summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/GPU/TransformOps/GPUTransformOps.cpp
blob: 8cd2ccfcf882b47121d136b188e508c9543fd928 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
//===- GPUTransformOps.cpp - Implementation of GPU transform ops ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h"
#include "mlir/Dialect/PDL/IR/PDL.h"
#include "mlir/Dialect/SCF/IR/DeviceMappingInterface.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "mlir/Dialect/Transform/IR/TransformInterfaces.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"

using namespace mlir;
using namespace mlir::gpu;
using namespace mlir::transform;
using namespace mlir::transform::gpu;

#define DEBUG_TYPE "gpu-transforms"

#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")

namespace {

/// Return a flattened thread id for the workgroup with given sizes.
static Value buildLinearThreadId(RewriterBase &rewriter, Location loc,
                                 ArrayRef<OpFoldResult> blockDimsOfr) {
  LLVM_DEBUG(llvm::interleaveComma(
                 blockDimsOfr,
                 DBGS() << "----buildLinearThreadId with blockDimsOfr:  ");
             llvm::dbgs() << "\n");
  assert(blockDimsOfr.size() == 3 && "expected 3 workgroup sizes");
  AffineExpr tx, ty, tz, BDX, BDY;
  bindDims(rewriter.getContext(), tx, ty, tz);
  bindSymbols(rewriter.getContext(), BDX, BDY);
  IndexType indexType = rewriter.getIndexType();
  SmallVector<OpFoldResult> threadsAndWorkGroups{
      rewriter.create<ThreadIdOp>(loc, indexType, Dimension::x).getResult(),
      rewriter.create<ThreadIdOp>(loc, indexType, Dimension::y).getResult(),
      rewriter.create<ThreadIdOp>(loc, indexType, Dimension::z).getResult()};
  threadsAndWorkGroups.push_back(blockDimsOfr[0]);
  threadsAndWorkGroups.push_back(blockDimsOfr[1]);
  OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
      rewriter, loc, tx + ty * BDX + tz * BDX * BDY, threadsAndWorkGroups);
  return getValueOrCreateConstantIndexOp(rewriter, loc, ofr);
}

/// Builder for gpu::BlockIdOps used in mapping scf.forall to blocks.
/// The `idBuilder` method returns 3-D values used for indexing rewrites as well
/// as 3-D sizes for predicate generation.
struct GpuBlockIdBuilder : public GpuIdBuilder {

  GpuBlockIdBuilder(MLIRContext *ctx, ArrayRef<OpFoldResult> blockDims,
                    ArrayRef<int64_t> mappingSizes)
      : GpuIdBuilder(blockDims, mappingSizes) {
    mappingAttributes = {GPUBlockMappingAttr::get(ctx, Blocks::DimX),
                         GPUBlockMappingAttr::get(ctx, Blocks::DimY),
                         GPUBlockMappingAttr::get(ctx, Blocks::DimZ)},
    idBuilder = [](RewriterBase &rewriter, Location loc,
                   ArrayRef<int64_t> forallMappingSizes) {
      IndexType indexType = rewriter.getIndexType();
      SmallVector<Value> ids{
          rewriter.create<BlockIdOp>(loc, indexType, Dimension::x),
          rewriter.create<BlockIdOp>(loc, indexType, Dimension::y),
          rewriter.create<BlockIdOp>(loc, indexType, Dimension::z)};
      // Return 3-D ids for indexing rewrite and 3-D sizes and ids for
      // predicate generation.
      return IdBuilderResult{ids, SmallVector<int64_t>{forallMappingSizes},
                             ids};
    };
  }
};

/// Builder for gpu::ThreadIdOp used in mapping scf.forall to thread ids without
/// any reindexing.
/// The `idBuilder` method returns 3-D values used for indexing rewrites as well
/// as 3-D sizes for predicate generation.
struct GpuThreadIdBuilder : public GpuIdBuilder {
  GpuThreadIdBuilder(MLIRContext *ctx, ArrayRef<OpFoldResult> blockDims,
                     ArrayRef<int64_t> mappingSizes)
      : GpuIdBuilder(blockDims, mappingSizes) {
    mappingAttributes = {GPUThreadMappingAttr::get(ctx, Threads::DimX),
                         GPUThreadMappingAttr::get(ctx, Threads::DimY),
                         GPUThreadMappingAttr::get(ctx, Threads::DimZ)};
    idBuilder = [](RewriterBase &rewriter, Location loc,
                   ArrayRef<int64_t> forallMappingSizes) {
      IndexType indexType = rewriter.getIndexType();
      SmallVector<Value> ids{
          rewriter.create<ThreadIdOp>(loc, indexType, Dimension::x),
          rewriter.create<ThreadIdOp>(loc, indexType, Dimension::y),
          rewriter.create<ThreadIdOp>(loc, indexType, Dimension::z)};
      // Return 3-D ids for indexing rewrite and 3-D sizes and ids for
      // predicate generation.
      return IdBuilderResult{ids, SmallVector<int64_t>{forallMappingSizes},
                             ids};
    };
  }
};

/// Builder for warp ids used in mapping scf.forall to warps.
/// This builder requires a specification of the number of warps along each
/// dimension to more finely control mapping to warps as well a predication than
/// by solely analyzing the IR.
/// The `idBuilder` method returns 3-D values used for indexing rewrites as well
/// as 3-D sizes for predicate generation.
struct GpuWarpIdBuilder : public GpuIdBuilder {
  GpuWarpIdBuilder(MLIRContext *ctx, ArrayRef<OpFoldResult> blockDims,
                   ArrayRef<int64_t> mappingSizes)
      : GpuIdBuilder(blockDims, mappingSizes) {
    mappingAttributes = {GPUWarpMappingAttr::get(ctx, Warps::DimX),
                         GPUWarpMappingAttr::get(ctx, Warps::DimY),
                         GPUWarpMappingAttr::get(ctx, Warps::DimZ)};
    idBuilder = [this](RewriterBase &rewriter, Location loc,
                       ArrayRef<int64_t> forallMappingSizes) {
      // Build the linear warp id and decompose it in the basis of
      // `forallMappingSizes`.
      Value linearId = buildLinearThreadId(rewriter, loc, this->blockDimsOfr);
      AffineExpr d0 = getAffineDimExpr(0, rewriter.getContext());
      OpFoldResult warpIdOfr = affine::makeComposedFoldedAffineApply(
          rewriter, loc, d0.floorDiv(kWarpSize), {linearId});
      Value warpId = getValueOrCreateConstantIndexOp(rewriter, loc, warpIdOfr);
      // Sizes in [x, y, z] -> [z, y x] order to properly compute strides in
      // "row-major" order.
      SmallVector<int64_t> reverseBasisSizes(
          llvm::reverse(this->availableMappingSizes));
      SmallVector<int64_t> strides = computeStrides(reverseBasisSizes);
      SmallVector<AffineExpr> delinearizingExprs = delinearize(d0, strides);
      SmallVector<Value> ids;
      // Reverse back to be in [x, y, z] order.
      for (AffineExpr e : llvm::reverse(delinearizingExprs))
        ids.push_back(
            affine::makeComposedAffineApply(rewriter, loc, e, warpId));

      // clang-format off
      LDBG("----linearId: " << linearId);
          LDBG("----warpId: " << warpId);
      LLVM_DEBUG(llvm::interleaveComma(reverseBasisSizes,
                                       DBGS() << "--delinearization basis: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(strides,
                                       DBGS() << "--delinearization strides: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(delinearizingExprs,
                                       DBGS() << "--delinearization exprs: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(ids, DBGS() << "--ids: ");
                 llvm::dbgs() << "\n";);
      // clang-format on

      // Return 3-D ids for indexing rewrite and 3-D sizes and ids for
      // predicate generation.
      return IdBuilderResult{ids, SmallVector<int64_t>{forallMappingSizes},
                             ids};
    };
  }

  /// Static specification of the warp size.
  /// In the future this may be configured by the transformation.
  static constexpr int64_t kWarpSize = 32;
};

/// Builder for linear ids used in mapping scf.forall to reindexed threads.
/// The `idBuilder` method returns 3-D values used for indexing rewrites as well
/// as 1-D sizes for predicate generation.
struct GpuLinearIdBuilder : public GpuIdBuilder {
  GpuLinearIdBuilder(MLIRContext *ctx, ArrayRef<OpFoldResult> blockDims,
                     ArrayRef<int64_t> mappingSizes)
      : GpuIdBuilder(blockDims, mappingSizes) {
    mappingAttributes = {GPULinearIdMappingAttr::get(ctx, LinearId::DimX),
                         GPULinearIdMappingAttr::get(ctx, LinearId::DimY),
                         GPULinearIdMappingAttr::get(ctx, LinearId::DimZ)};
    idBuilder = [this](RewriterBase &rewriter, Location loc,
                       ArrayRef<int64_t> forallMappingSizes) {
      // Build the linear thread id and decompose it in the basis of
      // `forallMappingSizes`.
      Value linearId = buildLinearThreadId(rewriter, loc, this->blockDimsOfr);
      // Sizes in [x, y, z] -> [z, y x] order to properly compute strides in
      // "row-major" order.
      SmallVector<int64_t> reverseBasisSizes(llvm::reverse(forallMappingSizes));
      SmallVector<int64_t> strides = computeStrides(reverseBasisSizes);
      AffineExpr d0;
      bindDims(rewriter.getContext(), d0);
      SmallVector<AffineExpr> delinearizingExprs = delinearize(d0, strides);
      SmallVector<Value> ids;
      // Reverse back to be in [x, y, z] order.
      for (AffineExpr e : llvm::reverse(delinearizingExprs))
        ids.push_back(
            affine::makeComposedAffineApply(rewriter, loc, e, linearId));

      // clang-format off
      LLVM_DEBUG(llvm::interleaveComma(reverseBasisSizes,
                                       DBGS() << "--delinearization basis: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(strides,
                                       DBGS() << "--delinearization strides: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(delinearizingExprs,
                                       DBGS() << "--delinearization exprs: ");
                 llvm::dbgs() << "\n";
                 llvm::interleaveComma(ids, DBGS() << "--ids: ");
                 llvm::dbgs() << "\n";);
      // clang-format on

      // Compute and return the 1-D actual mapping size spanned by the linearId,
      // it will be used to predicate against the linearized total number of
      // threads.
      int64_t actualMappingSize = 1;
      for (int64_t s : forallMappingSizes)
        actualMappingSize *= s;

      // Return 3-D ids for indexing rewrite and 1-D size and id for
      // predicate generation.
      return IdBuilderResult{ids, SmallVector<int64_t>{actualMappingSize},
                             SmallVector<Value>{linearId}};
    };
  }
};

} // namespace

static DiagnosedSilenceableFailure
definiteFailureHelper(std::optional<TransformOpInterface> transformOp,
                      Operation *target, const Twine &message) {
  if (transformOp.has_value())
    return transformOp->emitDefiniteFailure() << message;
  return emitDefiniteFailure(target, message);
}

/// Check if given mapping attributes are one of the desired attributes
static DiagnosedSilenceableFailure
checkMappingAttributeTypes(std::optional<TransformOpInterface> transformOp,
                           scf::ForallOp forallOp) {
  if (!forallOp.getMapping().has_value())
    return definiteFailureHelper(transformOp, forallOp,
                                 "mapping must be present");

  bool hasBlockMapping =
      llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) {
        return isa<GPUBlockMappingAttr>(attr);
      });
  bool hasThreadMapping =
      llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) {
        return isa<GPUThreadMappingAttr>(attr);
      });
  bool hasWarpMapping =
      llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) {
        return isa<GPUWarpMappingAttr>(attr);
      });
  bool hasLinearMapping =
      llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) {
        return isa<GPULinearIdMappingAttr>(attr);
      });
  int64_t countMappingTypes = 0;
  countMappingTypes += hasBlockMapping ? 1 : 0;
  countMappingTypes += hasThreadMapping ? 1 : 0;
  countMappingTypes += hasWarpMapping ? 1 : 0;
  countMappingTypes += hasLinearMapping ? 1 : 0;
  if (countMappingTypes > 1) {
    return definiteFailureHelper(
        transformOp, forallOp,
        "cannot mix different mapping types, use nesting");
  }

  DenseSet<Attribute> seen;
  for (Attribute map : forallOp.getMapping()->getValue()) {
    if (seen.contains(map)) {
      return definiteFailureHelper(
          transformOp, forallOp,
          "duplicated attribute, cannot map different loops "
          "to the same processor");
    }
    seen.insert(map);
  }

  return DiagnosedSilenceableFailure::success();
}

static DiagnosedSilenceableFailure
verifyGpuMapping(std::optional<TransformOpInterface> transformOp,
                 scf::ForallOp forallOp) {
  // Check the types of the mapping attributes match.
  DiagnosedSilenceableFailure typeRes =
      checkMappingAttributeTypes(transformOp, forallOp);
  if (!typeRes.succeeded())
    return typeRes;

  // Perform other non-types verifications.
  if (!forallOp.isNormalized())
    return definiteFailureHelper(transformOp, forallOp,
                                 "unsupported non-normalized loops");
  if (forallOp.getNumResults() > 0)
    return definiteFailureHelper(transformOp, forallOp,
                                 "only bufferized scf.forall can be mapped");
  if (forallOp.getRank() > 3)
    return definiteFailureHelper(transformOp, forallOp,
                                 "scf.forall with rank > 3 does not lower");
  if (llvm::any_of(forallOp.getMixedUpperBound(), [&](OpFoldResult ofr) {
        return !getConstantIntValue(ofr).has_value();
      })) {
    return definiteFailureHelper(transformOp, forallOp,
                                 "unsupported dynamic sizes in forall op");
  }
  return DiagnosedSilenceableFailure::success();
}

/// Determines if the size of the kernel configuration is supported by the
/// GPU architecture being used. It presently makes use of CUDA limitations,
/// however that aspect may be enhanced for other GPUs.
static DiagnosedSilenceableFailure checkGpuLimits(
    TransformOpInterface transformOp, std::optional<int64_t> gridDimX,
    std::optional<int64_t> gridDimY, std::optional<int64_t> gridDimZ,
    std::optional<int64_t> blockDimX, std::optional<int64_t> blockDimY,
    std::optional<int64_t> blockDimZ) {

  static constexpr int maxTotalBlockdim = 1024;
  static constexpr int maxBlockdimx = 1024;
  static constexpr int maxBlockdimy = 1024;
  static constexpr int maxBlockdimz = 64;
  static constexpr int maxTotalGriddim = 2147483647;
  static constexpr int maxGriddimx = 2147483647;
  static constexpr int maxGriddimy = 65535;
  static constexpr int maxGriddimz = 65535;

  if ((blockDimX.value_or(1) * blockDimY.value_or(1) * blockDimZ.value_or(1)) >
          maxTotalBlockdim ||
      (gridDimX.value_or(1) * gridDimY.value_or(1) * gridDimZ.value_or(1)) >
          maxTotalGriddim ||
      blockDimX.value_or(1) > maxBlockdimx ||
      blockDimY.value_or(1) > maxBlockdimy ||
      blockDimZ.value_or(1) > maxBlockdimz ||
      gridDimY.value_or(1) > maxGriddimy ||
      gridDimZ.value_or(1) > maxGriddimz ||
      gridDimX.value_or(1) > maxGriddimx) {
    return transformOp.emitSilenceableError()
           << "Trying to launch a GPU kernel with grid_dims = ("
           << gridDimX.value_or(1) << ", " << gridDimY.value_or(1) << ", "
           << gridDimZ.value_or(1) << ") block_dims = ("
           << blockDimX.value_or(1) << ", " << blockDimY.value_or(1) << ", "
           << blockDimZ.value_or(1) << "). It is larger than the limits.";
  }
  return DiagnosedSilenceableFailure::success();
}

/// Creates an empty-body gpu::LaunchOp using the provided kernel settings
/// and put a terminator within.
static DiagnosedSilenceableFailure
createGpuLaunch(RewriterBase &rewriter, Location loc,
                TransformOpInterface transformOp, LaunchOp &launchOp,
                std::optional<int64_t> gridDimX = std::nullopt,
                std::optional<int64_t> gridDimY = std::nullopt,
                std::optional<int64_t> gridDimZ = std::nullopt,
                std::optional<int64_t> blockDimX = std::nullopt,
                std::optional<int64_t> blockDimY = std::nullopt,
                std::optional<int64_t> blockDimZ = std::nullopt) {
  DiagnosedSilenceableFailure diag =
      checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
                     blockDimY, blockDimZ);
  if (!diag.succeeded())
    return diag;

  auto createConst = [&](int dim) {
    return rewriter.create<arith::ConstantIndexOp>(loc, dim);
  };
  OpBuilder::InsertionGuard guard(rewriter);
  Value one = createConst(1);
  Value gridSizeX = gridDimX.has_value() ? createConst(gridDimX.value()) : one;
  Value gridSizeY = gridDimY.has_value() ? createConst(gridDimY.value()) : one;
  Value gridSizeZ = gridDimZ.has_value() ? createConst(gridDimZ.value()) : one;
  Value blkSizeX = blockDimX.has_value() ? createConst(blockDimX.value()) : one;
  Value blkSizeY = blockDimY.has_value() ? createConst(blockDimY.value()) : one;
  Value blkSizeZ = blockDimZ.has_value() ? createConst(blockDimZ.value()) : one;
  launchOp = rewriter.create<LaunchOp>(loc, gridSizeX, gridSizeY, gridSizeZ,
                                       blkSizeX, blkSizeY, blkSizeZ);
  rewriter.setInsertionPointToEnd(&launchOp.getBody().front());
  rewriter.create<TerminatorOp>(loc);
  return DiagnosedSilenceableFailure::success();
}

/// Alter kernel configuration of the given kernel.
static DiagnosedSilenceableFailure
alterGpuLaunch(IRRewriter &rewriter, LaunchOp gpuLaunch,
               TransformOpInterface transformOp,
               std::optional<int64_t> gridDimX = std::nullopt,
               std::optional<int64_t> gridDimY = std::nullopt,
               std::optional<int64_t> gridDimZ = std::nullopt,
               std::optional<int64_t> blockDimX = std::nullopt,
               std::optional<int64_t> blockDimY = std::nullopt,
               std::optional<int64_t> blockDimZ = std::nullopt) {
  DiagnosedSilenceableFailure diag =
      checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
                     blockDimY, blockDimZ);
  if (!diag.succeeded())
    return diag;

  KernelDim3 currentBlockdim = gpuLaunch.getBlockSizeOperandValues();
  OpBuilder::InsertionGuard guard(rewriter);
  rewriter.setInsertionPointAfterValue(currentBlockdim.x);
  auto createConstValue = [&](int dim) {
    return rewriter.create<arith::ConstantIndexOp>(currentBlockdim.x.getLoc(),
                                                   dim);
  };

  if (gridDimX.has_value())
    gpuLaunch.getGridSizeXMutable().assign(createConstValue(gridDimX.value()));
  if (gridDimY.has_value())
    gpuLaunch.getGridSizeYMutable().assign(createConstValue(gridDimY.value()));
  if (gridDimZ.has_value())
    gpuLaunch.getGridSizeZMutable().assign(createConstValue(gridDimZ.value()));
  if (blockDimX.has_value())
    gpuLaunch.getBlockSizeXMutable().assign(
        createConstValue(blockDimX.value()));
  if (blockDimY.has_value())
    gpuLaunch.getBlockSizeYMutable().assign(
        createConstValue(blockDimY.value()));
  if (blockDimZ.has_value())
    gpuLaunch.getBlockSizeZMutable().assign(
        createConstValue(blockDimZ.value()));
  return DiagnosedSilenceableFailure::success();
}

/// Struct to return the result of the rewrite of a forall operation.
struct ForallRewriteResult {
  SmallVector<int64_t> mappingSizes;
  SmallVector<Value> mappingIds;
};

/// Helper to replace ids of dimensions known to be 1 by 0 to simplify the IR.
template <typename OpTy, typename OperationOrBlock>
static void
replaceUnitMappingIdsHelper(RewriterBase &rewriter, Location loc,
                            OperationOrBlock *parent, Value replacement,
                            ArrayRef<int64_t> availableMappingSizes) {
  parent->walk([&](OpTy idOp) {
    if (availableMappingSizes[static_cast<int64_t>(idOp.getDimension())] == 1)
      rewriter.replaceAllUsesWith(idOp.getResult(), replacement);
  });
}

static DiagnosedSilenceableFailure rewriteOneForallCommonImpl(
    RewriterBase &rewriter, std::optional<TransformOpInterface> transformOp,
    scf::ForallOp forallOp, ForallRewriteResult &result,
    ArrayRef<int64_t> availableMappingSizes, const GpuIdBuilder &gpuIdBuilder) {
  LDBG("--start rewriteOneForallCommonImpl");

  // Step 0. GPU-specific verifications. There is no better place to anchor
  // those right now: the ForallOp is target-independent and the transform
  // op does not apply to individual ForallOp.
  DiagnosedSilenceableFailure diag = verifyGpuMapping(transformOp, forallOp);
  if (!diag.succeeded())
    return diag;

  // Step 1. Complete the mapping to a full mapping (with 1s) if necessary.
  SmallVector<int64_t> tmpMappingSizes = llvm::to_vector(
      llvm::map_range(forallOp.getMixedUpperBound(), [](OpFoldResult ofr) {
        auto maybeStaticValue = getConstantIntValue(ofr);
        assert(maybeStaticValue && "expected static value");
        return maybeStaticValue.value();
      }));
  SmallVector<Attribute> forallMappingAttrs =
      llvm::to_vector(forallOp.getMapping()->getValue());
  for (auto attr : gpuIdBuilder.mappingAttributes) {
    if (llvm::is_contained(forallMappingAttrs, attr))
      continue;
    forallMappingAttrs.push_back(attr);
    tmpMappingSizes.push_back(1);
  }
  LLVM_DEBUG(
      llvm::interleaveComma(
          tmpMappingSizes,
          DBGS() << "----tmpMappingSizes extracted from scf.forall op: ");
      llvm::dbgs() << "\n");

  // Step 2. sort the values by the corresponding DeviceMappingAttrInterface.
  auto comparator = [&](Attribute a, Attribute b) -> bool {
    return cast<DeviceMappingAttrInterface>(a).getMappingId() <
           cast<DeviceMappingAttrInterface>(b).getMappingId();
  };
  SmallVector<int64_t> forallMappingSizes =
      getValuesSortedByKey(forallMappingAttrs, tmpMappingSizes, comparator);
  LLVM_DEBUG(llvm::interleaveComma(forallMappingSizes,
                                   DBGS() << "----forallMappingSizes: ");
             llvm::dbgs() << "\n"; llvm::interleaveComma(
                 forallMappingAttrs, DBGS() << "----mappingAttrs: ");
             llvm::dbgs() << "\n");

  // Step 3. Generate the mappingIdOps using the provided generator.
  Location loc = forallOp.getLoc();
  OpBuilder::InsertionGuard guard(rewriter);
  rewriter.setInsertionPoint(forallOp);
  IdBuilderResult builderResult =
      gpuIdBuilder.idBuilder(rewriter, loc, forallMappingSizes);

  // Step 4. Map the induction variables to the mappingIdOps, this may involve a
  // permutation.
  SmallVector<Value> mappingIdOps = builderResult.mappingIdOps;
  IRMapping bvm;
  for (auto [iv, dim] :
       llvm::zip_equal(forallOp.getInductionVars(),
                       ArrayRef<Attribute>{forallMappingAttrs}.take_front(
                           forallOp.getInductionVars().size()))) {
    Value peIdOp = mappingIdOps[static_cast<int64_t>(
        cast<DeviceMappingAttrInterface>(dim).getMappingId())];
    bvm.map(iv, peIdOp);
  }

  // Step 5. If the availableMappingSizes are already known, create conditionals
  // to predicate the region. Otherwise, the current forall determines the
  // availableMappingSizes and no predication occurs.
  Value predicate;
  if (!availableMappingSizes.empty()) {
    SmallVector<int64_t> predicateMappingSizes =
        builderResult.predicateMappingSizes;
    SmallVector<Value> predicateIdOps = builderResult.predicateIdOps;
    // clang-format off
    LLVM_DEBUG(
        llvm::interleaveComma(
          predicateMappingSizes, DBGS() << "----predicateMappingSizes: ");
        llvm::dbgs() << "\n"; 
        llvm::interleaveComma(
          availableMappingSizes, DBGS() << "----availableMappingSizes: ");
        llvm::dbgs() << "\n";
        llvm::interleaveComma(predicateIdOps, DBGS() << "----predicateIdOps: ");
        llvm::dbgs() << "\n");
    // clang-format on
    for (auto [id, mappingSize, availableMappingSize] : llvm::zip_equal(
             predicateIdOps, predicateMappingSizes, availableMappingSizes)) {
      if (mappingSize > availableMappingSize) {
        return definiteFailureHelper(
            transformOp, forallOp,
            "Trying to map to fewer GPU threads than loop iterations but "
            "overprovisioning is not yet supported. "
            "Try additional tiling of the before mapping or map to more "
            "threads.");
      }
      if (mappingSize == availableMappingSize)
        continue;
      Value idx = rewriter.create<arith::ConstantIndexOp>(loc, mappingSize);
      Value tmpPredicate = rewriter.create<arith::CmpIOp>(
          loc, arith::CmpIPredicate::ult, id, idx);
      LDBG("----predicate: " << tmpPredicate);
      predicate = predicate ? rewriter.create<arith::AndIOp>(loc, predicate,
                                                             tmpPredicate)
                            : tmpPredicate;
    }
  }

  // Step 6. Move the body of forallOp.
  // Erase the terminator first, it will not be used.
  rewriter.eraseOp(forallOp.getTerminator());
  Block *targetBlock;
  Block::iterator insertionPoint;
  if (predicate) {
    // Step 6.a. If predicated, move at the beginning.
    auto ifOp = rewriter.create<scf::IfOp>(loc, predicate,
                                           /*withElseRegion=*/false);
    targetBlock = ifOp.thenBlock();
    insertionPoint = ifOp.thenBlock()->begin();
  } else {
    // Step 6.b. Otherwise, move inline just at the rewriter insertion
    // point.
    targetBlock = forallOp->getBlock();
    insertionPoint = rewriter.getInsertionPoint();
  }
  Block &sourceBlock = forallOp.getRegion().front();
  targetBlock->getOperations().splice(insertionPoint,
                                      sourceBlock.getOperations());

  // Step 7. RAUW indices.
  for (Value loopIndex : forallOp.getInductionVars()) {
    Value threadIdx = bvm.lookup(loopIndex);
    rewriter.replaceAllUsesWith(loopIndex, threadIdx);
  }

  // Step 8. Erase old op.
  rewriter.eraseOp(forallOp);

  result = ForallRewriteResult{forallMappingSizes, mappingIdOps};
  return DiagnosedSilenceableFailure::success();
}

//===----------------------------------------------------------------------===//
// MapForallToBlocks
//===----------------------------------------------------------------------===//

DiagnosedSilenceableFailure mlir::transform::gpu::mapForallToBlocksImpl(
    RewriterBase &rewriter, TransformOpInterface transformOp,
    scf::ForallOp forallOp, SmallVectorImpl<int64_t> &gridDims,
    const GpuIdBuilder &gpuIdBuilder) {
  LDBG("Start mapForallToBlocksImpl");

  Location loc = forallOp.getLoc();
  Block *parentBlock = forallOp->getBlock();
  Value zero;
  {
    // Create an early zero index value for replacements and immediately reset
    // the insertion point.
    OpBuilder::InsertionGuard guard(rewriter);
    rewriter.setInsertionPointToStart(parentBlock);
    zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
  }

  SmallVector<int64_t> anyAvailableMappingSizes;
  ForallRewriteResult rewriteResult;
  // Pass an empty anyAvailableMappingSizes.
  DiagnosedSilenceableFailure diag =
      rewriteOneForallCommonImpl(rewriter, transformOp, forallOp, rewriteResult,
                                 anyAvailableMappingSizes, gpuIdBuilder);

  // Return if anything goes wrong, use silenceable failure as a match failure.
  if (!diag.succeeded())
    return diag;

  // Set the gridDims that act as a return.
  gridDims = rewriteResult.mappingSizes;

  // Replace ids of dimensions known to be 1 by 0 to simplify the IR.
  // Here, the result of mapping determines the available mapping sizes.
  replaceUnitMappingIdsHelper<BlockDimOp>(rewriter, loc, parentBlock, zero,
                                          gridDims);

  return DiagnosedSilenceableFailure::success();
}

DiagnosedSilenceableFailure
mlir::transform::gpu::findTopLevelForallOp(Operation *target,
                                           scf::ForallOp &topLevelForallOp,
                                           TransformOpInterface transformOp) {
  auto walkResult = target->walk([&](scf::ForallOp forallOp) {
    if (forallOp->getParentOfType<scf::ForallOp>())
      return WalkResult::advance();
    if (topLevelForallOp)
      // TODO: Handle multiple forall if they are independent.
      return WalkResult::interrupt();
    topLevelForallOp = forallOp;
    return WalkResult::advance();
  });

  if (walkResult.wasInterrupted())
    return transformOp.emitSilenceableError()
           << "could not find a unique topLevel scf.forall";
  return DiagnosedSilenceableFailure::success();
}

DiagnosedSilenceableFailure
transform::MapForallToBlocks::applyToOne(Operation *target,
                                         ApplyToEachResultList &results,
                                         transform::TransformState &state) {
  LaunchOp gpuLaunch = dyn_cast<LaunchOp>(target);
  IRRewriter rewriter(getContext());
  auto transformOp = cast<TransformOpInterface>(getOperation());

  if (!getGenerateGpuLaunch() && !gpuLaunch) {
    DiagnosedSilenceableFailure diag =
        emitSilenceableError()
        << "Given target is not gpu.launch, set `generate_gpu_launch` "
           "attribute";
    diag.attachNote(target->getLoc()) << "when applied to this payload op";
    return diag;
  }

  scf::ForallOp topLevelForallOp;
  DiagnosedSilenceableFailure diag = mlir::transform::gpu::findTopLevelForallOp(
      target, topLevelForallOp, transformOp);
  if (!diag.succeeded()) {
    diag.attachNote(target->getLoc()) << "when applied to this payload op";
    return diag;
  }

  SmallVector<int64_t> gridDims{getGridDims()};
  if (!getGenerateGpuLaunch() && gridDims.size() != 3)
    return transformOp.emitDefiniteFailure("transform require size-3 mapping");

  OpBuilder::InsertionGuard guard(rewriter);
  rewriter.setInsertionPoint(topLevelForallOp);

  // Generate gpu launch here and move the forall inside
  if (getGenerateGpuLaunch()) {
    DiagnosedSilenceableFailure diag =
        createGpuLaunch(rewriter, target->getLoc(), transformOp, gpuLaunch);
    if (!diag.succeeded()) {
      return diag;
    }
    rewriter.setInsertionPointToStart(&gpuLaunch.getBody().front());
    Operation *newForallOp = rewriter.clone(*topLevelForallOp);
    rewriter.eraseOp(topLevelForallOp);
    topLevelForallOp = cast<scf::ForallOp>(newForallOp);
  }

  GpuBlockIdBuilder gpuBlockIdBuilder(getContext(), {}, {});
  diag = mlir::transform::gpu::mapForallToBlocksImpl(
      rewriter, transformOp, topLevelForallOp, gridDims, gpuBlockIdBuilder);
  if (!diag.succeeded())
    return diag;

  // Set the GPU launch configuration for the grid dims late, this is subject to
  // IR inspection.
  diag = alterGpuLaunch(rewriter, gpuLaunch,
                        cast<TransformOpInterface>(getOperation()), gridDims[0],
                        gridDims[1], gridDims[2]);

  results.push_back(gpuLaunch);
  return diag;
}

//===----------------------------------------------------------------------===//
// MapNestedForallToThreads
//===----------------------------------------------------------------------===//

DiagnosedSilenceableFailure mlir::transform::gpu::mapOneForallToThreadsImpl(
    RewriterBase &rewriter, std::optional<TransformOpInterface> transformOp,
    scf::ForallOp forallOp, ArrayRef<int64_t> availableMappingSizes,
    bool syncAfterDistribute, const GpuIdBuilder &gpuIdBuilder) {
  // Ignore cases with different attributes than this builder supports.
  for (Attribute map : forallOp.getMapping()->getValue()) {
    if (!llvm::is_contained(gpuIdBuilder.mappingAttributes, map)) {
      LDBG("--skip " << map);
      LLVM_DEBUG(llvm::interleaveComma(gpuIdBuilder.mappingAttributes,
                                       DBGS() << "----not in: ");
                 llvm::dbgs() << "\n";);
      return emitSilenceableFailure(forallOp);
    }
  }

  Location loc = forallOp.getLoc();
  OpBuilder::InsertionGuard g(rewriter);
  // Insert after to allow for syncthreads after `forall` is erased.
  rewriter.setInsertionPointAfter(forallOp);
  ForallRewriteResult rewriteResult;
  DiagnosedSilenceableFailure diag =
      rewriteOneForallCommonImpl(rewriter, transformOp, forallOp, rewriteResult,
                                 availableMappingSizes, gpuIdBuilder);

  // Return if anything goes wrong, use silenceable failure as a match failure.
  if (!diag.succeeded())
    return diag;

  // Add a syncthreads if needed. TODO: warpsync
  if (syncAfterDistribute)
    rewriter.create<BarrierOp>(loc);

  return DiagnosedSilenceableFailure::success();
}

DiagnosedSilenceableFailure mlir::transform::gpu::mapNestedForallToThreadsImpl(
    RewriterBase &rewriter, std::optional<TransformOpInterface> transformOp,
    Operation *target, ArrayRef<int64_t> blockDims, ArrayRef<int64_t> warpDims,
    bool syncAfterDistribute) {
  LDBG("Start mapNestedForallToThreadsImpl");
  MLIRContext *ctx = rewriter.getContext();
  SmallVector<OpFoldResult> blockDimsOfr =
      getAsIndexOpFoldResult(ctx, blockDims);

  if (blockDims.size() != 3)
    return definiteFailureHelper(transformOp, target,
                                 "requires size-3 thread mapping");
  if (!warpDims.empty()) {
    if (warpDims.size() != 3)
      return definiteFailureHelper(transformOp, target,
                                   "requires empty or size-3 warp mapping");
  }

  // Create an early zero index value for replacements.
  Location loc = target->getLoc();
  Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
  DiagnosedSilenceableFailure diag = DiagnosedSilenceableFailure::success();
  WalkResult walkResult = target->walk([&](scf::ForallOp forallOp) {
    //===--------------------------------------------------------------------===//
    // Mapping to warp ids.
    //===--------------------------------------------------------------------===//
    if (!warpDims.empty()) {
      LLVM_DEBUG(
          llvm::interleaveComma(
              warpDims, DBGS() << "+mapNestedForallToThreadsImpl warpDims: ");
          llvm::dbgs() << "\n");
      LLVM_DEBUG(llvm::interleaveComma(
                     blockDimsOfr, DBGS() << "--warpDims with blockDimsOfr:  ");
                 llvm::dbgs() << "\n");
      GpuWarpIdBuilder gpuWarpIdBuilder(ctx, blockDimsOfr, warpDims);
      diag = mlir::transform::gpu::mapOneForallToThreadsImpl(
          rewriter, transformOp, forallOp, warpDims, syncAfterDistribute,
          gpuWarpIdBuilder);
      // Use silenceable failure to encode "failure to match" and pass
      // through.
      if (diag.isDefiniteFailure())
        return WalkResult::interrupt();
      if (diag.succeeded())
        return WalkResult::skip();
    }

    //===--------------------------------------------------------------------===//
    // Mapping to linear ids.
    //===--------------------------------------------------------------------===//
    LDBG("+mapNestedForallToThreadsImpl linearDims");
    LLVM_DEBUG(llvm::interleaveComma(
                   blockDimsOfr, DBGS() << "--linearDims with blockDimsOfr:  ");
               llvm::dbgs() << "\n");
    int64_t numThreads = 1;
    for (int64_t b : blockDims)
      numThreads *= b;
    GpuLinearIdBuilder gpuLinearIdBuilder(ctx, blockDimsOfr, numThreads);
    diag = mlir::transform::gpu::mapOneForallToThreadsImpl(
        rewriter, transformOp, forallOp, numThreads, syncAfterDistribute,
        gpuLinearIdBuilder);
    // Use silenceable failure to encode "failure to match" and pass through.
    if (diag.isDefiniteFailure())
      return WalkResult::interrupt();
    if (diag.succeeded())
      return WalkResult::skip();

    //===--------------------------------------------------------------------===//
    // Mapping to block ids (happens last so we can replay ThreadIdOp).
    //===--------------------------------------------------------------------===//
    LLVM_DEBUG(
        llvm::interleaveComma(
            blockDimsOfr, DBGS() << "mapNestedForallToThreadsImpl blockDims: ");
        llvm::dbgs() << "\n");
    GpuThreadIdBuilder gpuThreadIdBuilder(ctx, blockDimsOfr, blockDims);
    diag = mlir::transform::gpu::mapOneForallToThreadsImpl(
        rewriter, transformOp, forallOp, blockDims, syncAfterDistribute,
        gpuThreadIdBuilder);
    // Use silenceable failure to encode "failure to match" and pass through.
    if (diag.isDefiniteFailure())
      return WalkResult::interrupt();

    return WalkResult::advance();
  });
  if (walkResult.wasInterrupted())
    return diag;

  // Replace ids of dimensions known to be 1 by 0 to simplify the IR.
  // Here, the result of mapping determines the available mapping sizes.
  replaceUnitMappingIdsHelper<ThreadIdOp>(rewriter, loc, target, zero,
                                          blockDims);

  return DiagnosedSilenceableFailure::success();
}

DiagnosedSilenceableFailure transform::MapNestedForallToThreads::applyToOne(
    Operation *target, ApplyToEachResultList &results, TransformState &state) {
  LaunchOp gpuLaunch = dyn_cast<LaunchOp>(target);
  auto transformOp = cast<TransformOpInterface>(getOperation());

  // Basic high-level verifications.
  if (!gpuLaunch)
    return emitSilenceableError() << "Given target is not a gpu.launch";

  // Mapping to block ids.
  SmallVector<int64_t> blockDims{getBlockDims()};

  DiagnosedSilenceableFailure diag =
      checkGpuLimits(transformOp, std::nullopt, std::nullopt, std::nullopt,
                     blockDims[0], blockDims[1], blockDims[2]);
  if (diag.isSilenceableFailure()) {
    diag.attachNote(getLoc()) << getBlockDimsAttrName() << " is too large";
    return diag;
  }

  // Set the GPU launch configuration for the block dims early, this is not
  // subject to IR inspection.
  IRRewriter rewriter(getContext());
  diag = alterGpuLaunch(rewriter, gpuLaunch, transformOp, std::nullopt,
                        std::nullopt, std::nullopt, blockDims[0], blockDims[1],
                        blockDims[2]);

  rewriter.setInsertionPointToStart(&gpuLaunch.getBody().front());
  diag =
      mapNestedForallToThreadsImpl(rewriter, transformOp, gpuLaunch, blockDims,
                                   getWarpDims(), getSyncAfterDistribute());

  results.push_back(gpuLaunch.getOperation());
  return diag;
}

//===----------------------------------------------------------------------===//
// Transform op registration
//===----------------------------------------------------------------------===//

namespace {
/// Registers new ops and declares PDL as dependent dialect since the
/// additional ops are using PDL types for operands and results.
class GPUTransformDialectExtension
    : public transform::TransformDialectExtension<
          GPUTransformDialectExtension> {
public:
  GPUTransformDialectExtension() {
    declareDependentDialect<pdl::PDLDialect>();
    declareGeneratedDialect<scf::SCFDialect>();
    declareGeneratedDialect<arith::ArithDialect>();
    declareGeneratedDialect<GPUDialect>();
    registerTransformOps<
#define GET_OP_LIST
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc"
        >();
  }
};
} // namespace

#define GET_OP_CLASSES
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc"

void mlir::gpu::registerTransformDialectExtension(DialectRegistry &registry) {
  registry.addExtensions<GPUTransformDialectExtension>();
}