<MemoryEffectOpInterface>(op)) {
statistics->numBufferAlloc += static_cast<int64_t>(
sideEffectingOp.hasEffect<MemoryEffects::Allocate>());
statistics->numBufferDealloc += static_cast<int64_t>(
sideEffectingOp.hasEffect<MemoryEffects::Free>());
}
}
// Keep track of to_memref ops.
if (isa<ToMemrefOp>(op)) {
toMemrefOps.insert(op);
return;
}
// Skip to_tensor ops.
if (isa<ToTensorOp>(op))
return;
// Skip non-tensor ops.
if (!hasTensorSemantics(op))
return;
// Skip ops that are not allowed to be bufferized.
auto const &options = analysisState.getOptions();
if (!options.isOpAllowed(op) || (opFilter && !opFilter->isOpAllowed(op)))
return;
// Add op to worklist.
worklist.push_back(op);
}
private:
/// A set of all erased ops.
DenseSet<Operation *> &erasedOps;
/// A set of all to_memref ops.
DenseSet<Operation *> &toMemrefOps;
/// The worklist of ops to be bufferized.
SmallVector<Operation *> &worklist;
/// The analysis state. Used for debug assertions and access to the
/// bufferization options.
const AnalysisState analysisState;
/// An extra op filter for bufferization.
const OpFilter *opFilter;
/// Bufferization statistics for debugging.
BufferizationStatistics *statistics;
};
} // namespace
LogicalResult bufferization::bufferizeOp(Operation *op,
const BufferizationOptions &options,
bool copyBeforeWrite,
const OpFilter *opFilter,
BufferizationStatistics *statistics) {
if (copyBeforeWrite) {
AnalysisState state(options);
if (failed(insertTensorCopies(op, state)))
return failure();
}
// Keep track of to_memref ops.
DenseSet<Operation *> toMemrefOps;
op->walk([&](ToMemrefOp toMemrefOp) { toMemrefOps.insert(toMemrefOp); });
// Gather all bufferizable ops in top-to-bottom order.
//
// We should ideally know the exact memref type of all operands when
// bufferizing an op. (This is the case when bufferizing top-to-bottom.)
// Otherwise, we have to use a memref type with a fully dynamic layout map to
// avoid copies. We are currently missing patterns for layout maps to
// canonicalize away (or canonicalize to more precise layouts).
//
// FuncOps must be bufferized before their bodies, so add them to the worklist
// first.
SmallVector<Operation *> worklist;
op->walk([&](func::FuncOp funcOp) {
if (hasTensorSemantics(funcOp))
worklist.push_back(funcOp);
});
op->walk<WalkOrder::PostOrder>([&](Operation *op) {
if (hasTensorSemantics(op) && !isa<func::FuncOp>(op))
worklist.push_back(op);
});
// Keep track of all erased ops.
DenseSet<Operation *> erasedOps;
// Bufferize all ops.
BufferizationRewriter rewriter(op->getContext(), erasedOps, toMemrefOps,
worklist, options, opFilter, statistics);
for (unsigned i = 0; i < worklist.size(); ++i) {
Operation *nextOp = worklist[i];
// Skip ops that were erased.
if (erasedOps.contains(nextOp))
continue;
// Skip ops that are not bufferizable or not allowed.
auto bufferizableOp = options.dynCastBufferizableOp(nextOp);
if (!bufferizableOp)
continue;
if (opFilter && !opFilter->isOpAllowed(nextOp))
continue;
// Skip ops that no longer have tensor semantics.
if (!hasTensorSemantics(nextOp))
continue;
// Bufferize the op.
LLVM_DEBUG(llvm::dbgs()
<< "//===-------------------------------------------===//\n"
<< "IR after bufferizing: " << nextOp->getName() << "\n");
rewriter.setInsertionPoint(nextOp);
if (failed(bufferizableOp.bufferize(rewriter, options))) {
LLVM_DEBUG(llvm::dbgs()
<< "failed to bufferize\n"
<< "//===-------------------------------------------===//\n");
return nextOp->emitError("failed to bufferize op");
}
LLVM_DEBUG(llvm::dbgs()
<< *op
<< "\n//===-------------------------------------------===//\n");
}
// Fold all to_memref(to_tensor(x)) pairs.
for (Operation *op : toMemrefOps) {
rewriter.setInsertionPoint(op);
(void)bufferization::foldToMemrefToTensorPair(rewriter,
cast<ToMemrefOp>(op));
}
/// Check the result of bufferization. Return an error if an op was not
/// bufferized, unless partial bufferization is allowed.
if (options.allowUnknownOps)
return success();
for (Operation *op : worklist) {
// Skip ops that are entirely gone.
if (erasedOps.contains(op))
continue;
// Ops that no longer have tensor semantics (because they were updated
// in-place) are allowed.
if (!hasTensorSemantics(op))
continue;
// Continue ops that are not allowed.
if (!options.isOpAllowed(op))
continue;
if (opFilter && !opFilter->isOpAllowed(op))
continue;
// Ops without any uses and no side effects will fold away.
if (op->getUses().empty() && isMemoryEffectFree(op))
continue;
// ToTensorOps/ToMemrefOps are allowed in the output.
if (isa<ToTensorOp, ToMemrefOp>(op))
continue;
return op->emitError("op was not bufferized");
}
return success();
}
BufferizationOptions bufferization::getPartialBufferizationOptions() {
BufferizationOptions options;
options.allowUnknownOps = true;
options.createDeallocs = false;
options.enforceAliasingInvariants = false;
options.unknownTypeConverterFn = [](Value value, Attribute memorySpace,
const BufferizationOptions &options) {
return getMemRefTypeWithStaticIdentityLayout(
value.getType().cast<TensorType>(), memorySpace);
};
options.opFilter.allowDialect<BufferizationDialect>();
return options;
}
|