summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Linalg/Transforms/Detensorize.cpp
blob: 5fd48853875ce6a0a11bc4dbbdb0aadac84e2d52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
//===- Detensorize.cpp - Linalg transformations as patterns ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Passes.h"

#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <iterator>
#include <memory>
#include <utility>

namespace mlir {
#define GEN_PASS_DEF_LINALGDETENSORIZE
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir

using namespace mlir;
using namespace mlir::linalg;

static Value sourceMaterializationCallback(OpBuilder &builder, Type type,
                                           ValueRange inputs, Location loc) {
  assert(inputs.size() == 1);
  auto inputType = inputs[0].getType();
  if (inputType.isa<TensorType>())
    return nullptr;

  // A detensored value is converted back by creating a new tensor from its
  // element(s).
  return builder.create<tensor::FromElementsOp>(
      loc, RankedTensorType::get({}, inputType), inputs[0]);
}

namespace {
/// Defines the criteria a TensorType must follow in order to be considered
/// "detensorable".
///
/// NOTE: For now, only 0-D tensors are supported.
///
/// Returns true if tensorType can be detensored.
bool canBeDetensored(TensorType tensorType) {
  return tensorType.hasRank() && tensorType.getRank() == 0;
}

bool shouldBeDetensored(Operation *op, TypeConverter typeConverter) {
  GenericOp genericOp = dyn_cast_or_null<GenericOp>(op);
  return genericOp &&
         llvm::all_of(genericOp->getOpOperands(), [&](OpOperand &opOperand) {
           return !typeConverter.isLegal(opOperand.get().getType());
         });
}

/// A conversion pattern for detensoring `linalg.generic` ops.
class DetensorizeGenericOp : public OpConversionPattern<GenericOp> {
public:
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(GenericOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Block *originalBlock = op->getBlock();

    // Gather some information about the op before inlining its region.
    Block *opEntryBlock = &*op.getRegion().begin();
    YieldOp yieldOp = dyn_cast<YieldOp>(op.getRegion().back().getTerminator());

    // Split the op's region before the op. This way, we have a clear insertion
    // point in which the op can be inlined.
    Block *newBlock = rewriter.splitBlock(originalBlock, Block::iterator(op));
    rewriter.inlineRegionBefore(op.getRegion(), newBlock);
    // Now that op's region is inlined, the operands of its YieldOp are mapped
    // to the materialized target values. Therefore, we can replace the op's
    // uses with those of its YielOp's operands.
    rewriter.replaceOp(op, yieldOp->getOperands());

    // No need for these intermediate blocks, merge them into 1.
    rewriter.mergeBlocks(opEntryBlock, originalBlock, adaptor.getOperands());
    rewriter.mergeBlocks(newBlock, originalBlock, {});

    rewriter.eraseOp(&*Block::iterator(yieldOp));

    return success();
  }
};

/// A conversion pattern for detensoring internal (non-entry) blocks within a
/// function.
struct FunctionNonEntryBlockConversion
    : public OpInterfaceConversionPattern<FunctionOpInterface> {
  FunctionNonEntryBlockConversion(MLIRContext *ctx, TypeConverter &converter,
                                  DenseSet<BlockArgument> blockArgsToDetensor)
      : OpInterfaceConversionPattern(converter, ctx),
        blockArgsToDetensor(std::move(blockArgsToDetensor)) {}

  LogicalResult
  matchAndRewrite(FunctionOpInterface op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.startRootUpdate(op);
    Region &region = op.getFunctionBody();
    SmallVector<TypeConverter::SignatureConversion, 2> conversions;

    for (Block &block : llvm::drop_begin(region, 1)) {
      conversions.emplace_back(block.getNumArguments());
      TypeConverter::SignatureConversion &back = conversions.back();

      for (BlockArgument blockArgument : block.getArguments()) {
        int idx = blockArgument.getArgNumber();

        if (blockArgsToDetensor.count(blockArgument))
          back.addInputs(idx, {getTypeConverter()->convertType(
                                  block.getArgumentTypes()[idx])});
        else
          back.addInputs(idx, {block.getArgumentTypes()[idx]});
      }
    }

    if (failed(rewriter.convertNonEntryRegionTypes(&region, *typeConverter,
                                                   conversions))) {
      rewriter.cancelRootUpdate(op);
      return failure();
    }

    rewriter.finalizeRootUpdate(op);
    return success();
  }

private:
  const DenseSet<BlockArgument> blockArgsToDetensor;
};

class DetensorizeTypeConverter : public TypeConverter {
public:
  DetensorizeTypeConverter() {
    addConversion([](Type type) { return type; });

    // A TensorType that can be detensored, is converted to the underlying
    // element type.
    addConversion([](TensorType tensorType) -> Type {
      if (canBeDetensored(tensorType))
        return tensorType.getElementType();

      return tensorType;
    });

    // A tensor value is detensoried by extracting its element(s).
    addTargetMaterialization([](OpBuilder &builder, Type type,
                                ValueRange inputs, Location loc) -> Value {
      return builder.create<tensor::ExtractOp>(loc, inputs[0], ValueRange{});
    });

    addSourceMaterialization(sourceMaterializationCallback);
    addArgumentMaterialization(sourceMaterializationCallback);
  }
};

/// @see LinalgDetensorize in Linalg/Passes.td for more details.
struct LinalgDetensorize
    : public impl::LinalgDetensorizeBase<LinalgDetensorize> {
  LinalgDetensorize() = default;

  class CostModel {
  public:
    virtual ~CostModel() = default;

    /// A cost model algorithm computes the following outputs:
    ///
    /// - opsToDetensor: the list of linalg ops that should be
    /// detensored.
    ///
    /// - blockArgsToDetensor: since the operands and results of detensored
    /// linalg ops can cross the BB boundary (e.g. a linalg op's input can come
    /// from a BB argument and a linalg op's output can be passed to successor
    /// BBs), we need to maintain the sub-set of arguments that should be
    /// detensored (i.e. converted by typeConverter) for each affected BB.
    ///
    /// Example:
    ///
    /// For the following snippet:
    /// ...
    /// ^bb1(%6: tensor<i32>, %9: tensor<i32>):
    ///   %7 = tensor.empty() : tensor<i32>
    ///   %8 = linalg.generic #attrs
    ///     ins(%6, %6 : tensor<i32>, tensor<i32>)
    ///     outs(%7 : tensor<i32>) {
    ///     ^bb0(%arg0: i32, %arg1: i32, %arg2: i32):
    ///       %9 = arith.addi %arg0, %arg1 : i32
    ///       linalg.yield %9 : i32
    ///   } -> tensor<i32>
    ///   %10 = "some.op"(%9)
    ///   br ^bb2(%8 : tensor<i32>)
    /// ...
    ///
    /// if the cost model decides that the linalg.generic op should be
    /// detensored, then:
    /// - opsToDetensor should be = {linalg.generic{add}}.
    /// - blockArgsToDetensor should be = {bb1 -> {0}, bb2 -> {0}}.
    virtual void compute(FunctionOpInterface func,
                         DetensorizeTypeConverter typeConverter,
                         DenseSet<Operation *> &opsToDetensor,
                         DenseSet<BlockArgument> &blockArgsToDetensor) = 0;

    /// From the blockArgsToDetensor set computed by a CostModel
    /// implementation, this method computes the corresponding branch op
    /// detensoring. The result is a map from a branch op to a subset of indices
    /// of its operands. The indices specify which of the branch op's operands
    /// should be detensored.
    ///
    /// For the previous example, this method would compute: {bb2 -> {0}}.
    static DenseMap<Operation *, DenseSet<int>> computeBranchOpDetensoring(
        const DenseSet<BlockArgument> &blockArgsToDetensor) {
      DenseMap<Operation *, DenseSet<int>> detensorableBranchOps;

      for (auto blockArgumentElem : blockArgsToDetensor) {
        Block *block = blockArgumentElem.getOwner();

        for (PredecessorIterator pred = block->pred_begin();
             pred != block->pred_end(); ++pred) {
          BranchOpInterface terminator =
              dyn_cast<BranchOpInterface>((*pred)->getTerminator());
          auto blockOperands =
              terminator.getSuccessorOperands(pred.getSuccessorIndex());

          if (blockOperands.empty() ||
              blockOperands.isOperandProduced(blockArgumentElem.getArgNumber()))
            continue;

          detensorableBranchOps[terminator].insert(
              blockOperands.getOperandIndex(blockArgumentElem.getArgNumber()));
        }
      }

      return detensorableBranchOps;
    }
  };

  /// Detensorize linalg ops involved in control-flow within a function.
  ///
  /// This model starts from BranchOps and CondBranchOps within a function. For
  /// each such branch, the model then walks the use-def chain for the branch's
  /// condition backwards in order to understand where the condition's value
  /// comes from. If the condition value is (indirectly) computed by a linalg op
  /// that can be detensored, the model then continues walking the use-def chain
  /// in order to understand where the linalg op's operands come from. This
  /// leads to discovering a "detensoring component". A detensoring component is
  /// the set of operations + block arguments that are involved in control-flow
  /// AND can be detensored.
  class ControlFlowDetectionModel : public CostModel {
  public:
    void compute(FunctionOpInterface func,
                 DetensorizeTypeConverter typeConverter,
                 DenseSet<Operation *> &opsToDetensor,
                 DenseSet<BlockArgument> &blockArgsToDetensor) override {
      SmallVector<Value> workList;

      func->walk([&](cf::CondBranchOp condBr) {
        llvm::append_range(workList, condBr.getOperands());
      });

      func->walk([&](cf::BranchOp br) {
        llvm::append_range(workList, br.getOperands());
      });

      DenseSet<Value> visitedValues;
      DenseSet<Operation *> visitedOps;

      // For a (to-be-detesored) value, check if it "escapes" the block by being
      // passed to terminator. If it does, then workList is updated with the
      // corresponding argument to the successor block.
      auto updateWorkListWithSuccessorArguments =
          [&](Value value, BranchOpInterface terminator) {
            if (!terminator)
              return;

            for (auto operandIdx :
                 llvm::seq<unsigned>(0, terminator->getOperands().size())) {
              Value operand = terminator->getOperand(operandIdx);

              if (operand == value) {
                auto succBlockArg =
                    terminator.getSuccessorBlockArgument(operandIdx);

                if (succBlockArg && !blockArgsToDetensor.count(*succBlockArg))
                  workList.push_back(*succBlockArg);
              }
            }
          };

      while (!workList.empty()) {
        Value currentItem = workList.pop_back_val();

        if (!visitedValues.insert(currentItem).second)
          continue;

        // 1   - Look forward:
        // 1.1 - If currentItem escapes to one or more successors, add
        // the corresponding successor arguments to workList.
        updateWorkListWithSuccessorArguments(
            currentItem, dyn_cast<BranchOpInterface>(
                             currentItem.getParentBlock()->getTerminator()));

        // 1.2 - For each user of currentItem, add the defined values to
        // workList. This way, the user ops can be inspected later if they are
        // detensorable and if so, their operands will be added to workList to
        // potentially discover other parts of the detensorable component.
        for (auto *user : currentItem.getUsers())
          llvm::append_range(workList, user->getResults());

        // 2   - Look backward:
        // 2.1 - The current item is defined by a block argument. If the owner
        // block is a non-entry one, then:
        //       * Add the argument to blockArgsToDetensor.
        //       * Walk the use-def chain backwards to add each predecessor's
        //       terminator-operands corresponding to currentItem to workList.
        if (currentItem.dyn_cast<BlockArgument>()) {
          BlockArgument currentItemBlockArgument =
              currentItem.cast<BlockArgument>();
          Block *ownerBlock = currentItemBlockArgument.getOwner();

          // Function arguments are not detensored/converted.
          if (&*ownerBlock->getParent()->begin() == ownerBlock)
            continue;

          // This inner-block argument is involved in control-flow, it should be
          // detensored.
          blockArgsToDetensor.insert(currentItemBlockArgument);

          for (PredecessorIterator pred = ownerBlock->pred_begin();
               pred != ownerBlock->pred_end(); ++pred) {
            BranchOpInterface predTerminator =
                dyn_cast<BranchOpInterface>((*pred)->getTerminator());

            // TODO: For now, we give up if any of the control-flow components
            // in a function is not detensorable. Fix that.
            if (!predTerminator) {
              opsToDetensor.clear();
              blockArgsToDetensor.clear();
              return;
            }

            auto ownerBlockOperands =
                predTerminator.getSuccessorOperands(pred.getSuccessorIndex());

            if (ownerBlockOperands.empty() ||
                ownerBlockOperands.isOperandProduced(
                    currentItemBlockArgument.getArgNumber()))
              continue;

            // For each predecessor, add the value it passes to that argument to
            // workList to find out how it's computed.
            workList.push_back(
                ownerBlockOperands[currentItemBlockArgument.getArgNumber()]);
          }

          continue;
        }

        Operation *currentItemDefiningOp = currentItem.getDefiningOp();

        if (!visitedOps.insert(currentItemDefiningOp).second)
          continue;

        // 2.2 - The current item is computed by a GenericOp. If the op should
        // be detensored, then:
        //       * Add it to opsToDetensor.
        //       * Add its operands to workList to discover other parts of the
        //       potentially detensorable component.
        if (auto genericOp = dyn_cast<GenericOp>(currentItemDefiningOp)) {
          // The op was encountered already, no need to inspect it again.
          if (opsToDetensor.count(genericOp))
            continue;

          // The op should not be detensored, give up on it but continue with
          // discovering the rest of the control-flow component.
          if (!shouldBeDetensored(genericOp, typeConverter)) {
            continue;
          }

          opsToDetensor.insert(genericOp);
          llvm::append_range(workList, genericOp.getInputs());
          continue;
        }

        // 2.3 - The current item is the result of a FromElementsOp, it will be
        // trivially detensored later as part of canonicalization patterns
        // applied at the end of detensoring.
        //
        // Note: No need to check whether the result type of this op is
        // detensorable since if it wasn't we wouldn't reach that point in the
        // work list.
        if (isa<tensor::FromElementsOp>(currentItemDefiningOp))
          continue;

        // 2.4 - The current item is the result of a scalar op, add all its
        // operands to the work list.
        if (llvm::all_of(
                currentItemDefiningOp->getResultTypes(),
                [&](Type resultType) { return resultType.isIntOrFloat(); }))
          llvm::append_range(workList, currentItemDefiningOp->getOperands());
      }

      // Since the cost model gives up on some ops (see the details of step 2.2
      // above), block arguments that correspond to the values produced by those
      // ops should not be detensored as well.

      DenseSet<BlockArgument> blockArgsToRemove;

      for (auto &blockArg : blockArgsToDetensor) {
        Block *block = blockArg.getParentBlock();

        // For the potentially detensorable block argument, find the
        // correpsonding operands in predecessor blocks.
        for (PredecessorIterator pred = block->pred_begin();
             pred != block->pred_end(); ++pred) {
          BranchOpInterface terminator =
              dyn_cast<BranchOpInterface>((*pred)->getTerminator());
          auto blockOperands =
              terminator.getSuccessorOperands(pred.getSuccessorIndex());

          if (blockOperands.empty() ||
              blockOperands.isOperandProduced(blockArg.getArgNumber()))
            continue;

          Operation *definingOp =
              blockOperands[blockArg.getArgNumber()].getDefiningOp();

          // If the operand is defined by a GenericOp that will not be
          // detensored, then do not detensor the corresponding block argument.
          if (isa_and_nonnull<GenericOp>(definingOp) &&
              opsToDetensor.count(definingOp) == 0) {
            blockArgsToRemove.insert(blockArg);
            break;
          }
        }
      }

      for (auto &blockArg : blockArgsToRemove) {
        blockArgsToDetensor.erase(blockArg);
      }
    }
  };

  /// Detensorize everything that can detensored.
  class AggressiveDetensoringModel : public CostModel {
  public:
    void compute(FunctionOpInterface func,
                 DetensorizeTypeConverter typeConverter,
                 DenseSet<Operation *> &opsToDetensor,
                 DenseSet<BlockArgument> &blockArgsToDetensor) override {
      func->walk([&](GenericOp genericOp) {
        if (shouldBeDetensored(genericOp, typeConverter))
          opsToDetensor.insert(genericOp);
      });

      for (Block &block : llvm::drop_begin(func.getFunctionBody(), 1))
        for (BlockArgument blockArgument : block.getArguments())
          blockArgsToDetensor.insert(blockArgument);
    }
  };

  void runOnOperation() override {
    MLIRContext *context = &getContext();
    DetensorizeTypeConverter typeConverter;
    RewritePatternSet patterns(context);
    ConversionTarget target(*context);
    DenseSet<Operation *> opsToDetensor;
    DenseMap<Operation *, DenseSet<int>> detensorableBranchOps;
    DenseSet<BlockArgument> blockArgsToDetensor;
    FunctionOpInterface funcOp = getOperation();

    if (funcOp.getFunctionBody().empty())
      return;

    // Make sure the entry block of the function doesn't contain any Linalg ops.
    // Otherwise, it may lead to the signature of the block being changed by the
    // dialect conversion below, which would make the function op invalid
    // because its type shouldn't change.
    IRRewriter rewriter(funcOp->getContext());
    Block *entryBlock = &funcOp.getFunctionBody().front();
    Block *postEntryBlock =
        rewriter.splitBlock(entryBlock, entryBlock->begin());
    rewriter.setInsertionPointToStart(entryBlock);
    auto branch =
        rewriter.create<cf::BranchOp>(rewriter.getUnknownLoc(), postEntryBlock);

    if (aggressiveMode.getValue()) {
      AggressiveDetensoringModel costModel;
      costModel.compute(funcOp, typeConverter, opsToDetensor,
                        blockArgsToDetensor);
    } else {
      ControlFlowDetectionModel costModel;
      costModel.compute(funcOp, typeConverter, opsToDetensor,
                        blockArgsToDetensor);
    }

    detensorableBranchOps =
        CostModel::computeBranchOpDetensoring(blockArgsToDetensor);

    target.addDynamicallyLegalOp<GenericOp>(
        [&](GenericOp op) { return !opsToDetensor.count(op); });

    target.markUnknownOpDynamicallyLegal([&](Operation *op) {
      // A function is legal if all of its non-entry blocks are legal. We
      // don't legalize the entry block (i.e. the function's signature)
      // since detensoring can't happen along external calling convention
      // boundaries, which we conservatively approximate as all function
      // signatures.
      if (auto funcOp = dyn_cast<FunctionOpInterface>(op)) {
        Region &body = funcOp.getFunctionBody();
        return llvm::all_of(llvm::drop_begin(body, 1), [&](Block &block) {
          return !llvm::any_of(
              blockArgsToDetensor, [&](BlockArgument blockArgument) {
                return blockArgument.getOwner() == &block &&
                       !typeConverter.isLegal(blockArgument.getType());
              });
        });
      }

      if (isNotBranchOpInterfaceOrReturnLikeOp(op) ||
          isLegalForReturnOpTypeConversionPattern(op, typeConverter,
                                                  /*returnOpAlwaysLegal*/ true))
        return true;

      if (auto branchOp = dyn_cast<BranchOpInterface>(op)) {
        if (!detensorableBranchOps.count(branchOp))
          return true;

        for (auto operandIdx : detensorableBranchOps[branchOp])
          if (!typeConverter.isLegal(
                  branchOp->getOperand(operandIdx).getType()))
            return false;

        return true;
      }

      return false;
    });

    patterns.add<DetensorizeGenericOp>(typeConverter, context);
    patterns.add<FunctionNonEntryBlockConversion>(context, typeConverter,
                                                  blockArgsToDetensor);
    // Since non-entry block arguments get detensorized, we also need to
    // update the control flow inside the function to reflect the correct
    // types.
    auto shouldConvertBranchOperand = [&](BranchOpInterface branchOp,
                                          int operandIdx) -> bool {
      return detensorableBranchOps.count(branchOp) &&
             detensorableBranchOps[branchOp].count(operandIdx);
    };

    populateBranchOpInterfaceTypeConversionPattern(patterns, typeConverter,
                                                   shouldConvertBranchOperand);

    if (failed(
            applyFullConversion(getOperation(), target, std::move(patterns))))
      signalPassFailure();

    RewritePatternSet canonPatterns(context);
    tensor::FromElementsOp::getCanonicalizationPatterns(canonPatterns, context);
    if (failed(applyPatternsAndFoldGreedily(getOperation(),
                                            std::move(canonPatterns))))
      signalPassFailure();

    // Get rid of the dummy entry block we created in the beginning to work
    // around dialect conversion signature rewriting.
    rewriter.eraseOp(branch);
    rewriter.mergeBlocks(postEntryBlock, entryBlock);
  }
};
} // namespace

std::unique_ptr<Pass> mlir::createLinalgDetensorizePass() {
  return std::make_unique<LinalgDetensorize>();
}