summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Linalg/Transforms/ConvertToDestinationStyle.cpp
blob: 3ec5094ed90b59ccc77c37900773b3ebf2d99ad7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
//===- ConvertToDestinationStyle.cpp - Convert non-DPS to DPS ops ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains patterns to convert non-DPS ops to DPS ops. New
// tensor.empty ops are inserted as a destination. Such tensor.empty can be
// eliminated with "empty tensor elimination", allowing them to bufferize
// without an allocation (assuming there are no further conflicts).
//
//===----------------------------------------------------------------------===//
//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"

using namespace mlir;
using namespace mlir::tensor;

// Implements backtracking to traverse indices of the output buffer while
// iterating over op.elements().
static Value createInserts(RewriterBase &rewriter, Location loc, int dim,
                           Value destination, ArrayRef<int64_t> shape,
                           ArrayRef<Value> constants,
                           OperandRange::iterator &elementIt,
                           SmallVectorImpl<Value> &indices) {
  if (dim == static_cast<int>(shape.size()) - 1) {
    for (int i = 0; i < shape.back(); ++i) {
      indices.back() = constants[i];
      destination = rewriter.create<tensor::InsertOp>(loc, *elementIt,
                                                      destination, indices);
      ++elementIt;
    }
    return destination;
  }
  for (int i = 0; i < shape[dim]; ++i) {
    indices[dim] = constants[i];
    destination = createInserts(rewriter, loc, dim + 1, destination, shape,
                                constants, elementIt, indices);
  }
  return destination;
}

static Operation *movePaddingToFillOrGenericOp(RewriterBase &rewriter,
                                               Location loc, PadOp padOp,
                                               Value dest) {
  OpBuilder::InsertionGuard g(rewriter);
  RankedTensorType resultType = padOp.getResultType();

  // Examine the yielded value to decide if a linalg.generic is neede or a
  // linalg.fill is sufficient.
  Value yieldedValue =
      cast<tensor::YieldOp>(padOp.getBody()->getTerminator()).getValue();
  Attribute constYieldedValue;
  // Is the yielded value a bbArg defined outside of the PadOp?
  bool outsideBbArg =
      yieldedValue.isa<BlockArgument>() &&
      yieldedValue.cast<BlockArgument>().getOwner()->getParentOp() !=
          padOp.getOperation();
  // Is the yielded value an OpResult defined outside of the PadOp?
  bool outsideOpResult =
      yieldedValue.isa<OpResult>() &&
      yieldedValue.getDefiningOp()->getParentOp() != padOp.getOperation();
  bool invariantYieldedValue = outsideBbArg || outsideOpResult;
  if (matchPattern(yieldedValue, m_Constant(&constYieldedValue))) {
    // Padding with a constant: Create linalg.fill.
    Dialect *arithDialect =
        rewriter.getContext()->getLoadedDialect<arith::ArithDialect>();
    Value fillValue =
        arithDialect
            ->materializeConstant(rewriter, constYieldedValue,
                                  yieldedValue.getType(), yieldedValue.getLoc())
            ->getResult(0);
    auto fillOp = rewriter.create<linalg::FillOp>(loc, ValueRange(fillValue),
                                                  ValueRange(dest));
    return fillOp;
  }

  if (invariantYieldedValue) {
    // Padding with an invariant value.
    auto fillOp = rewriter.create<linalg::FillOp>(loc, ValueRange(yieldedValue),
                                                  ValueRange(dest));
    return fillOp;
  }

  // Create linalg.generic.
  SmallVector<utils::IteratorType> iteratorTypes(resultType.getRank(),
                                                 utils::IteratorType::parallel);
  SmallVector<AffineMap> indexingMaps(
      1, rewriter.getMultiDimIdentityMap(resultType.getRank()));
  auto genericOp = rewriter.create<linalg::GenericOp>(
      loc, resultType, /*inputs=*/ValueRange(),
      /*outputs=*/ValueRange{dest}, /*indexingMaps=*/
      indexingMaps, iteratorTypes);
  Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
                                     resultType.getElementType(), loc);
  rewriter.setInsertionPointToStart(body);
  SmallVector<Value> bbArgReplacements;
  for (int64_t i = 0; i < resultType.getRank(); ++i)
    bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i));
  rewriter.mergeBlocks(padOp.getBody(), body, bbArgReplacements);

  // Update terminator.
  auto yieldOp = cast<tensor::YieldOp>(body->getTerminator());
  rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue());
  return genericOp;
}

static SmallVector<Value> reifyOrComputeDynamicSizes(OpBuilder &b,
                                                     Value value) {
  auto tensorType = value.getType().cast<RankedTensorType>();
  if (tensorType.hasStaticShape())
    return {};

  // Try to reify dynamic sizes.
  ReifiedRankedShapedTypeDims reifiedShape;
  if (value.isa<OpResult>() &&
      succeeded(reifyResultShapes(b, value.getDefiningOp(), reifiedShape))) {
    SmallVector<Value> dynSizes;
    for (int64_t i = 0; i < tensorType.getRank(); ++i) {
      if (tensorType.isDynamicDim(i))
        dynSizes.push_back(
            reifiedShape[value.cast<OpResult>().getResultNumber()][i]
                .get<Value>());
    }
    return dynSizes;
  }

  // Create tensor.dim ops.
  SmallVector<Value> dynSizes;
  for (int64_t i = 0; i < tensorType.getRank(); ++i) {
    if (tensorType.isDynamicDim(i))
      dynSizes.push_back(
          b.create<DimOp>(value.getLoc(), value,
                          b.create<arith::ConstantIndexOp>(value.getLoc(), i)));
  }
  return dynSizes;
}

static Value createAllocationForTensor(RewriterBase &rewriter, Location loc,
                                       Value value,
                                       Attribute memorySpace = {}) {
  OpBuilder::InsertionGuard g(rewriter);
  auto tensorType = value.getType().cast<RankedTensorType>();

  // Create buffer allocation.
  auto memrefType = bufferization::getMemRefTypeWithStaticIdentityLayout(
                        tensorType, memorySpace)
                        .cast<MemRefType>();
  SmallVector<Value> dynamicSizes = reifyOrComputeDynamicSizes(rewriter, value);
  Value alloc = rewriter.create<memref::AllocOp>(loc, memrefType, dynamicSizes);

  // Place deallocation at the end of the block.
  rewriter.setInsertionPoint(rewriter.getInsertionBlock()->getTerminator());
  rewriter.create<memref::DeallocOp>(loc, alloc);

  return alloc;
}

Value linalg::bufferizeToAllocation(RewriterBase &rewriter, PadOp padOp,
                                    Attribute memorySpace) {
  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPoint(padOp);
  Location loc = padOp.getLoc();

  // Create buffer allocation.
  Value alloc =
      createAllocationForTensor(rewriter, loc, padOp.getResult(), memorySpace);
  rewriter.setInsertionPointAfter(alloc.getDefiningOp());

  // Create linalg.fill or linalg.generic.
  Operation *fillOp = movePaddingToFillOrGenericOp(rewriter, loc, padOp, alloc);
  rewriter.setInsertionPointAfter(fillOp);

  // Create memref.tensor_store.
  SmallVector<OpFoldResult> sizes =
      getMixedSizes(rewriter, loc, padOp.getSource());
  SmallVector<OpFoldResult> strides(padOp.getResultType().getRank(),
                                    rewriter.getIndexAttr(1));
  Value subview = rewriter.create<memref::SubViewOp>(
      loc, alloc, /*offsets=*/padOp.getMixedLowPad(), sizes, strides);
  rewriter.create<memref::TensorStoreOp>(loc, padOp.getSource(), subview);

  // Create bufferization.to_tensor with "restrict" and "writable". The returned
  // tensor is a new buffer allocation, so it does not alias with any buffer.
  Value toTensorOp = rewriter.create<bufferization::ToTensorOp>(
      loc, alloc, /*restrict=*/true, /*writable=*/true);
  rewriter.replaceOp(padOp, toTensorOp);
  return toTensorOp;
}

/// Lower tensor.from_elements to a sequence of chained tensor.insert.
FailureOr<Operation *> mlir::linalg::rewriteInDestinationPassingStyle(
    RewriterBase &rewriter, tensor::FromElementsOp fromElementsOp) {
  Location loc = fromElementsOp.getLoc();
  RankedTensorType tensorType =
      fromElementsOp.getType().cast<RankedTensorType>();
  auto shape = tensorType.getShape();

  // Create tensor.empty.
  auto emptyOp = rewriter.create<EmptyOp>(loc, tensorType, ValueRange());

  // Case: tensor<elem_type>.
  if (shape.empty()) {
    Operation *res = rewriter.replaceOpWithNewOp<tensor::InsertOp>(
        fromElementsOp, fromElementsOp.getElements().front(),
        emptyOp.getResult(), ValueRange());
    return res;
  }

  // Create constants for the range of possible indices [0, max{shape_i}).
  auto maxDim = *std::max_element(shape.begin(), shape.end());
  SmallVector<Value, 2> constants;
  constants.reserve(maxDim);
  for (int i = 0; i < maxDim; ++i)
    constants.push_back(rewriter.create<arith::ConstantIndexOp>(loc, i));

  // Traverse all elements and create tensor.insert ops.
  auto elementIt = fromElementsOp.getElements().begin();
  SmallVector<Value, 2> indices(tensorType.getRank(), constants[0]);
  Value result = createInserts(rewriter, loc, /*dim=*/0, emptyOp.getResult(),
                               shape, constants, elementIt, indices);

  // Replace tensor.from_elements.
  rewriter.replaceOp(fromElementsOp, result);
  return result.getDefiningOp();
}

/// Lower tensor.generate to linalg.generic.
FailureOr<Operation *>
mlir::linalg::rewriteInDestinationPassingStyle(RewriterBase &rewriter,
                                               tensor::GenerateOp generateOp) {
  // Only ops with exactly one block are supported.
  if (!generateOp.getBody().hasOneBlock())
    return failure();

  Location loc = generateOp.getLoc();
  RankedTensorType tensorType = generateOp.getType().cast<RankedTensorType>();

  // Create tensor.empty.
  auto emptyOp =
      rewriter.create<EmptyOp>(loc, tensorType, generateOp.getDynamicExtents());

  // Create linalg.generic.
  SmallVector<utils::IteratorType> iteratorTypes(tensorType.getRank(),
                                                 utils::IteratorType::parallel);
  SmallVector<AffineMap> indexingMaps(
      1, rewriter.getMultiDimIdentityMap(tensorType.getRank()));
  auto genericOp = rewriter.create<linalg::GenericOp>(
      loc, tensorType, /*inputs=*/ValueRange(),
      /*outputs=*/ValueRange{emptyOp.getResult()}, /*indexingMaps=*/
      indexingMaps, iteratorTypes);
  Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
                                     tensorType.getElementType(), loc);
  rewriter.setInsertionPointToStart(body);
  SmallVector<Value> bbArgReplacements;
  for (int64_t i = 0; i < tensorType.getRank(); ++i)
    bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i));
  rewriter.mergeBlocks(&generateOp.getBody().front(), body, bbArgReplacements);

  // Update terminator.
  auto yieldOp = cast<tensor::YieldOp>(body->getTerminator());
  rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue());

  // Replace tensor.generate.
  rewriter.replaceOp(generateOp, genericOp->getResult(0));
  return genericOp.getOperation();
}

/// Lower tensor.pad to linalg.generic + tensor.insert_slice.
FailureOr<Operation *>
mlir::linalg::rewriteInDestinationPassingStyle(RewriterBase &rewriter,
                                               tensor::PadOp padOp) {
  // Only ops with exactly one block are supported.
  if (!padOp.getBodyRegion().hasOneBlock())
    return failure();

  // Create tensor.empty.
  Location loc = padOp.getLoc();
  RankedTensorType resultType = padOp.getResultType();
  ReifiedRankedShapedTypeDims reifiedShape;
  if (failed(reifyResultShapes(rewriter, padOp, reifiedShape)))
    return rewriter.notifyMatchFailure(
        padOp, "failed to reify tensor.pad op result shape");
  SmallVector<Value> dynamicSizes;
  for (int64_t i = 0; i < resultType.getRank(); ++i)
    if (resultType.isDynamicDim(i))
      dynamicSizes.push_back(reifiedShape[0][i].get<Value>());

  // If the `padOp` has a nofold attribute and all paddings are known to be 0,
  // explicitly insert a `linalg.copy`.
  if (padOp.getNofoldAttr() &&
      llvm::all_of(padOp.getMixedLowPad(), isZeroIndex) &&
      llvm::all_of(padOp.getMixedHighPad(), isZeroIndex)) {
    using bufferization::AllocTensorOp;
    Value allocated =
        rewriter.create<AllocTensorOp>(loc, resultType, dynamicSizes);
    auto copyOp = rewriter.replaceOpWithNewOp<linalg::CopyOp>(
        padOp, padOp.getSource(), allocated);
    return copyOp.getOperation();
  }

  Value empty = rewriter.create<EmptyOp>(loc, resultType, dynamicSizes);
  // Create linalg.fill or linalg.generic.
  Operation *fillOp = movePaddingToFillOrGenericOp(rewriter, loc, padOp, empty);
  rewriter.setInsertionPointAfter(fillOp);

  // Create tensor::InsertSliceOp.
  SmallVector<OpFoldResult> sliceSizes =
      getMixedSizes(rewriter, loc, padOp.getSource());
  SmallVector<OpFoldResult> sliceStrides(resultType.getRank(),
                                         rewriter.getIndexAttr(1));
  auto insertSliceOp = rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
      padOp, padOp.getSource(), fillOp->getResult(0),
      /*offsets=*/padOp.getMixedLowPad(), sliceSizes, sliceStrides);
  return insertSliceOp.getOperation();
}

Value linalg::bufferizeToAllocation(RewriterBase &rewriter, Value value,
                                    Attribute memorySpace) {
  // Call specialized overload for certain ops.
  if (auto padOp = value.getDefiningOp<PadOp>())
    return bufferizeToAllocation(rewriter, padOp, memorySpace);

  // Collect all uses.
  SmallVector<OpOperand *> uses = llvm::to_vector(
      llvm::map_range(value.getUses(), [](OpOperand &use) { return &use; }));

  OpBuilder::InsertionGuard g(rewriter);
  if (auto bbArg = value.dyn_cast<BlockArgument>()) {
    rewriter.setInsertionPointToStart(bbArg.getOwner());
  } else {
    rewriter.setInsertionPointAfter(value.getDefiningOp());
  }
  Location loc = value.getLoc();

  // Create buffer allocation.
  Value alloc = createAllocationForTensor(rewriter, loc, value, memorySpace);

  // Create memref.tensor_store.
  rewriter.setInsertionPointAfter(alloc.getDefiningOp());
  rewriter.create<memref::TensorStoreOp>(loc, value, alloc);

  // Create bufferization.to_tensor with "restrict" and "writable". The returned
  // tensor is a new buffer allocation, so it does not alias with any buffer.
  Value toTensorOp = rewriter.create<bufferization::ToTensorOp>(
      loc, alloc, /*restrict=*/true, /*writable=*/true);
  for (OpOperand *use : uses) {
    rewriter.updateRootInPlace(use->getOwner(),
                               [&]() { use->set(toTensorOp); });
  }

  return toTensorOp;
}

namespace {

template <typename OpTy>
LogicalResult rewriteOpInDestinationPassingStyle(OpTy op,
                                                 PatternRewriter &rewriter) {
  return linalg::rewriteInDestinationPassingStyle(rewriter, op);
}

} // namespace

void linalg::populateConvertToDestinationStylePatterns(
    RewritePatternSet &patterns) {
  patterns.add(rewriteOpInDestinationPassingStyle<tensor::FromElementsOp>);
  patterns.add(rewriteOpInDestinationPassingStyle<tensor::GenerateOp>);
  patterns.add(rewriteOpInDestinationPassingStyle<tensor::PadOp>);
}