summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Linalg/Transforms/DataLayoutPropagation.cpp
blob: 2d1b544e468c865e0d63a097791ca1dfb57b2a6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
//===- DataLayoutPropagation.cpp -----------------------------------------===///
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Passes.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/Support/Debug.h"
#include <optional>

namespace mlir {
#define GEN_PASS_DEF_LINALGDATALAYOUTPROPAGATION
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir

using namespace mlir;
using namespace mlir::linalg;

#define DEBUG_TYPE "linalg-data-layout-propagation"

namespace {

// The struct contains the infomation about mapping packing information to
// the iteration domain of Linalg ops.
struct PackInfo {
  int64_t getNumTiledLoops() const { return tileToPointMapping.size(); };
  // InnerDimsPos on iteration domain, which follows the order in pack ops.
  SmallVector<int64_t> tiledDimsPos;
  // The sizes of tiling data dimensions on iteration domain.
  llvm::DenseMap<int64_t, OpFoldResult> domainDimAndTileMapping;
  // The mapping from a dimension of iteration domain to the corresponding inner
  // tiling dimension on iteration domain.
  llvm::DenseMap<int64_t, int64_t> tileToPointMapping;
  // The permutation of outer dims (on domain).
  SmallVector<int64_t> outerDimsOnDomainPerm;
};

template <typename OpTy>
static PackInfo getPackingInfoFromOperand(AffineMap indexingMap,
                                          OpTy packOrUnPackOp) {
  static_assert(llvm::is_one_of<OpTy, tensor::PackOp, tensor::UnPackOp>::value,
                "applies to only pack or unpack operations");
  LLVM_DEBUG(
      { llvm::dbgs() << "--- Construct PackInfo From an operand ---\n"; });
  PackInfo packInfo;
  int64_t origNumDims = indexingMap.getNumDims();
  SmallVector<AffineExpr> exprs(indexingMap.getResults());
  ArrayRef<int64_t> innerDimsPos = packOrUnPackOp.getInnerDimsPos();
  for (auto [index, innerDimPos, tileSize] :
       llvm::zip_equal(llvm::seq<unsigned>(0, innerDimsPos.size()),
                       innerDimsPos, packOrUnPackOp.getMixedTiles())) {
    int64_t domainDimPos =
        exprs[innerDimPos].template cast<AffineDimExpr>().getPosition();
    packInfo.tiledDimsPos.push_back(domainDimPos);
    packInfo.domainDimAndTileMapping[domainDimPos] = tileSize;
    packInfo.tileToPointMapping[domainDimPos] = origNumDims + index;
    LLVM_DEBUG({
      llvm::dbgs() << "map innerDimPos=" << innerDimPos
                   << " to iteration dimension (d" << domainDimPos << ", d"
                   << packInfo.tileToPointMapping[domainDimPos]
                   << "), which has size=("
                   << packInfo.domainDimAndTileMapping[domainDimPos] << ")\n";
    });
  }

  for (auto dim : packOrUnPackOp.getOuterDimsPerm())
    packInfo.outerDimsOnDomainPerm.push_back(indexingMap.getDimPosition(dim));
  if (!packInfo.outerDimsOnDomainPerm.empty()) {
    LLVM_DEBUG({
      llvm::dbgs() << "map outer dimsDimsPerm to ";
      for (auto dim : packInfo.outerDimsOnDomainPerm)
        llvm::dbgs() << dim << " ";
      llvm::dbgs() << "\n";
    });
  }

  return packInfo;
}

static SmallVector<int64_t> computeOuterDims(ArrayRef<int64_t> perm,
                                             ArrayRef<AffineExpr> exprs) {
  // Compute `outer_dims_perm`. See example:
  // current exprs      : (d0, d1, d2, d3) -> (d2, d3)
  // perm               : [0, 3, 1, 2]
  // First map d2, d3 with their position in the array as:
  // currentPositionTileLoops: dim | pos
  //                           d2  | 0
  //                           d3  | 1
  // then scan `perm` in order and get the `outer_dims_perm`
  // to be used, here it would be [1, 0].
  assert(!perm.empty() && "expect perm not to be empty");
  assert(!exprs.empty() && "expect exprs not to be empty");
  if (exprs.size() == 1)
    return {};
  SmallVector<int64_t> outerDimsPerm;
  DenseMap<int64_t, int64_t> currentPositionTileLoops;
  for (auto [pos, expr] : llvm::enumerate(exprs)) {
    unsigned posInDomain = expr.cast<AffineDimExpr>().getPosition();
    currentPositionTileLoops[posInDomain] = pos;
  }
  for (int64_t loopIdx : perm) {
    if (currentPositionTileLoops.count(loopIdx))
      outerDimsPerm.push_back(currentPositionTileLoops.lookup(loopIdx));
  }
  return outerDimsPerm;
}

/// Returns a tuple for packed operand and indexing_map with the assumptions:
///   1) The generic op is the producer of the pack op.
///   2) The generic op has only one result.
/// If the operand is a scalar or packing dimensions are all irrelevant to the
/// operand, the operand and the updated indexing map will be returned.
/// Otherwise, it returns the packed operand and the updated indexing map. E.g.,
///
///   #map0 = affine_map<(d0, d1) -> (d0, d1)>
///   #map1 = affine_map<(d0, d1) -> (d0)>
///   #map2 = affine_map<(d0, d1) -> (d1)>
///   %0 = linalg.generic {indexing_maps = [#map1, #map2, #map0],
///                        iterator_types = ["parallel", "parallel"]}
///      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
///      outs(%init : tensor<?x?xf32>) {
///    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
///      %4 = arith.addf %arg3, %arg4 : f32
///      linalg.yield %4 : f32
///  } -> tensor<?x?xf32>
///  %1 = tensor.pack %0
///    inner_dims_pos = [0, 1]
///    inner_tiles = [8, 2]
///    into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
///
///  Taking the first input operand as an example, the inner tile size of d1 is
///  8. Thus, the below operation and `affine_map<(d0, d1, d2, d3)> ->
///  affine_map<(d1, d3)>` will be returned.
///
///  %pack = tensor.pack %arg0
///    inner_dims_pos = [0]
///    inner_tiles = [8]
///    into %init : tensor<?xf32> -> tensor<?x8xf32>
static std::tuple<Value, AffineMap>
getOrCreatePackedViewOfOperand(OpBuilder &b, Location loc, PackInfo packInfo,
                               GenericOp genericOp, OpOperand *opOperand) {
  int64_t numOrigLoops = genericOp.getNumLoops();
  int64_t numInnerLoops = packInfo.getNumTiledLoops();
  int64_t numLoops = numOrigLoops + numInnerLoops;
  AffineMap origIndexingMap = genericOp.getMatchingIndexingMap(opOperand);
  llvm::DenseMap<int64_t, int64_t> domainDimToOperandDim;
  SmallVector<AffineExpr> exprs(origIndexingMap.getResults());
  if (genericOp.isScalar(opOperand) || exprs.size() == 0)
    return std::make_tuple(opOperand->get(),
                           AffineMap::get(numLoops, 0, exprs, b.getContext()));

  // Step 1. Construct the information of packing data dimensions; append inner
  // dimensions to the indexing maps for the operand.
  for (auto [index, expr] : llvm::enumerate(exprs)) {
    if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
      int64_t dimPos = dimExpr.getPosition();
      domainDimToOperandDim[dimPos] = index;
      continue;
    }
    assert(expr.isa<AffineConstantExpr>() &&
           "Found non-constant and non-affine dim expression");
  }
  SmallVector<int64_t> innerDimsPos;
  SmallVector<OpFoldResult> innerTileSizes;
  for (auto dimPos : packInfo.tiledDimsPos) {
    if (!domainDimToOperandDim.count(dimPos))
      continue;
    int64_t index = domainDimToOperandDim[dimPos];
    innerTileSizes.push_back(packInfo.domainDimAndTileMapping[dimPos]);
    innerDimsPos.push_back(index);
    exprs.push_back(b.getAffineDimExpr(packInfo.tileToPointMapping[dimPos]));
  }

  // Step 2. Handle outer dim permutations.
  SmallVector<int64_t> outerDimsPerm;
  if (!packInfo.outerDimsOnDomainPerm.empty()) {
    outerDimsPerm = computeOuterDims(packInfo.outerDimsOnDomainPerm, exprs);

    // Step 2.1: Fold transpose into the linalg.generic.
    SmallVector<int64_t> inversedOuterPerm =
        invertPermutationVector(packInfo.outerDimsOnDomainPerm);
    for (auto i : llvm::seq<unsigned>(0, origIndexingMap.getNumResults())) {
      if (auto dimExpr = exprs[i].dyn_cast<AffineDimExpr>()) {
        int64_t dimPos = dimExpr.getPosition();
        exprs[i] = b.getAffineDimExpr(inversedOuterPerm[dimPos]);
        continue;
      }
      assert(exprs[i].isa<AffineConstantExpr>() &&
             "Attempted to permute non-constant and non-affine dim expression");
    }
    // Step 2.2: Undo the transposition on `exprs` and propagate the
    // transposition on the pack using outerDimsPerm.
    if (!outerDimsPerm.empty()) {
      SmallVector<AffineExpr> auxVec = exprs;
      for (const auto &en : enumerate(outerDimsPerm))
        auxVec[en.index()] = exprs[en.value()];
      exprs = auxVec;
    }
  }
  auto indexingMap = AffineMap::get(numLoops, 0, exprs, b.getContext());

  // The operand does not have dimensions that relates to pack op.
  if (innerDimsPos.empty())
    return std::make_tuple(opOperand->get(), indexingMap);

  auto empty = tensor::PackOp::createDestinationTensor(
      b, loc, opOperand->get(), innerTileSizes, innerDimsPos, outerDimsPerm);
  auto packedOperand = b.create<tensor::PackOp>(
      loc, opOperand->get(), empty, innerDimsPos, innerTileSizes,
      /*padding=*/std::nullopt, outerDimsPerm);
  return std::make_tuple(packedOperand, indexingMap);
}

/// Pack an element-wise genericOp and return it.
static GenericOp packElementWiseOp(RewriterBase &rewriter, GenericOp genericOp,
                                   Value dest, AffineMap packedOutIndexingMap,
                                   const PackInfo &packInfo) {
  Location loc = genericOp.getLoc();
  SmallVector<Value> inputOperands;
  SmallVector<AffineMap> indexingMaps;
  for (OpOperand *inputOperand : genericOp.getDpsInputOperands()) {
    auto [packedOperand, packedIndexingMap] = getOrCreatePackedViewOfOperand(
        rewriter, loc, packInfo, genericOp, inputOperand);
    inputOperands.push_back(packedOperand);
    indexingMaps.push_back(packedIndexingMap);
  }

  int64_t numInnerLoops = packInfo.getNumTiledLoops();
  SmallVector<utils::IteratorType> iterTypes =
      genericOp.getIteratorTypesArray();
  iterTypes.append(numInnerLoops, utils::IteratorType::parallel);

  indexingMaps.push_back(packedOutIndexingMap);

  auto newGenericOp = rewriter.create<linalg::GenericOp>(
      loc, dest.getType(), inputOperands, dest, indexingMaps, iterTypes,
      /*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));
  rewriter.cloneRegionBefore(genericOp.getRegion(), newGenericOp.getRegion(),
                             newGenericOp.getRegion().begin());
  return newGenericOp;
}

/// Bubbles up tensor.pack op through elementwise generic op. This
/// swap pack(generic) to generic(pack). The new generic op works on packed
/// domain; pack ops are created for input and output operands. E.g.,
///
///     #map0 = affine_map<(d0, d1) -> (d0, d1)>
///     %0 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
///     %1 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
///     %2 = tensor.empty(%0, %1) : tensor<?x?xf32>
///     %3 = linalg.generic {indexing_maps = [#map0, #map0],
///                          iterator_types = ["parallel", "parallel"]}
///         ins(%arg0 : tensor<?x?xf32>)
///         outs(%2 : tensor<?x?xf32>) {
///       ^bb0(%arg3: f32, %arg4: f32):
///         %4 = arith.addf %arg3, %arg3 : f32
///         linalg.yield %4 : f32
///     } -> tensor<?x?xf32>
///     %4 = tensor.pack %3
///       inner_dims_pos = [0, 1]
///       inner_tiles = [8, 2]
///       into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
///
/// will be converted to
///
///     #map = affine_map<()[s0] -> (s0 ceildiv 8)>
///     #map1 = affine_map<()[s0] -> (s0 ceildiv 2)>
///     #map2 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
///     %dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
///     %dim_0 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
///     %0 = affine.apply #map()[%dim]
///     %1 = affine.apply #map1()[%dim_0]
///     %2 = tensor.empty(%0, %1) : tensor<?x?x8x2xf32>
///     %pack = tensor.pack %arg0
///       inner_dims_pos = [0, 1]
///       inner_tiles = [8, 2]
///       into %2 : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
///     %3 = linalg.generic {indexing_maps = [#map2, #map2],
///       iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
///       ins(%pack : tensor<?x?x8x2xf32>)
///       outs(%arg1 : tensor<?x?x8x2xf32>) {
///     ^bb0(%in: f32, %out: f32):
///       %4 = arith.addf %in, %in : f32
///       linalg.yield %4 : f32
///     } -> tensor<?x?x8x2xf32>
static FailureOr<GenericOp>
bubbleUpPackOpThroughElemGenericOp(RewriterBase &rewriter,
                                   tensor::PackOp packOp) {
  auto genericOp = packOp.getSource().getDefiningOp<GenericOp>();
  if (!genericOp || !isElementwise(genericOp))
    return failure();

  // TODO: Relax the restriction. We are able to bubble up the pack op through
  // multi-result generic op. It just needs more work.
  if (genericOp.getNumResults() != 1)
    return failure();

  // Bail-out if the result of the generic has multiple uses, as bubbling up
  // creates recomputation if the generic has multiple users.
  if (!genericOp->getResult(0).hasOneUse())
    return failure();

  // We want to move the pack not the generic.
  OpBuilder::InsertionGuard guard(rewriter);
  rewriter.setInsertionPoint(genericOp);

  // We need to handle two cases:
  // 1) The tensor.pack destination is a tensor.empty. If this is the case, we
  // create a new tensor.empty to avoid breaking dominance, as we are moving the
  // tensor.pack above the linalg.generic.
  // 2) The destination is not a tensor.empty. In this case we can replace only
  // if the destination of the tensor.pack dominates the linalg.generic.
  Value packOpDest = packOp.getDest();
  if (!packOpDest.hasOneUse())
    return failure();
  if (auto emptyOp = packOpDest.getDefiningOp<tensor::EmptyOp>()) {
    packOpDest = rewriter.create<tensor::EmptyOp>(
        genericOp->getLoc(), emptyOp.getMixedSizes(),
        emptyOp.getType().getElementType());
  } else {
    DominanceInfo dom(genericOp);
    if (!dom.properlyDominates(packOpDest, genericOp))
      return failure();
  }

  // TODO: Add an option for allowing padding values. It could introduce
  // undefined behavior if we unconditionally propagate pack op through all
  // the ops. E.g., if the padding value is zero and there are division ops in
  // a generic op. Some values of padding area could be NaN (0/0).
  if (packOp.getPaddingValue())
    return failure();

  OpOperand *opOperand = genericOp.getDpsInitOperand(0);
  auto packInfo = getPackingInfoFromOperand(
      genericOp.getMatchingIndexingMap(opOperand), packOp);

  // Rebuild the indexing map for the corresponding init operand.
  auto [packedOutOperand, packedOutIndexingMap] =
      getOrCreatePackedViewOfOperand(rewriter, genericOp.getLoc(), packInfo,
                                     genericOp, opOperand);

  // We'll replace the init operand with the destination of pack op if the init
  // operand has not users in the body of the linalg.generic (pure elementwise).
  // If it has users we need to pack the init operand too and replace the init
  // with the packing result.
  Value dest = (genericOp.getRegionOutputArgs()[0].use_empty())
                   ? packOpDest
                   : packedOutOperand;

  return packElementWiseOp(rewriter, genericOp, dest, packedOutIndexingMap,
                           packInfo);
}

/// Wrapper pattern that applies bubbleUpPackOpThroughElemGenericOp method.
struct BubbleUpPackOpThroughElemGenericOpPattern
    : public OpRewritePattern<tensor::PackOp> {
  using OpRewritePattern<tensor::PackOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::PackOp packOp,
                                PatternRewriter &rewriter) const override {
    auto genericOp = bubbleUpPackOpThroughElemGenericOp(rewriter, packOp);
    if (failed(genericOp))
      return failure();
    rewriter.replaceOp(packOp, genericOp->getResults());
    return success();
  }
};

// TODO: Relax this restriction. We should unpack an elementwise also
// in the presence of multiple unpack ops as producers.
/// Return the unpacked operand, if present, for the current generic op.
static FailureOr<OpOperand *> getUnPackedOperand(GenericOp genericOp) {
  OpOperand *unPackedOperand = nullptr;
  for (OpOperand &operand : genericOp->getOpOperands()) {
    auto unPackOp = operand.get().getDefiningOp<tensor::UnPackOp>();
    if (!unPackOp)
      continue;
    if (unPackedOperand)
      return failure();
    unPackedOperand = &operand;
  }
  if (!unPackedOperand)
    return failure();
  return unPackedOperand;
}

/// Push down a tensor.unpack op through elementwise generic op.
/// The new generic op works on packed domain; pack ops are created for input
/// and output operands. A tensor.unpack op is inserted right after the packed
/// generic. E.g.
///
/// #map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
///
/// %arg0 = tensor<12x2x56x56x32xf32> // packed arg.
///
/// %0 = tensor.empty() : tensor<12x56x56x64xf32>
/// %1 = tensor.unpack %arg0 outer_dims_perm = [0, 3, 1, 2]
///                          inner_dims_pos = [3] inner_tiles = [32] into %0
/// %2 = linalg.generic {indexing_maps = [#map],
///      iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
///      outs(%1 : tensor<12x56x56x64xf32>) {
///      ^bb0(%out : f32):
///         linalg.yield %out : f32
///      } -> tensor<12x56x56x64xf32>
///
/// will be converted to
///
/// #map = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
///
/// %0 = tensor.empty() : tensor<12x56x56x64xf32>
/// %1 = linalg.generic {indexing_maps = [#map],
///      iterator_types = ["parallel", "parallel", "parallel",
///                        "parallel", "parallel"]}
///      outs(%arg0 : tensor<12x2x56x56x32xf32>) {
///      ^bb0(%out : f32):
///         linalg.yield %out : f32
///      } -> tensor<12x2x56x56x32xf32>
/// %2 = tensor.unpack %1 outer_dims_perm = [0, 3, 1, 2]
///                       inner_dims_pos = [3] inner_tiles = [32] into %0
///
static FailureOr<std::tuple<GenericOp, Value>>
pushDownUnPackOpThroughElemGenericOp(RewriterBase &rewriter,
                                     GenericOp genericOp) {
  if (!isElementwise(genericOp))
    return failure();
  if (genericOp.getNumResults() != 1)
    return failure();

  // Collect the unPacked operand, if present.
  auto maybeUnPackedOperand = getUnPackedOperand(genericOp);
  if (failed(maybeUnPackedOperand))
    return failure();
  OpOperand *unPackedOperand = *(maybeUnPackedOperand);

  // Extract packing information.
  tensor::UnPackOp producerUnPackOp =
      unPackedOperand->get().getDefiningOp<tensor::UnPackOp>();
  assert(producerUnPackOp && "expect a valid UnPackOp");
  auto packInfo = getPackingInfoFromOperand(
      genericOp.getMatchingIndexingMap(unPackedOperand), producerUnPackOp);

  // Rebuild the indexing map for the corresponding init operand.
  auto [packedOutOperand, packedOutIndexingMap] =
      getOrCreatePackedViewOfOperand(rewriter, genericOp.getLoc(), packInfo,
                                     genericOp, genericOp.getDpsInitOperand(0));

  // If the dps init operand of the generic is a tensor.empty, do not pack it
  // and forward the new tensor.empty as a destination.
  Value dest = packedOutOperand;
  if (auto initTensor = genericOp.getDpsInitOperand(0)
                            ->get()
                            .getDefiningOp<tensor::EmptyOp>()) {
    if (auto packOp = packedOutOperand.getDefiningOp<tensor::PackOp>())
      dest = packOp.getDest();
  }

  // Pack the genericOp.
  GenericOp newGenericOp = packElementWiseOp(rewriter, genericOp, dest,
                                             packedOutIndexingMap, packInfo);

  // If the output element type for the generic differs from the source
  // unpack op, we need to create a new destination tensor.
  auto loc = genericOp.getLoc();
  Value unPackDest = producerUnPackOp.getDest();
  auto genericOutElementType = getElementTypeOrSelf(genericOp.getResult(0));
  if (producerUnPackOp.getDestType().getElementType() !=
      genericOutElementType) {
    SmallVector<OpFoldResult> unPackMixedSizes;
    if (auto unPackEmpty = unPackDest.getDefiningOp<tensor::EmptyOp>())
      unPackMixedSizes = unPackEmpty.getMixedSizes();
    else
      unPackMixedSizes = tensor::getMixedSizes(rewriter, loc, unPackDest);

    unPackDest = rewriter.create<tensor::EmptyOp>(loc, unPackMixedSizes,
                                                  genericOutElementType);
  }

  // Insert an unPackOp right after the packed generic.
  Value unPackOpRes =
      rewriter
          .create<tensor::UnPackOp>(
              loc,
              newGenericOp.getTiedOpResult(newGenericOp.getDpsInitOperand(0)),
              unPackDest, producerUnPackOp.getInnerDimsPos(),
              producerUnPackOp.getMixedTiles(),
              producerUnPackOp.getOuterDimsPerm())
          .getResult();

  return std::make_tuple(newGenericOp, unPackOpRes);
}

// Wrapper pattern that applies pushDownUnPackOpThroughElemGenericOp method.
struct PushDownUnPackOpThroughElemGenericOp
    : public OpRewritePattern<GenericOp> {
  using OpRewritePattern<GenericOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    auto genericAndRepl =
        pushDownUnPackOpThroughElemGenericOp(rewriter, genericOp);
    if (failed(genericAndRepl))
      return failure();
    rewriter.replaceOp(genericOp, std::get<1>(*genericAndRepl));
    return success();
  }
};

/// Propagate a tensor.unpack operation through a tensor.pad. The idea is to
/// add as many zero padding dimensions in `high` and `low` based on the number
/// of point loops.
struct PushDownUnPackThroughPadOp : public OpRewritePattern<tensor::PadOp> {
  using OpRewritePattern<tensor::PadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::PadOp padOp,
                                PatternRewriter &rewriter) const override {
    tensor::UnPackOp unpackOp =
        padOp.getSource().getDefiningOp<tensor::UnPackOp>();
    if (!unpackOp)
      return failure();

    Location loc = padOp.getLoc();
    // Bail out if one of the padded dimension is a tiled one.
    llvm::SmallBitVector paddedDims = padOp.getPaddedDims();
    ArrayRef<int64_t> innerDimsPos = unpackOp.getInnerDimsPos();
    llvm::SmallBitVector innerDims(paddedDims.size());
    for (int64_t dim : innerDimsPos)
      innerDims.flip(dim);
    if (paddedDims.anyCommon(innerDims))
      return failure();

    Value paddingVal = padOp.getConstantPaddingValue();
    if (!paddingVal)
      return failure();

    // If we have `outer_dims_perms` we need to adjust the padded dimensions.
    ArrayRef<int64_t> outerDimsPerm = unpackOp.getOuterDimsPerm();
    SmallVector<OpFoldResult> lowPad = padOp.getMixedLowPad();
    SmallVector<OpFoldResult> highPad = padOp.getMixedHighPad();
    if (!outerDimsPerm.empty()) {
      applyPermutationToVector<OpFoldResult>(lowPad, outerDimsPerm);
      applyPermutationToVector<OpFoldResult>(highPad, outerDimsPerm);
    }
    // Add zero padding for the point loops.
    size_t pointLoopsSize = innerDimsPos.size();
    lowPad.append(pointLoopsSize, rewriter.getIndexAttr(0));
    highPad.append(pointLoopsSize, rewriter.getIndexAttr(0));

    auto newPadOp = rewriter.create<tensor::PadOp>(
        loc, /*result=*/Type(), unpackOp.getSource(), lowPad, highPad,
        paddingVal, padOp.getNofold());

    // Inject the tensor.unpack right after the packed padOp.
    Value outputUnPack = rewriter.create<tensor::EmptyOp>(
        loc, padOp.getResultType().getShape(),
        padOp.getResultType().getElementType());

    Value replacement = rewriter.create<tensor::UnPackOp>(
        loc, newPadOp.getResult(), outputUnPack, innerDimsPos,
        unpackOp.getMixedTiles(), outerDimsPerm);
    rewriter.replaceOp(padOp, replacement);
    return success();
  }
};

} // namespace

void mlir::linalg::populateDataLayoutPropagationPatterns(
    RewritePatternSet &patterns) {
  patterns
      .insert<BubbleUpPackOpThroughElemGenericOpPattern,
              PushDownUnPackOpThroughElemGenericOp, PushDownUnPackThroughPadOp>(
          patterns.getContext());
}