summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Linalg/Transforms/ElementwiseOpFusion.cpp
blob: bf728a6ec319be669e0cac67899852c7af667a41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
//===- ElementwiseOpFusion.cpp - Implementation of linalg Fusion ---------===///
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the linalg dialect Fusion on tensors operations pass.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Passes.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <optional>
#include <utility>

namespace mlir {
#define GEN_PASS_DEF_LINALGFOLDUNITEXTENTDIMS
#define GEN_PASS_DEF_LINALGELEMENTWISEOPFUSION
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir

using namespace mlir;
using namespace mlir::linalg;

//===---------------------------------------------------------------------===//
// Methods and patterns that fuse elementwise `linalg.generic` operations.
//===---------------------------------------------------------------------===//

/// Append to `fusedOpIndexingMapAttrs` the indexing maps for the operands of
/// the `producer` to use in the fused operation given the indexing map of the
/// result of the producer in the consumer.
static AffineMap getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp(
    OpOperand *producerOpOperand, AffineMap producerResultIndexMap,
    AffineMap fusedConsumerArgIndexMap) {
  // The indexing map in the consumer op (fusedConsumerArgIndexMap) is a map
  // from consumer loop -> consumer arg tensor index/producer result tensor
  // index. The fused loop is same as the consumer loop. For each producer arg
  // the indexing map to be computed is a map from consumer loop -> producer
  // arg tensor index.
  // producerResultIndexMap is a map from producer loop -> tensor index.
  // Compute the inverse to get map from tensor index -> producer loop.
  // The inverse is a map from producer result tensor index -> producer loop.
  AffineMap invProducerResultIndexMap =
      inversePermutation(producerResultIndexMap);
  assert(invProducerResultIndexMap &&
         "expected producer result indexing map to be invertible");

  LinalgOp producer = cast<LinalgOp>(producerOpOperand->getOwner());
  // argMap is a map from producer loop -> producer arg tensor index.
  AffineMap argMap = producer.getMatchingIndexingMap(producerOpOperand);

  // Compose argMap with invProducerResultIndexMap to get a map from
  // producer result tensor index -> producer arg tensor index.
  AffineMap t1 = argMap.compose(invProducerResultIndexMap);

  // Compose t1 with fusedConsumerArgIndexMap gives an indexing map from
  // consumer loop/ fused loop -> producer arg tensor index.
  return t1.compose(fusedConsumerArgIndexMap);
}

/// Conditions for elementwise fusion of generic operations.
bool mlir::linalg::areElementwiseOpsFusable(OpOperand *fusedOperand) {
  if (!fusedOperand)
    return false;

  auto producer = fusedOperand->get().getDefiningOp<GenericOp>();
  auto consumer = dyn_cast<GenericOp>(fusedOperand->getOwner());

  // Check producer and consumer are generic ops.
  if (!producer || !consumer)
    return false;

  // Consumer can have mixed semantics, just check operand itself has tensor
  // type. Producer must have full tensor semantics to avoid potential
  // aliasing between producer and consumer memrefs.
  if (!producer.hasTensorSemantics() ||
      !fusedOperand->get().getType().isa<RankedTensorType>())
    return false;

  // Verify that
  // - the producer has all "parallel" iterator type.
  if (producer.getNumParallelLoops() != producer.getNumLoops())
    return false;

  // Only allow fusing the producer of an input operand for now.
  // TODO: allow fusing the producer of an output operand.
  if (!consumer.isDpsInput(fusedOperand))
    return false;

  // Get the consumer index map. The number of results of the consumer index
  // map must match the number of loops of the producer.
  AffineMap consumerIndexMap = consumer.getMatchingIndexingMap(fusedOperand);
  if (consumerIndexMap.getNumResults() != producer.getNumLoops())
    return false;

  // Finally the index_map for the result must be invertible. For now just
  // verify it is a permutation.
  AffineMap producerResultIndexMap =
      producer.getMatchingIndexingMap(producer.getDpsInitOperand(0));
  if (!producerResultIndexMap.isPermutation())
    return false;

  // Ensure that the fusion does not remove size information required to
  // get the loop bounds. For non-reduction generics, this is trivially the
  // case due to the output operand. For reductions, we need to check that after
  // the fusion, each loop dimension has at least one input that defines it.
  if ((consumer.getNumReductionLoops())) {
    BitVector coveredDims(consumer.getNumLoops(), false);

    auto addToCoveredDims = [&](AffineMap map) {
      for (auto result : map.getResults())
        if (auto dimExpr = result.dyn_cast<AffineDimExpr>())
          coveredDims[dimExpr.getPosition()] = true;
    };

    for (auto pair :
         llvm::zip(consumer->getOperands(), consumer.getIndexingMapsArray())) {
      Value operand = std::get<0>(pair);
      if (operand == fusedOperand->get())
        continue;
      AffineMap operandMap = std::get<1>(pair);
      addToCoveredDims(operandMap);
    }

    for (OpOperand *operand : producer.getDpsInputOperands()) {
      AffineMap newIndexingMap =
          getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp(
              operand, producerResultIndexMap, consumerIndexMap);
      addToCoveredDims(newIndexingMap);
    }
    if (!coveredDims.all())
      return false;
  }

  return true;
}

/// Generate the region of the fused tensor operation. The region of the fused
/// op must be empty.
static void generateFusedElementwiseOpRegion(
    RewriterBase &rewriter, GenericOp fusedOp,
    AffineMap consumerToProducerLoopsMap, OpOperand *fusedOperand,
    unsigned nloops, llvm::SmallDenseSet<int> &preservedProducerResults) {
  auto producer = cast<GenericOp>(fusedOperand->get().getDefiningOp());
  auto consumer = cast<GenericOp>(fusedOperand->getOwner());
  // Build the region of the fused op.
  Block &producerBlock = producer->getRegion(0).front();
  Block &consumerBlock = consumer->getRegion(0).front();
  Block *fusedBlock = new Block();
  fusedOp.getRegion().push_back(fusedBlock);
  IRMapping mapper;
  OpBuilder::InsertionGuard guard(rewriter);
  rewriter.setInsertionPointToStart(fusedBlock);

  // 2. Add an index operation for every fused loop dimension and use the
  // `consumerToProducerLoopsMap` to map the producer indices.
  if (producer.hasIndexSemantics()) {
    // Add an index operation for every fused loop dimension.
    unsigned numFusedOpLoops =
        std::max(producer.getNumLoops(), consumer.getNumLoops());
    SmallVector<Value> fusedIndices;
    fusedIndices.reserve(numFusedOpLoops);
    llvm::transform(llvm::seq<uint64_t>(0, numFusedOpLoops),
                    std::back_inserter(fusedIndices), [&](uint64_t dim) {
                      return rewriter.create<IndexOp>(producer.getLoc(), dim);
                    });
    for (IndexOp indexOp :
         llvm::make_early_inc_range(producerBlock.getOps<IndexOp>())) {
      Value newIndex = rewriter.create<affine::AffineApplyOp>(
          producer.getLoc(),
          consumerToProducerLoopsMap.getSubMap(indexOp.getDim()), fusedIndices);
      mapper.map(indexOp.getResult(), newIndex);
    }
  }
  // TODO: allow fusing the producer of an output operand.
  assert(consumer.isDpsInput(fusedOperand) &&
         "expected producer of input operand");
  // 3. Consumer input operands up to consumerIdx (exclusive).
  for (BlockArgument bbArg : consumerBlock.getArguments().take_front(
           fusedOperand->getOperandNumber())) // input assumption.
    mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc()));

  // Replacing consumerIdx requires getting the cloned, yielded, value from
  // the (cloned) producer block. This happens in step 9.

  // 4. Splice in producer's input operands.
  for (BlockArgument bbArg :
       producerBlock.getArguments().take_front(producer.getNumDpsInputs()))
    mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc()));

  // 5. Remaining consumer's input operands (drop past index `consumerIdx`).
  for (BlockArgument bbArg :
       consumerBlock.getArguments()
           .take_front(consumer.getNumDpsInputs())
           .drop_front(fusedOperand->getOperandNumber() + 1))
    mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc()));

  // 6. All of the producer's output operands
  for (const auto &bbArg : llvm::enumerate(
           producerBlock.getArguments().take_back(producer.getNumDpsInits()))) {
    if (!preservedProducerResults.count(bbArg.index()))
      continue;
    mapper.map(bbArg.value(), fusedBlock->addArgument(bbArg.value().getType(),
                                                      bbArg.value().getLoc()));
  }

  // 7. All of consumer's output operands.
  for (BlockArgument bbArg :
       consumerBlock.getArguments().take_back(consumer.getNumDpsInits()))
    mapper.map(bbArg, fusedBlock->addArgument(bbArg.getType(), bbArg.getLoc()));

  // 8. Clone all producer operations except for the yield and index operations
  // to the fused operation.
  for (auto &op : producerBlock.without_terminator()) {
    if (!isa<IndexOp>(op))
      rewriter.clone(op, mapper);
  }
  // 9. Now we can map the consumerBlock's `consumerIdx` block argument. Just
  // forward the yield operand.
  auto producerYieldOp = cast<linalg::YieldOp>(producerBlock.getTerminator());
  unsigned producerResultNumber =
      fusedOperand->get().cast<OpResult>().getResultNumber();
  Value replacement =
      mapper.lookupOrDefault(producerYieldOp.getOperand(producerResultNumber));

  // Sanity checks, if replacement is not already in the mapper then it must be
  // produced outside.
  if (replacement == producerYieldOp.getOperand(producerResultNumber)) {
    if (auto bb = replacement.dyn_cast<BlockArgument>())
      assert(bb.getOwner() != &producerBlock &&
             "yielded block argument must have been mapped");
    else
      assert(!producer->isAncestor(replacement.getDefiningOp()) &&
             "yielded value must have been mapped");
  }
  mapper.map(consumerBlock.getArgument(fusedOperand->getOperandNumber()),
             replacement);
  // 10. Clone operations from the consumer to the fused op.
  for (auto &op : consumerBlock.without_terminator())
    rewriter.clone(op, mapper);

  // 11. Include the final yield (which is the remapped values for all the
  // yield)
  auto consumerYieldOp = cast<linalg::YieldOp>(consumerBlock.getTerminator());
  SmallVector<Value> fusedYieldValues;
  fusedYieldValues.reserve(producerYieldOp.getNumOperands() +
                           consumerYieldOp.getNumOperands());
  for (const auto &producerYieldVal :
       llvm::enumerate(producerYieldOp.getOperands())) {
    if (preservedProducerResults.count(producerYieldVal.index()))
      fusedYieldValues.push_back(
          mapper.lookupOrDefault(producerYieldVal.value()));
  }
  for (auto consumerYieldVal : consumerYieldOp.getOperands())
    fusedYieldValues.push_back(mapper.lookupOrDefault(consumerYieldVal));
  rewriter.create<YieldOp>(fusedOp.getLoc(), fusedYieldValues);

  // Sanity checks.
  assert(fusedBlock->getNumArguments() == fusedOp.getNumOperands() &&
         "Ill-formed GenericOp region");
}

FailureOr<mlir::linalg::ElementwiseOpFusionResult>
mlir::linalg::fuseElementwiseOps(RewriterBase &rewriter,
                                 OpOperand *fusedOperand) {
  assert(areElementwiseOpsFusable(fusedOperand) &&
         "expected elementwise operation pre-conditions to pass");
  auto producerResult = fusedOperand->get().cast<OpResult>();
  auto producer = cast<GenericOp>(producerResult.getOwner());
  auto consumer = cast<GenericOp>(fusedOperand->getOwner());
  // TODO: allow fusing the producer of an output operand.
  assert(consumer.isDpsInput(fusedOperand) &&
         "expected producer of input operand");
  /// Find the results of the producer that have uses outside of the consumer.
  llvm::SmallDenseSet<int> preservedProducerResults;
  for (const auto &producerResult : llvm::enumerate(producer->getResults())) {
    auto *outputOperand = producer.getDpsInitOperand(producerResult.index());
    if (producer.payloadUsesValueFromOperand(outputOperand) ||
        !producer.canOpOperandsBeDropped(outputOperand) ||
        llvm::any_of(producerResult.value().getUsers(), [&](Operation *user) {
          return user != consumer.getOperation();
        })) {
      preservedProducerResults.insert(producerResult.index());
    }
  }

  // Compute the fused operands list and indexing maps.
  SmallVector<Value> fusedInputOperands, fusedOutputOperands;
  SmallVector<Type> fusedResultTypes;
  SmallVector<AffineMap> fusedIndexMaps;
  fusedInputOperands.reserve(producer.getNumDpsInputs() +
                             consumer.getNumDpsInputs());
  fusedOutputOperands.reserve(preservedProducerResults.size() +
                              consumer.getNumDpsInits());
  fusedResultTypes.reserve(preservedProducerResults.size() +
                           consumer.getNumDpsInits());
  fusedIndexMaps.reserve(producer->getNumOperands() +
                         consumer->getNumOperands());
  // In the following, numbering matches that of `generateFusedTensorOpRegion`.
  // 3. Consumer input operands/maps up to consumerIdx (exclusive).
  auto consumerInputs = consumer.getDpsInputOperands();
  auto *it = llvm::find_if(consumerInputs, [&](OpOperand *operand) {
    return operand == fusedOperand;
  });
  assert(it != consumerInputs.end() && "expected to find the consumer operand");
  for (OpOperand *opOperand : llvm::make_range(consumerInputs.begin(), it)) {
    fusedInputOperands.push_back(opOperand->get());
    fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(opOperand));
  }
  // 4. Splice in producer's input operands/maps.
  AffineMap producerResultIndexMap =
      producer.getIndexingMapMatchingResult(producerResult);
  for (OpOperand *opOperand : producer.getDpsInputOperands()) {
    fusedInputOperands.push_back(opOperand->get());
    // Compute indexing maps for the producer args in the fused operation.
    AffineMap map = getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp(
        opOperand, producerResultIndexMap,
        consumer.getMatchingIndexingMap(fusedOperand));
    fusedIndexMaps.push_back(map);
  }
  // 5. Remaining consumer's input operands/maps (drop past index
  // `consumerIdx`).
  for (OpOperand *opOperand :
       llvm::make_range(std::next(it), consumerInputs.end())) {
    fusedInputOperands.push_back(opOperand->get());
    fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(opOperand));
  }

  // 6. Collect all of the producer outputs.
  for (const auto &opOperand : llvm::enumerate(producer.getDpsInitOperands())) {
    if (!preservedProducerResults.count(opOperand.index()))
      continue;

    fusedOutputOperands.push_back(opOperand.value()->get());
    AffineMap map = getIndexingMapOfProducerOperandsInCoordinatesOfFusedOp(
        opOperand.value(), producerResultIndexMap,
        consumer.getMatchingIndexingMap(fusedOperand));
    fusedIndexMaps.push_back(map);
    fusedResultTypes.push_back(opOperand.value()->get().getType());
  }

  // 7. All of consumer's output operands (skip operands: added by the builder).
  for (OpOperand *opOperand : consumer.getDpsInitOperands()) {
    fusedOutputOperands.push_back(opOperand->get());
    fusedIndexMaps.push_back(consumer.getMatchingIndexingMap(opOperand));
    Type resultType = opOperand->get().getType();
    if (!resultType.isa<MemRefType>())
      fusedResultTypes.push_back(resultType);
  }

  // Generate the fused op.
  auto fusedOp = rewriter.create<GenericOp>(
      consumer.getLoc(), fusedResultTypes, fusedInputOperands,
      fusedOutputOperands, rewriter.getAffineMapArrayAttr(fusedIndexMaps),
      consumer.getIteratorTypes(),
      /*doc=*/nullptr,
      /*library_call=*/nullptr);
  if (!fusedOp.getShapesToLoopsMap()) {
    // Fused op has invalid indexing maps. Typically this means something is off
    // in the input, but going ahead here would result in verification errors.
    // So cleanup and abort.
    rewriter.eraseOp(fusedOp);
    return rewriter.notifyMatchFailure(
        fusedOp, "fused op failed loop bound computation check");
  }

  // Construct an AffineMap from consumer loops to producer loops.
  // consumer loop -> tensor index
  AffineMap consumerResultIndexMap =
      consumer.getMatchingIndexingMap(fusedOperand);
  // tensor index -> producer loop
  AffineMap invProducerResultIndexMap =
      inversePermutation(producerResultIndexMap);
  assert(invProducerResultIndexMap &&
         "expected producer result indexig map to be invertible");
  // consumer loop -> producer loop
  AffineMap consumerToProducerLoopsMap =
      invProducerResultIndexMap.compose(consumerResultIndexMap);

  generateFusedElementwiseOpRegion(
      rewriter, fusedOp, consumerToProducerLoopsMap, fusedOperand,
      consumer.getNumLoops(), preservedProducerResults);
  ElementwiseOpFusionResult result;
  result.fusedOp = fusedOp;
  int resultNum = 0;
  for (auto [index, producerResult] : llvm::enumerate(producer->getResults()))
    if (preservedProducerResults.count(index))
      result.replacements[producerResult] = fusedOp->getResult(resultNum++);
  for (auto consumerResult : consumer->getResults())
    result.replacements[consumerResult] = fusedOp->getResult(resultNum++);
  return result;
}

namespace {
/// Patterns to fuse a generic op, with the producer of its operands.
class FuseElementwiseOps : public OpRewritePattern<GenericOp> {
public:
  FuseElementwiseOps(MLIRContext *context, ControlFusionFn fun,
                     PatternBenefit benefit = 1)
      : OpRewritePattern<GenericOp>(context, benefit),
        controlFn(std::move(fun)) {}

  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    // Find the first operand that is defined by another generic op on tensors.
    for (OpOperand &opOperand : genericOp->getOpOperands()) {
      if (!areElementwiseOpsFusable(&opOperand))
        continue;
      if (!controlFn(&opOperand))
        continue;

      FailureOr<ElementwiseOpFusionResult> fusionResult =
          fuseElementwiseOps(rewriter, &opOperand);
      if (failed(fusionResult))
        return rewriter.notifyMatchFailure(genericOp, "fusion failed");
      Operation *producer = opOperand.get().getDefiningOp();
      for (auto [origVal, replacement] : fusionResult->replacements) {
        rewriter.replaceUsesWithIf(origVal, replacement, [&](OpOperand &use) {
          // Only replace consumer uses.
          return use.get().getDefiningOp() != producer;
        });
      }
      rewriter.eraseOp(genericOp);
      return success();
    }
    return failure();
  }

private:
  ControlFusionFn controlFn;
};
} // namespace

//===---------------------------------------------------------------------===//
// Methods and patterns that fuse reshape ops with elementwise operations by
// expanding the dimensionality of the elementwise operations.
//===---------------------------------------------------------------------===//

/// Conditions for folding a generic operation with a reshape op by expanding
/// the iteration space dimensionality for tensor operations. These are
/// preconditions assumed by `foldReshapeByDimExpansion` which implements the
/// following fusion pattern.
///
///  Consider
///
///  %c = linalg.generic ins(%a, %b : memref<?x?x?xf32>, memref<?x?xf32>)
///         indexing_maps = [affine_map<(d0, d1, d2) -> (d1, d0, d2)>,
///                          affine_map<(d0, d1, d2) -> (d1, d2)>,
///                          affine_map<(d0, d1, d2) -> (d0, d2, d1)>]
///  %d = tensor.expand_shape %c [[0, 1], [2], [3, 4, 5]]
///       : tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32>
///
///  The reshape can be folded into the `genericOp` if its loop dimensionality
///  is increased to match the result (operand) of the tensor.expand_shape.
///  The indexing_map of the fused tensor in the `genericOp` and the
///  reassociation map helps compute the indexing maps of the modified op.
///  For the above example, based on the reassociation map it
///  can be concluded that
///
///  - The loop used to access the first dimension of the fused tensor is split
///    into two.
///  - The loop used to access the second dimension of the fused tensor is kept
///    as is.
///  - The loop used to access the third dimension of the fused tensor is split
///    into three.
///
///  i.e. (e0, e1, e2, e3, e4) is the domain of the indexing map of the modified
///  op, then
///
///   d0 -> e0, e1
///   d1 -> e2, e3, e4
///   d2 -> e5
///
///  substituting this, the generic op can be rewritten as
///
///  %d = linalg.generic ins(%0, %1 : )
///        indexing_maps =
///         [affine_map<(e0, e1, e2, e3, e4, e5) -> (e2, e3, e4, e0, e1, e5)>,
///          affine_map<(e0, e1, e2, e3, e4, e5) -> (e2, e3, e4, e5)>,
///          affine_map<(e0, e1, e2, e3, e4, e5) -> (e0, e1, e5, e2, e3, e4)>]
///
///  Since operands to the linalg generic are now 5D, reshapes can be introduced
///  to make it consistent
///
///  %0 = tensor.expand_shape %a [[0, 1, 2], [3, 4], [5]]
///       : tensor<?x?x?xf32> into tensor<?x?x?x?x?x?xf32>
///  %1 = tensor.expand_shape %b [[0, 1, 2], [3]]
///       : tensor<?x?x?xf32> into tensor<?x?x?x?xf32>
///
///  The added reshapes are again expanding patterns, so they will get fused
///  with its producers if possible.
static bool isFusableWithReshapeByDimExpansion(GenericOp genericOp,
                                               OpOperand *fusableOpOperand) {
  // Is fusable only if:
  // - All the indexing maps for operands and results are projected
  //   permutations.
  // - The fused tensor is not a scalar.
  // - All the loops are parallel loops.
  return genericOp.hasTensorSemantics() &&
         llvm::all_of(genericOp.getIndexingMaps().getValue(),
                      [](Attribute attr) {
                        return attr.cast<AffineMapAttr>()
                            .getValue()
                            .isProjectedPermutation();
                      }) &&
         genericOp.getMatchingIndexingMap(fusableOpOperand).getNumResults() >
             0 &&
         llvm::all_of(genericOp.getIteratorTypesArray(), isParallelIterator);
}

namespace {
/// Information needed to expand a generic operation to fold the reshape with
/// it.
class ExpansionInfo {
public:
  // Computes the mapping from original dimensions of the op to the dimensions
  // of the expanded op given the `indexingMap` of the fused operand/result of
  // the generic op, the `reassocationMaps` of the reshape op and the shape of
  // the expanded op.
  LogicalResult compute(LinalgOp linalgOp, OpOperand *fusableOpOperand,
                        ArrayRef<AffineMap> reassociationMaps,
                        ArrayRef<int64_t> expandedShape,
                        ArrayRef<int64_t> collapsedShape,
                        PatternRewriter &rewriter);
  unsigned getOrigOpNumDims() const { return reassociation.size(); }
  unsigned getExpandedOpNumDims() const { return expandedOpNumDims; }
  ReassociationIndicesRef getExpandedDims(unsigned i) const {
    return reassociation[i];
  }
  ArrayRef<int64_t> getExpandedShapeOfDim(unsigned i) const {
    return expandedShapeMap[i];
  }
  ArrayRef<int64_t> getOriginalShape() const { return originalLoopExtent; }

private:
  /// Reassociation from the dimensions in the original operation to the
  /// dimension of the expanded operation.
  SmallVector<ReassociationIndices> reassociation;
  /// Mapping from extent of loops in the original operation, to the extent of
  /// loops in the expanded operation.
  SmallVector<SmallVector<int64_t>> expandedShapeMap;
  /// Extent of the loop in the original operation.
  SmallVector<int64_t> originalLoopExtent;
  unsigned expandedOpNumDims;
};
} // namespace

LogicalResult ExpansionInfo::compute(LinalgOp linalgOp,
                                     OpOperand *fusableOpOperand,
                                     ArrayRef<AffineMap> reassociationMaps,
                                     ArrayRef<int64_t> expandedShape,
                                     ArrayRef<int64_t> collapsedShape,
                                     PatternRewriter &rewriter) {
  if (reassociationMaps.empty())
    return failure();
  AffineMap fusedIndexMap = linalgOp.getMatchingIndexingMap(fusableOpOperand);

  SmallVector<int64_t, 4> originalLoopRange = linalgOp.getStaticLoopRanges();
  originalLoopExtent.assign(originalLoopRange.begin(), originalLoopRange.end());

  reassociation.clear();
  expandedShapeMap.clear();
  // Compute the number of dimension in the expanded op that correspond to each
  // dimension of the original op.
  SmallVector<unsigned> numExpandedDims(fusedIndexMap.getNumDims(), 1);
  expandedShapeMap.resize(fusedIndexMap.getNumDims());
  for (const auto &resultExpr : llvm::enumerate(fusedIndexMap.getResults())) {
    unsigned pos = resultExpr.value().cast<AffineDimExpr>().getPosition();
    AffineMap foldedDims = reassociationMaps[resultExpr.index()];
    numExpandedDims[pos] = foldedDims.getNumResults();
    ArrayRef<int64_t> shape =
        expandedShape.slice(foldedDims.getDimPosition(0), numExpandedDims[pos]);
    expandedShapeMap[pos].assign(shape.begin(), shape.end());
  }
  // The remaining dimensions remain the same.
  for (unsigned i : llvm::seq<unsigned>(0, fusedIndexMap.getNumDims()))
    if (expandedShapeMap[i].empty())
      expandedShapeMap[i] = {originalLoopExtent[i]};

  // Compute reassociation map from the original op to the expanded op.
  unsigned sum = 0;
  reassociation.reserve(fusedIndexMap.getNumDims());
  for (const auto &numFoldedDim : llvm::enumerate(numExpandedDims)) {
    auto seq = llvm::seq<int64_t>(sum, sum + numFoldedDim.value());
    reassociation.emplace_back(seq.begin(), seq.end());
    sum += numFoldedDim.value();
  }
  expandedOpNumDims = sum;
  return success();
}

/// Epanding the body of a linalg operation requires adaptations of the accessed
/// loop indices. Specifically, access of indices in the original operation need
/// to be replaced with linearizations of indices in the expanded op. That
/// requires the shape of the expanded dimensions to be static (at least all but
/// the most significant). For now check that these are all statically sized.
/// Note that this could be extended to handle dynamic case, but the
/// implementation below uses `affine.apply` which seems to have issues when the
/// shapes are not static.
static LogicalResult isGenericOpExpandable(GenericOp genericOp,
                                           const ExpansionInfo &expansionInfo,
                                           PatternRewriter &rewriter) {
  if (!genericOp.hasIndexSemantics())
    return success();
  for (unsigned i : llvm::seq<unsigned>(0, expansionInfo.getOrigOpNumDims())) {
    ArrayRef<int64_t> expandedShape = expansionInfo.getExpandedShapeOfDim(i);
    if (expandedShape.size() == 1)
      continue;
    for (int64_t shape : expandedShape.drop_front()) {
      if (ShapedType::isDynamic(shape)) {
        return rewriter.notifyMatchFailure(
            genericOp, "cannot expand due to index semantics and dynamic dims");
      }
    }
  }
  return success();
}

/// Return the indexing map to use in the expanded op for a given the
/// `indexingMap` of the original operation.
static AffineMap
getIndexingMapInExpandedOp(OpBuilder &builder, AffineMap indexingMap,
                           const ExpansionInfo &expansionInfo) {
  SmallVector<AffineExpr> newExprs;
  for (AffineExpr expr : indexingMap.getResults()) {
    unsigned pos = expr.cast<AffineDimExpr>().getPosition();
    SmallVector<AffineExpr, 4> expandedExprs = llvm::to_vector<4>(
        llvm::map_range(expansionInfo.getExpandedDims(pos), [&](int64_t v) {
          return builder.getAffineDimExpr(static_cast<unsigned>(v));
        }));
    newExprs.append(expandedExprs.begin(), expandedExprs.end());
  }
  return AffineMap::get(expansionInfo.getExpandedOpNumDims(),
                        indexingMap.getNumSymbols(), newExprs,
                        builder.getContext());
}

/// Return the type of the operand/result to use in the expanded op given the
/// type in the original op.
static RankedTensorType getExpandedType(RankedTensorType originalType,
                                        AffineMap indexingMap,
                                        const ExpansionInfo &expansionInfo) {
  SmallVector<int64_t> expandedShape;
  for (AffineExpr expr : indexingMap.getResults()) {
    unsigned dim = expr.cast<AffineDimExpr>().getPosition();
    auto dimExpansion = expansionInfo.getExpandedShapeOfDim(dim);
    expandedShape.append(dimExpansion.begin(), dimExpansion.end());
  }
  return RankedTensorType::get(expandedShape, originalType.getElementType());
}

/// Returns the reassociation maps to use in the `tensor.expand_shape`
/// operation to convert the operands of the original operation to operands of
/// the expanded operation. The same method is used to compute the
/// `tensor.collapse_shape` used to collapse the result of the expanded
/// op to get the value that can replace all uses of the results of the original
/// op.
static SmallVector<ReassociationIndices>
getReassociationForExpansion(AffineMap indexingMap,
                             const ExpansionInfo &expansionInfo) {
  SmallVector<ReassociationIndices> reassociation;
  unsigned numReshapeDims = 0;
  for (AffineExpr expr : indexingMap.getResults()) {
    unsigned dim = expr.cast<AffineDimExpr>().getPosition();
    auto numExpandedDims = expansionInfo.getExpandedDims(dim).size();
    SmallVector<int64_t, 2> indices = llvm::to_vector<2>(
        llvm::seq<int64_t>(numReshapeDims, numReshapeDims + numExpandedDims));
    reassociation.emplace_back(std::move(indices));
    numReshapeDims += numExpandedDims;
  }
  return reassociation;
}

/// Update the body of an expanded linalg operation having index semantics. The
/// indices of the original operation need to be recovered by linearizing the
/// indices of the correspoding dimensions of the expanded operation. For now it
/// is assumed that the shapes of the expanded operation needed for
/// linearization are static.
static void updateExpandedGenericOpRegion(PatternRewriter &rewriter,
                                          Location loc, Region &fusedRegion,
                                          const ExpansionInfo &expansionInfo) {
  // Replace the original indices by the linearization of the expanded indices.
  for (IndexOp indexOp :
       llvm::make_early_inc_range(fusedRegion.front().getOps<IndexOp>())) {
    ArrayRef<int64_t> expandedDims =
        expansionInfo.getExpandedDims(indexOp.getDim());
    assert(!expandedDims.empty() && "expected valid expansion info");

    // Skip index operations that are not affected by the expansion.
    if (expandedDims.size() == 1 &&
        expandedDims.front() == (int64_t)indexOp.getDim())
      continue;

    // Linearize the expanded indices of the original index dimension.
    OpBuilder::InsertionGuard guard(rewriter);
    rewriter.setInsertionPointAfter(indexOp);
    ArrayRef<int64_t> expandedDimsShape =
        expansionInfo.getExpandedShapeOfDim(indexOp.getDim()).drop_front();
    SmallVector<Value> expandedIndices;
    expandedIndices.reserve(expandedDims.size() - 1);
    llvm::transform(
        expandedDims.drop_front(), std::back_inserter(expandedIndices),
        [&](int64_t dim) { return rewriter.create<IndexOp>(loc, dim); });
    Value newIndex = rewriter.create<IndexOp>(loc, expandedDims.front());
    for (auto it : llvm::zip(expandedDimsShape, expandedIndices)) {
      assert(!ShapedType::isDynamic(std::get<0>(it)));
      AffineExpr idx, acc;
      bindDims(rewriter.getContext(), idx, acc);
      newIndex = rewriter.create<affine::AffineApplyOp>(
          indexOp.getLoc(), idx + acc * std::get<0>(it),
          ValueRange{std::get<1>(it), newIndex});
    }
    rewriter.replaceOp(indexOp, newIndex);
  }
}

/// Implements the fusion of a tensor.collapse_shape or a tensor.expand_shape op
/// and a generic op as explained in `isFusableWithReshapeByExpansion`. Assumes
/// that those conditions have been satisfied.
static std::optional<SmallVector<Value>>
fuseWithReshapeByExpansion(GenericOp genericOp, Operation *reshapeOp,
                           OpOperand *fusableOpOperand,
                           PatternRewriter &rewriter) {
  assert(isFusableWithReshapeByDimExpansion(genericOp, fusableOpOperand) &&
         "preconditions for fuse operation failed");
  // Check if reshape is expanding or collapsing.
  auto expandingReshapeOp = dyn_cast<tensor::ExpandShapeOp>(*reshapeOp);
  auto collapsingReshapeOp = dyn_cast<tensor::CollapseShapeOp>(*reshapeOp);
  bool isExpanding = (expandingReshapeOp != nullptr);
  RankedTensorType expandedType = isExpanding
                                      ? expandingReshapeOp.getResultType()
                                      : collapsingReshapeOp.getSrcType();
  RankedTensorType collapsedType = isExpanding
                                       ? expandingReshapeOp.getSrcType()
                                       : collapsingReshapeOp.getResultType();

  ExpansionInfo expansionInfo;
  if (failed(expansionInfo.compute(
          genericOp, fusableOpOperand,
          isExpanding ? expandingReshapeOp.getReassociationMaps()
                      : collapsingReshapeOp.getReassociationMaps(),
          expandedType.getShape(), collapsedType.getShape(), rewriter)))
    return std::nullopt;

  if (failed(isGenericOpExpandable(genericOp, expansionInfo, rewriter)))
    return std::nullopt;

  SmallVector<AffineMap, 4> expandedOpIndexingMaps = llvm::to_vector<4>(
      llvm::map_range(genericOp.getIndexingMapsArray(), [&](AffineMap m) {
        return getIndexingMapInExpandedOp(rewriter, m, expansionInfo);
      }));

  // Set insertion point to the generic op.
  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPoint(genericOp);

  SmallVector<Value> expandedOpOperands;
  expandedOpOperands.reserve(genericOp.getNumDpsInputs());
  for (OpOperand *opOperand : genericOp.getDpsInputOperands()) {
    if (opOperand == fusableOpOperand) {
      expandedOpOperands.push_back(isExpanding ? expandingReshapeOp.getSrc()
                                               : collapsingReshapeOp.getSrc());
      continue;
    }
    if (auto opOperandType =
            opOperand->get().getType().dyn_cast<RankedTensorType>()) {
      AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
      RankedTensorType expandedOperandType =
          getExpandedType(opOperandType, indexingMap, expansionInfo);
      if (expandedOperandType != opOperand->get().getType()) {
        // Reshape the operand to get the right type.
        SmallVector<ReassociationIndices> reassociation =
            getReassociationForExpansion(indexingMap, expansionInfo);
        if (failed(reshapeLikeShapesAreCompatible(
                [&](const Twine &msg) {
                  return rewriter.notifyMatchFailure(genericOp, msg);
                },
                opOperandType.getShape(), expandedOperandType.getShape(),
                reassociation,
                /*isExpandingReshape=*/true)))
          return std::nullopt;
        expandedOpOperands.push_back(rewriter.create<tensor::ExpandShapeOp>(
            genericOp.getLoc(), expandedOperandType, opOperand->get(),
            reassociation));
        continue;
      }
    }
    expandedOpOperands.push_back(opOperand->get());
  }

  Location loc = genericOp.getLoc();
  SmallVector<Value> outputs;
  for (OpOperand *opOperand : genericOp.getDpsInitOperands()) {
    AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
    auto opOperandType = opOperand->get().getType().cast<RankedTensorType>();
    RankedTensorType expandedOutputType =
        getExpandedType(opOperandType, indexingMap, expansionInfo);
    if (expandedOutputType != opOperand->get().getType()) {
      SmallVector<ReassociationIndices> reassociation =
          getReassociationForExpansion(indexingMap, expansionInfo);
      if (failed(reshapeLikeShapesAreCompatible(
              [&](const Twine &msg) {
                return rewriter.notifyMatchFailure(genericOp, msg);
              },
              opOperandType.getShape(), expandedOutputType.getShape(),
              reassociation,
              /*isExpandingReshape=*/true)))
        return std::nullopt;
      outputs.push_back(rewriter.create<tensor::ExpandShapeOp>(
          genericOp.getLoc(), expandedOutputType, opOperand->get(),
          reassociation));
    } else {
      outputs.push_back(opOperand->get());
    }
  }

  // The iterator types of the expanded op are all parallel.
  SmallVector<utils::IteratorType> iteratorTypes(
      expansionInfo.getExpandedOpNumDims(), utils::IteratorType::parallel);

  TypeRange resultTypes = ValueRange(outputs).getTypes();
  auto fusedOp =
      rewriter.create<GenericOp>(genericOp.getLoc(), resultTypes,
                                 /*inputs=*/expandedOpOperands, outputs,
                                 expandedOpIndexingMaps, iteratorTypes);
  Region &fusedRegion = fusedOp->getRegion(0);
  Region &originalRegion = genericOp->getRegion(0);
  rewriter.cloneRegionBefore(originalRegion, fusedRegion, fusedRegion.begin());

  // Update the index accesses after the expansion.
  updateExpandedGenericOpRegion(rewriter, loc, fusedRegion, expansionInfo);

  // Reshape the result values to their original shape if this is a collapsing
  // reshape folded into its consumer.
  SmallVector<Value> resultVals;
  for (OpResult opResult : genericOp->getOpResults()) {
    int64_t resultNumber = opResult.getResultNumber();
    if (resultTypes[resultNumber] != opResult.getType()) {
      SmallVector<ReassociationIndices> reassociation =
          getReassociationForExpansion(
              genericOp.getMatchingIndexingMap(
                  genericOp.getDpsInitOperand(resultNumber)),
              expansionInfo);
      resultVals.push_back(rewriter.create<tensor::CollapseShapeOp>(
          genericOp.getLoc(), opResult.getType(),
          fusedOp->getResult(resultNumber), reassociation));
    } else {
      resultVals.push_back(fusedOp->getResult(resultNumber));
    }
  }
  // Assuming a single result.
  return resultVals;
}

namespace {

/// Pattern to fuse a tensor.collapse_shape op with its consumer generic op,
/// when the reshape op is collapsing dimensions. The dimensionality of the loop
/// in the consumer is expanded.
class FoldWithProducerReshapeOpByExpansion
    : public OpRewritePattern<GenericOp> {
public:
  FoldWithProducerReshapeOpByExpansion(MLIRContext *context,
                                       ControlFusionFn foldReshapes,
                                       PatternBenefit benefit = 1)
      : OpRewritePattern<GenericOp>(context, benefit),
        controlFoldingReshapes(std::move(foldReshapes)) {}

  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    for (OpOperand *opOperand : genericOp.getDpsInputOperands()) {
      tensor::CollapseShapeOp reshapeOp =
          opOperand->get().getDefiningOp<tensor::CollapseShapeOp>();
      if (!reshapeOp)
        continue;
      // Fold only if
      // - The tensor reshape op is folding.
      // - All constraints of fusing with reshape by expansion are met.
      if (!isFusableWithReshapeByDimExpansion(genericOp, opOperand) ||
          (!controlFoldingReshapes(opOperand)))
        continue;

      std::optional<SmallVector<Value>> replacementValues =
          fuseWithReshapeByExpansion(genericOp, reshapeOp, opOperand, rewriter);
      if (!replacementValues)
        return failure();
      rewriter.replaceOp(genericOp, *replacementValues);
      return success();
    }
    return failure();
  }

private:
  ControlFusionFn controlFoldingReshapes;
};

/// Pattern to fold a tensor.expand_shape op with its producer generic op
/// by expanding the dimensionality of the loop in the producer op.
struct FoldReshapeWithGenericOpByExpansion
    : public OpRewritePattern<tensor::ExpandShapeOp> {

  FoldReshapeWithGenericOpByExpansion(MLIRContext *context,
                                      ControlFusionFn foldReshapes,
                                      PatternBenefit benefit = 1)
      : OpRewritePattern<tensor::ExpandShapeOp>(context, benefit),
        controlFoldingReshapes(std::move(foldReshapes)) {}

  LogicalResult matchAndRewrite(tensor::ExpandShapeOp reshapeOp,
                                PatternRewriter &rewriter) const override {
    // Fold only if all constraints of fusing with reshape by expansion are met.
    auto producerResult = reshapeOp.getSrc().dyn_cast<OpResult>();
    if (!producerResult) {
      return rewriter.notifyMatchFailure(reshapeOp,
                                         "source not produced by an operation");
    }

    auto producer = dyn_cast<GenericOp>(producerResult.getOwner());
    if (!producer) {
      return rewriter.notifyMatchFailure(reshapeOp,
                                         "producer not a generic op");
    }

    if (!isFusableWithReshapeByDimExpansion(
            producer,
            producer.getDpsInitOperand(producerResult.getResultNumber()))) {
      return rewriter.notifyMatchFailure(
          reshapeOp, "failed preconditions of fusion with producer generic op");
    }

    if (!controlFoldingReshapes(&reshapeOp->getOpOperand(0))) {
      return rewriter.notifyMatchFailure(reshapeOp,
                                         "fusion blocked by control function");
    }

    std::optional<SmallVector<Value>> replacementValues =
        fuseWithReshapeByExpansion(
            producer, reshapeOp,
            producer.getDpsInitOperand(producerResult.getResultNumber()),
            rewriter);
    if (!replacementValues) {
      return rewriter.notifyMatchFailure(reshapeOp,
                                         "fusion by expansion failed");
    }

    // Find the replacement for the reshape op. Since the replacements have the
    // same type as the returns of the original generic op, the consumer reshape
    // op can be replaced by the source of the collapse_shape op that defines
    // the replacement.
    Value reshapeReplacement = (*replacementValues)
        [reshapeOp.getSrc().cast<OpResult>().getResultNumber()];
    if (auto collapseOp =
            reshapeReplacement.getDefiningOp<tensor::CollapseShapeOp>()) {
      reshapeReplacement = collapseOp.getSrc();
    }
    rewriter.replaceOp(reshapeOp, reshapeReplacement);
    rewriter.replaceOp(producer, *replacementValues);
    return success();
  }

private:
  ControlFusionFn controlFoldingReshapes;
};
} // namespace

//===---------------------------------------------------------------------===//
// Methods and patterns to fuse reshape with linalg.generic operations by
// contraction of dimensions.
//===---------------------------------------------------------------------===//

/// For a given list of indices in the range of the `indexingMap` that are
/// folded, return the indices of the corresponding domain. Return
/// `std::nullopt` on failure. Ensures that all the elements of the returned
/// reassociation are distinct.
static ReassociationIndices
getDomainReassociation(AffineMap indexingMap,
                       ReassociationIndicesRef rangeReassociation) {
  assert(indexingMap.isProjectedPermutation() &&
         "expected projected permutation");

  ReassociationIndices domainReassociation = llvm::to_vector<4>(
      llvm::map_range(rangeReassociation, [&](int64_t pos) -> int64_t {
        return indexingMap.getResults()[pos]
            .cast<AffineDimExpr>()
            .getPosition();
      }));
  // The projected permutation semantics ensures that there is no repetition of
  // the domain indices.
  return domainReassociation;
}

/// For a given `dimSequence`, check if the sequence is conserved in the
/// `indexingMap`. `indexingMap` is expected to be a projected permutation.
/// Non-existence of the sequence returns true as well.
bool mlir::linalg::isDimSequencePreserved(AffineMap indexingMap,
                                          ReassociationIndicesRef dimSequence) {
  assert(!dimSequence.empty() &&
         "expected non-empty list for dimension sequence");
  assert(indexingMap.isProjectedPermutation() &&
         "expected indexing map to be projected permutation");

  llvm::SmallDenseSet<unsigned, 4> sequenceElements;
  sequenceElements.insert(dimSequence.begin(), dimSequence.end());

  unsigned dimSequenceStart = dimSequence[0];
  for (const auto &expr : enumerate(indexingMap.getResults())) {
    unsigned dimInMapStart = expr.value().cast<AffineDimExpr>().getPosition();
    // 1.  Check if this start of the sequence.
    if (dimInMapStart == dimSequenceStart) {
      if (expr.index() + dimSequence.size() > indexingMap.getNumResults())
        return false;
      // 1a. Check if sequence is preserved.
      for (const auto &dimInSequence : enumerate(dimSequence)) {
        unsigned dimInMap =
            indexingMap.getResult(expr.index() + dimInSequence.index())
                .cast<AffineDimExpr>()
                .getPosition();
        if (dimInMap != dimInSequence.value())
          return false;
      }
      // Found the sequence. Projected permutation
      // enforces that all AffineDimExprs in the result are unique, so no
      // further checks are needed.
      return true;
    }
    // 2. If position in the expr (which is of type AffineDimExpr) is part
    // of sequence, return false here. This implies the entire sequence does not
    // exist in the indexing map.
    if (sequenceElements.count(dimInMapStart))
      return false;
  }
  // 3. No element of sequence found. Return true.
  return true;
}

bool mlir::linalg::areDimSequencesPreserved(
    ArrayRef<AffineMap> maps, ArrayRef<ReassociationIndices> dimSequences) {
  return llvm::all_of(maps, [&](AffineMap map) {
    return llvm::all_of(dimSequences, [&](ReassociationIndicesRef dimSequence) {
      return isDimSequencePreserved(map, dimSequence);
    });
  });
}

// Return the list of dimensions of the iteration domain that can be
// collapsed to allow for fusion with the a producer that is an expand_shape
// operation. If all dimensions created by expansion can be collapsed in the
// iteration space then the reshape is defunct.
//
// Example:
//
// ```mlir
// #map = affine_map<(d0, d1) -> (d0, d1)>
// %1 = tensor.expand_shape %0 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32>
// %2 = tensor.empty [..] : tensor<?x4xf32>
// %3 = linalg.generic {
//     indexing_maps = [#map, #map],
//     iterator_types = ["parallel" ,"parallel"]}
//     ins(%1 : tensor<?x4xf32>) outs(%2 : tensor<?x4xf32>) {.. }
// ```
//
// can be fused by collapsing the dimensions of the iteration space.
//
// ```mlir
// #map = affine_map<(d0) -> (d0)>
// %2 = tensor.empty [..] : tensor<?xf32>
// %3 = linalg.generic {
//     indexing_maps = [#map, #map],
//     iterator_types = ["parallel"]}
//     ins(%1 : tensor<?xf32>) outs(%2 : tensor<?xf32>) {.. }
// %4 = tensor.expand_shape %3 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32>
// ```
//
// In the following example,
//
// ```mlir
// #map0 = affine_map<(d0, d1) -> (d0, d1)>
// #map1 = affine_map<(d0, d1) -> (d1, d0)>
// %1 = tensor.expand_shape %0 [[0, 1]] : tensor<?xf32> into tensor<?x4xf32>
// %2 = tensor.empty [..] : tensor<4x?xf32>
// %2 = linalg.generic {
//     indexing_maps = [#map0, #map1],
//     iterator_types = ["parallel" ,"parallel"]}
//     ins(%1 : tensor<?x4xf32>) outs(%2 : tensor<4x?xf32>) {.. }
// ```
//
// the reshape cannot be fused with the generic op by collapsing the op
// dimensions since the indexing maps will have to contain mods and divs
// to preserve the accesses pattern. When no dimensions of the iteration
// space are collapsable and empty vector is returned.
static SmallVector<ReassociationIndices>
getCollapsableIterationSpaceDims(GenericOp genericOp, OpOperand *fusableOperand,
                                 ArrayRef<ReassociationIndices> reassociation) {
  // Some basic checks for this fusion to be valid.
  if (!genericOp.hasTensorSemantics() || genericOp.getNumDpsInits() != 1)
    return {};

  if (!llvm::all_of(genericOp.getIndexingMapsArray(), [](AffineMap map) {
        return map.isProjectedPermutation();
      })) {
    return {};
  }

  // Compute all the loops with the reduction iterator types.
  SmallVector<unsigned> reductionDims;
  genericOp.getReductionDims(reductionDims);

  llvm::SmallDenseSet<unsigned, 4> processedIterationDims;
  AffineMap indexingMap = genericOp.getMatchingIndexingMap(fusableOperand);
  auto iteratorTypes = genericOp.getIteratorTypesArray();
  SmallVector<ReassociationIndices> iterationSpaceReassociation;
  for (ReassociationIndicesRef foldedRangeDims : reassociation) {
    assert(!foldedRangeDims.empty() && "unexpected empty reassociation");

    // Ignore dims that are not folded.
    if (foldedRangeDims.size() == 1)
      continue;

    ReassociationIndices foldedIterationSpaceDims =
        getDomainReassociation(indexingMap, foldedRangeDims);

    // Check that the folded iteration dims do not contain already processed
    // dims.
    if (llvm::any_of(foldedIterationSpaceDims, [&](int64_t dim) {
          return processedIterationDims.count(dim);
        }))
      continue;

    // Check that all folded iterator types are all parallel or all reductions.
    utils::IteratorType startIteratorType =
        iteratorTypes[foldedIterationSpaceDims[0]];
    if (!isParallelIterator(startIteratorType) &&
        !isReductionIterator(startIteratorType))
      continue;
    if (llvm::any_of(foldedIterationSpaceDims, [&](int64_t dim) {
          return iteratorTypes[dim] != startIteratorType;
        }))
      continue;

    // If the folded dimensions correspond to a "reduction" iterator type,
    // the folded dimensions need to be "in-order". Strictly speaking this is
    // not necessary, for reductions that are associative and commutative,  but
    // using a more strict definition of reduction for now.
    if (isReductionIterator(startIteratorType)) {
      bool isContiguous = false;
      for (const auto &startDim : llvm::enumerate(reductionDims)) {
        // Move window in `reductionDims` to start of the folded iteration dims.
        if (startDim.value() != foldedIterationSpaceDims[0])
          continue;
        // If sizes doesnt match, trivial not contiguous. This condition should
        // not be hit.
        if (startDim.index() + foldedIterationSpaceDims.size() >
            reductionDims.size())
          break;
        // Check that the contiguity is maintained.
        isContiguous = true;
        for (const auto &foldedDim :
             llvm::enumerate(foldedIterationSpaceDims)) {
          if (reductionDims[foldedDim.index() + startDim.index()] !=
              foldedDim.value()) {
            isContiguous = false;
            break;
          }
        }
        break;
      }
      if (!isContiguous)
        continue;
    }

    // Check that the sequence is preserved in all indexing maps.
    if (llvm::any_of(genericOp.getIndexingMapsArray(),
                     [&](AffineMap indexingMap) {
                       return !isDimSequencePreserved(indexingMap,
                                                      foldedIterationSpaceDims);
                     }))
      continue;

    processedIterationDims.insert(foldedIterationSpaceDims.begin(),
                                  foldedIterationSpaceDims.end());
    iterationSpaceReassociation.emplace_back(
        std::move(foldedIterationSpaceDims));
  }

  return iterationSpaceReassociation;
}

/// Helper class to carry state while collapsing the `linalg.generic` op.
namespace {
class CollapsingInfo {
public:
  LogicalResult initialize(unsigned origNumLoops,
                           ArrayRef<ReassociationIndices> foldedIterationDims) {
    llvm::SmallDenseSet<int64_t, 4> processedDims;
    // Find all the dims that are folded.
    for (ReassociationIndicesRef foldedIterationDim : foldedIterationDims) {
      if (foldedIterationDim.empty())
        continue;
      // If the folded dims contain dims already folded, that's illegal
      // specification. Repetition within a list is also illegal.
      for (auto dim : foldedIterationDim) {
        if (dim >= origNumLoops)
          return failure();
        if (processedDims.count(dim))
          return failure();
        processedDims.insert(dim);
      }
      collapsedOpToOrigOpIterationDim.emplace_back(foldedIterationDim.begin(),
                                                   foldedIterationDim.end());
    }
    if (processedDims.size() > origNumLoops)
      return failure();

    // Add all the preserved dims of the original op as single
    // elements to `collapsedOpToOrigOpIterationDim`.
    for (auto dim : llvm::seq<int64_t>(0, origNumLoops)) {
      if (processedDims.count(dim))
        continue;
      collapsedOpToOrigOpIterationDim.emplace_back(ReassociationIndices{dim});
    }

    llvm::sort(collapsedOpToOrigOpIterationDim,
               [&](ReassociationIndicesRef lhs, ReassociationIndicesRef rhs) {
                 return lhs[0] < rhs[0];
               });
    origOpToCollapsedOpIterationDim.resize(origNumLoops);
    for (const auto &foldedDims :
         llvm::enumerate(collapsedOpToOrigOpIterationDim)) {
      for (const auto &dim : enumerate(foldedDims.value()))
        origOpToCollapsedOpIterationDim[dim.value()] =
            std::make_pair<int64_t, unsigned>(foldedDims.index(), dim.index());
    }
    return success();
  }

  /// Return mapping from collapsed loop domain to original loop domain.
  ArrayRef<ReassociationIndices> getCollapsedOpToOrigOpMapping() const {
    return collapsedOpToOrigOpIterationDim;
  }

  /// Return mapping from original loop domain to collapsed loop domain. The
  /// mapping is a pair. First value is the dimension in the collapsed loop that
  /// the original loop is mapped to. Second is the relative position in folded
  /// list of this domain. For example if the original loop domain is 3D, and
  /// the collapsed loop domain is folding all of it, i.e.
  ///
  /// ```
  /// collapsedOpToOrigOpMapping = [[0, 1, 2] [3, 4]]`
  /// ```
  ///
  /// then
  ///
  /// ```
  ///  origOpToCollapsedOpMapping[0] = {0, 0};
  ///  origOpToCollapsedOpMapping[1] = {0, 1};
  ///  origOpToCollapsedOpMapping[2] = {0, 2};
  ///  origOpToCollapsedOpMapping[3] = {1, 0};
  ///  origOpToCollapsedOpMapping[4] = {1, 1};
  /// ```
  ///
  ArrayRef<std::pair<int64_t, unsigned>> getOrigOpToCollapsedOpMapping() const {
    return origOpToCollapsedOpIterationDim;
  }

  /// Return the collapsed op iteration domain rank.
  unsigned getCollapsedOpIterationRank() const {
    return collapsedOpToOrigOpIterationDim.size();
  }

private:
  /// Map from the iteration domain index in collapsed op to the iteration
  /// domain indices in the original op.
  SmallVector<ReassociationIndices> collapsedOpToOrigOpIterationDim;

  /// Map from iteration domain index in the original op to the iteration domain
  /// index in the collapsed op.
  SmallVector<std::pair<int64_t, unsigned>> origOpToCollapsedOpIterationDim;
};
} // namespace

/// Get the iterator types for the collapsed operation given the original
/// iterator types and collapsed dimensions.
static SmallVector<utils::IteratorType>
getCollapsedOpIteratorTypes(ArrayRef<utils::IteratorType> iteratorTypes,
                            const CollapsingInfo &collapsingInfo) {
  SmallVector<utils::IteratorType> collapsedIteratorTypes;
  for (ReassociationIndicesRef foldedIterDims :
       collapsingInfo.getCollapsedOpToOrigOpMapping()) {
    assert(!foldedIterDims.empty() &&
           "reassociation indices expected to have non-empty sets");
    // Just pick the iterator type of the first folded dim. Pre-condition checks
    // expected to have checked that iterator types of all folded dimensions are
    // the same.
    collapsedIteratorTypes.push_back(iteratorTypes[foldedIterDims[0]]);
  }
  return collapsedIteratorTypes;
}

/// Compute the indexing map in the collapsed op that corresponds to the given
/// `indexingMap` of the original operation.
static AffineMap
getCollapsedOpIndexingMap(AffineMap indexingMap,
                          const CollapsingInfo &collapsingInfo) {
  MLIRContext *context = indexingMap.getContext();
  assert(indexingMap.isProjectedPermutation() &&
         "expected indexing map to be projected permutation");
  SmallVector<AffineExpr> resultExprs;
  auto origOpToCollapsedOpMapping =
      collapsingInfo.getOrigOpToCollapsedOpMapping();
  for (auto expr : indexingMap.getResults()) {
    unsigned dim = expr.cast<AffineDimExpr>().getPosition();
    // If the dim is not the first of the collapsed dim, do nothing.
    if (origOpToCollapsedOpMapping[dim].second != 0)
      continue;
    // The next n-dims are guaranteed to be collapsed. So just use the
    // iteration dimension of the collapsed op.
    resultExprs.push_back(
        getAffineDimExpr(origOpToCollapsedOpMapping[dim].first, context));
  }
  return AffineMap::get(collapsingInfo.getCollapsedOpIterationRank(), 0,
                        resultExprs, context);
}

/// Return the `reassociation` indices to use to collapse the operand when the
/// iteration space of a generic op is collapsed.
static SmallVector<ReassociationIndices>
getOperandReassociation(AffineMap indexingMap,
                        const CollapsingInfo &collapsingInfo) {
  unsigned counter = 0;
  SmallVector<ReassociationIndices> operandReassociation;
  auto origOpToCollapsedOpMapping =
      collapsingInfo.getOrigOpToCollapsedOpMapping();
  auto collapsedOpToOrigOpMapping =
      collapsingInfo.getCollapsedOpToOrigOpMapping();
  while (counter < indexingMap.getNumResults()) {
    unsigned dim =
        indexingMap.getResult(counter).cast<AffineDimExpr>().getPosition();
    // This is the start of a collapsed dimensions of the iteration that
    // is gauranteed to be preserved in the indexing map. The number of folded
    // dims is obtained from the collapsed op to original op mapping.
    unsigned numFoldedDims =
        collapsedOpToOrigOpMapping[origOpToCollapsedOpMapping[dim].first]
            .size();
    if (origOpToCollapsedOpMapping[dim].second == 0) {
      auto range = llvm::seq<unsigned>(counter, counter + numFoldedDims);
      operandReassociation.emplace_back(range.begin(), range.end());
    }
    counter += numFoldedDims;
  }
  return operandReassociation;
}

/// Get the new value to use for a given `OpOperand` in the collapsed operation.
static Value getCollapsedOpOperand(Location loc, GenericOp genericOp,
                                   OpOperand *opOperand,
                                   const CollapsingInfo &collapsingInfo,
                                   OpBuilder &builder) {
  AffineMap indexingMap = genericOp.getMatchingIndexingMap(opOperand);
  SmallVector<ReassociationIndices> operandReassociation =
      getOperandReassociation(indexingMap, collapsingInfo);

  // If the number of entries in the reassocation for the operand is same as the
  // number of results of the indexing map, then nothing to do for this operand.
  Value operand = opOperand->get();
  if (operandReassociation.size() == indexingMap.getNumResults())
    return operand;

  // Insert a reshape to collapse the dimensions.
  auto reshapeOp = builder.create<tensor::CollapseShapeOp>(
      loc, operand, operandReassociation);
  return reshapeOp.getResult();
}

/// Modify the `linalg.index` operations in the original generic op, to its
/// value in the collapsed operation.
void generateCollapsedIndexingRegion(Location loc, Block *block,
                                     const CollapsingInfo &collapsingInfo,
                                     ValueRange loopRange,
                                     RewriterBase &rewriter) {
  OpBuilder::InsertionGuard g(rewriter);
  rewriter.setInsertionPointToStart(block);

  // Collect all the original index ops.
  auto indexOps = llvm::to_vector(block->getOps<linalg::IndexOp>());

  // For each folded dimension list resolve the original induction variable
  // values in terms of the folded dimension induction variable.
  //   i_{folded} = (i_0 * d1 + i1) * d2 + i2.
  // can be inverted to
  //   i2 = i_{folded} % d2
  //   i1 = (i_{folded} / d2) % d1
  //   i0 = i_{folded} / (d1 * d2)
  llvm::DenseMap<unsigned, Value> indexReplacementVals;
  for (auto foldedDims :
       enumerate(collapsingInfo.getCollapsedOpToOrigOpMapping())) {
    ReassociationIndicesRef foldedDimsRef(foldedDims.value());
    Value newIndexVal =
        rewriter.create<linalg::IndexOp>(loc, foldedDims.index());
    for (auto dim : llvm::reverse(foldedDimsRef.drop_front())) {
      indexReplacementVals[dim] =
          rewriter.create<arith::RemUIOp>(loc, newIndexVal, loopRange[dim]);
      newIndexVal =
          rewriter.create<arith::DivUIOp>(loc, newIndexVal, loopRange[dim]);
    }
    indexReplacementVals[foldedDims.value().front()] = newIndexVal;
  }

  for (auto indexOp : indexOps) {
    auto dim = indexOp.getDim();
    rewriter.replaceOp(indexOp, indexReplacementVals[dim]);
  }
}

/// Implementation of fusion with reshape operation by collapsing dimensions.
FailureOr<SmallVector<Value>> mlir::linalg::collapseGenericOpIterationDims(
    GenericOp genericOp, ArrayRef<ReassociationIndices> foldedIterationDims,
    RewriterBase &rewriter) {
  // Bail on trivial no-op cases.
  if (genericOp.getNumLoops() <= 1 || foldedIterationDims.empty() ||
      llvm::all_of(foldedIterationDims, [](ReassociationIndicesRef foldedDims) {
        return foldedDims.size() <= 1;
      }))
    return failure();

  CollapsingInfo collapsingInfo;
  if (failed(collapsingInfo.initialize(genericOp.getNumLoops(),
                                       foldedIterationDims))) {
    return rewriter.notifyMatchFailure(
        genericOp, "illegal to collapse specified dimensions");
  }

  // Bail on non-canonical ranges.
  SmallVector<Range> loopRanges =
      cast<LinalgOp>(genericOp.getOperation())
          .createLoopRanges(rewriter, genericOp.getLoc());
  auto opFoldIsConstantValue = [](OpFoldResult ofr, int64_t value) {
    if (auto attr = ofr.dyn_cast<Attribute>())
      return attr.cast<IntegerAttr>().getInt() == value;
    llvm::APInt actual;
    return matchPattern(ofr.get<Value>(), m_ConstantInt(&actual)) &&
           actual.getSExtValue() == value;
  };
  if (!llvm::all_of(loopRanges, [&](Range range) {
        return opFoldIsConstantValue(range.offset, 0) &&
               opFoldIsConstantValue(range.stride, 1);
      })) {
    return rewriter.notifyMatchFailure(
        genericOp,
        "expected all loop ranges to have zero start and unit stride");
  }

  // Get the iterator types for the operand.
  SmallVector<utils::IteratorType> iteratorTypes = getCollapsedOpIteratorTypes(
      genericOp.getIteratorTypesArray(), collapsingInfo);

  // Get the indexing maps.
  auto indexingMaps = llvm::to_vector(
      llvm::map_range(genericOp.getIndexingMapsArray(), [&](AffineMap map) {
        return getCollapsedOpIndexingMap(map, collapsingInfo);
      }));

  Location loc = genericOp->getLoc();

  // Get the input operands.
  auto inputOperands = llvm::to_vector(llvm::map_range(
      genericOp.getDpsInputOperands(), [&](OpOperand *opOperand) {
        return getCollapsedOpOperand(loc, genericOp, opOperand, collapsingInfo,
                                     rewriter);
      }));

  // Get the output operands and result types.
  SmallVector<Type> resultTypes;
  SmallVector<Value> outputOperands;
  resultTypes.reserve(genericOp.getNumDpsInits());
  outputOperands.reserve(genericOp.getNumDpsInits());
  for (OpOperand *output : genericOp.getDpsInitOperands()) {
    Value newOutput =
        getCollapsedOpOperand(loc, genericOp, output, collapsingInfo, rewriter);
    outputOperands.push_back(newOutput);
    resultTypes.push_back(newOutput.getType());
  }

  // Create the generic op.
  auto collapsedGenericOp = rewriter.create<linalg::GenericOp>(
      loc, resultTypes, inputOperands, outputOperands, indexingMaps,
      iteratorTypes, [](OpBuilder &builder, Location loc, ValueRange args) {});
  Block *origOpBlock = &genericOp->getRegion(0).front();
  Block *collapsedOpBlock = &collapsedGenericOp->getRegion(0).front();
  rewriter.mergeBlocks(origOpBlock, collapsedOpBlock,
                       collapsedOpBlock->getArguments());

  if (collapsedGenericOp.hasIndexSemantics()) {
    // Collect the loop range of the generic op.
    OpBuilder::InsertionGuard g(rewriter);
    rewriter.setInsertionPoint(collapsedGenericOp);
    SmallVector<Value> loopBound =
        llvm::to_vector(llvm::map_range(loopRanges, [&](Range range) {
          return getValueOrCreateConstantIndexOp(rewriter, loc, range.size);
        }));
    generateCollapsedIndexingRegion(loc,
                                    &collapsedGenericOp->getRegion(0).front(),
                                    collapsingInfo, loopBound, rewriter);
  }

  // Insert expanding reshape for the result to get back the original result
  // type.
  SmallVector<Value> results;
  for (const auto &originalResult : llvm::enumerate(genericOp->getResults())) {
    Value collapsedOpResult =
        collapsedGenericOp->getResult(originalResult.index());
    auto originalResultType =
        originalResult.value().getType().cast<ShapedType>();
    auto collapsedOpResultType = collapsedOpResult.getType().cast<ShapedType>();
    if (collapsedOpResultType.getRank() != originalResultType.getRank()) {
      AffineMap indexingMap =
          genericOp.getIndexingMapMatchingResult(originalResult.value());
      SmallVector<ReassociationIndices> reassociation =
          getOperandReassociation(indexingMap, collapsingInfo);
      Value result = rewriter.create<tensor::ExpandShapeOp>(
          loc, originalResultType, collapsedOpResult, reassociation);
      results.push_back(result);
    } else {
      results.push_back(collapsedOpResult);
    }
  }
  return results;
}

namespace {

/// Pattern to fuse a tensor.expand_shape op with its consumer generic op by
/// contracting dimensions of the loop.
class FoldWithProducerReshapeOpByCollapsing
    : public OpRewritePattern<GenericOp> {
public:
  FoldWithProducerReshapeOpByCollapsing(MLIRContext *context,
                                        ControlFusionFn foldReshapes,
                                        PatternBenefit benefit = 1)
      : OpRewritePattern<GenericOp>(context, benefit),
        controlFoldingReshapes(std::move(foldReshapes)) {}

  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    for (OpOperand &opOperand : genericOp->getOpOperands()) {
      tensor::ExpandShapeOp reshapeOp =
          opOperand.get().getDefiningOp<tensor::ExpandShapeOp>();
      if (!reshapeOp)
        continue;

      SmallVector<ReassociationIndices> collapsableIterationDims =
          getCollapsableIterationSpaceDims(genericOp, &opOperand,
                                           reshapeOp.getReassociationIndices());
      if (collapsableIterationDims.empty() ||
          !controlFoldingReshapes(&opOperand)) {
        continue;
      }

      std::optional<SmallVector<Value>> replacements =
          collapseGenericOpIterationDims(genericOp, collapsableIterationDims,
                                         rewriter);
      if (!replacements) {
        return rewriter.notifyMatchFailure(
            genericOp, "failed to do the fusion by collapsing transformation");
      }

      rewriter.replaceOp(genericOp, *replacements);
      return success();
    }
    return failure();
  }

private:
  ControlFusionFn controlFoldingReshapes;
};

/// Pattern to collapse dimensions.
class CollapseLinalgDimensions : public OpRewritePattern<GenericOp> {
public:
  CollapseLinalgDimensions(MLIRContext *context,
                           GetCollapsableDimensionsFn collapseDimensions,
                           PatternBenefit benefit = 1)
      : OpRewritePattern<GenericOp>(context, benefit),
        controlCollapseDimension(std::move(collapseDimensions)) {}

  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    SmallVector<ReassociationIndices> collapsableIterationDims =
        controlCollapseDimension(genericOp);
    if (collapsableIterationDims.empty())
      return failure();

    // Check if the specified list of dimensions to collapse is a valid list.
    if (!areDimSequencesPreserved(genericOp.getIndexingMapsArray(),
                                  collapsableIterationDims)) {
      return rewriter.notifyMatchFailure(
          genericOp, "specified dimensions cannot be collapsed");
    }

    std::optional<SmallVector<Value>> replacements =
        collapseGenericOpIterationDims(genericOp, collapsableIterationDims,
                                       rewriter);
    if (!replacements) {
      return rewriter.notifyMatchFailure(genericOp,
                                         "failed to collapse dimensions");
    }
    rewriter.replaceOp(genericOp, *replacements);
    return success();
  }

private:
  GetCollapsableDimensionsFn controlCollapseDimension;
};

} // namespace

//===---------------------------------------------------------------------===//
// Methods and patterns that fuse constants with linalg.generic operations.
//===---------------------------------------------------------------------===//

namespace {
/// Pattern to fold a generic op with a splat constant/scalar constant. Does not
/// handle cases where the constant is not single-valued.
class FoldScalarOrSplatConstant : public OpRewritePattern<GenericOp> {
public:
  FoldScalarOrSplatConstant(MLIRContext *context, PatternBenefit benefit = 1)
      : OpRewritePattern<GenericOp>(context, benefit) {}

  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    if (!genericOp.hasTensorSemantics())
      return failure();
    for (OpOperand *opOperand : genericOp.getDpsInputOperands()) {
      Operation *def = opOperand->get().getDefiningOp();
      TypedAttr constantAttr;
      auto isScalarOrSplatConstantOp = [&constantAttr](Operation *def) -> bool {
        {
          DenseElementsAttr splatAttr;
          if (matchPattern(def, m_Constant<DenseElementsAttr>(&splatAttr)) &&
              splatAttr.isSplat() &&
              splatAttr.getType().getElementType().isIntOrFloat()) {
            constantAttr = splatAttr.getSplatValue<TypedAttr>();
            return true;
          }
        }
        {
          IntegerAttr intAttr;
          if (matchPattern(def, m_Constant<IntegerAttr>(&intAttr))) {
            constantAttr = intAttr;
            return true;
          }
        }
        {
          FloatAttr floatAttr;
          if (matchPattern(def, m_Constant<FloatAttr>(&floatAttr))) {
            constantAttr = floatAttr;
            return true;
          }
        }
        return false;
      };

      auto resultValue = opOperand->get().dyn_cast<OpResult>();
      if (!def || !resultValue || !isScalarOrSplatConstantOp(def))
        continue;

      // The operands and the indexing_maps of the fused operation the same as
      // the operands and indexing_maps of the generic operations with the
      // values at the constant index dropped.
      SmallVector<AffineMap> fusedIndexMaps;
      SmallVector<Value> fusedOperands;
      SmallVector<Location> fusedLocs{genericOp.getLoc()};
      fusedIndexMaps.reserve(genericOp->getNumOperands());
      fusedOperands.reserve(genericOp.getNumDpsInputs());
      fusedLocs.reserve(fusedLocs.size() + genericOp.getNumDpsInputs());
      for (OpOperand *inputOperand : genericOp.getDpsInputOperands()) {
        if (inputOperand == opOperand)
          continue;
        Value inputValue = inputOperand->get();
        fusedIndexMaps.push_back(
            genericOp.getMatchingIndexingMap(inputOperand));
        fusedOperands.push_back(inputValue);
        fusedLocs.push_back(inputValue.getLoc());
      }
      for (OpOperand *outputOperand : genericOp.getDpsInitOperands())
        fusedIndexMaps.push_back(
            genericOp.getMatchingIndexingMap(outputOperand));

      // Check if the operation shapes to loops map is computable.
      if (!inversePermutation(concatAffineMaps(fusedIndexMaps))) {
        return rewriter.notifyMatchFailure(
            genericOp, "fused op loop bound computation failed");
      }

      // Create a constant scalar value from the splat constant.
      Value scalarConstant =
          rewriter.create<arith::ConstantOp>(def->getLoc(), constantAttr);

      SmallVector<Value> outputOperands = genericOp.getOutputs();
      auto fusedOp = rewriter.create<GenericOp>(
          rewriter.getFusedLoc(fusedLocs), genericOp->getResultTypes(),
          /*inputs=*/fusedOperands,
          /*outputs=*/outputOperands,
          rewriter.getAffineMapArrayAttr(fusedIndexMaps),
          genericOp.getIteratorTypes(),
          /*doc=*/nullptr,
          /*library_call=*/nullptr);

      // Map the block argument corresponding to the replaced argument with the
      // scalar constant.
      Region &region = genericOp->getRegion(0);
      Block &entryBlock = *region.begin();
      IRMapping mapping;
      mapping.map(entryBlock.getArgument(opOperand->getOperandNumber()),
                  scalarConstant);
      Region &fusedRegion = fusedOp->getRegion(0);
      rewriter.cloneRegionBefore(region, fusedRegion, fusedRegion.begin(),
                                 mapping);
      rewriter.replaceOp(genericOp, fusedOp->getResults());
      return success();
    }
    return failure();
  }
};

} // namespace

//===---------------------------------------------------------------------===//
// Miscellaneous patterns that help fusion.
//===---------------------------------------------------------------------===//

namespace {
/// Forces `outs` operands of linalg operations to use `tensor.empty` if the
/// value of the `outs` operand is not used within the op.  This is only
/// implemented for `linalg.generic` operations for now, but should hold for all
/// linalg structured ops.
struct RemoveOutsDependency : public OpRewritePattern<GenericOp> {
  using OpRewritePattern<GenericOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(GenericOp op,
                                PatternRewriter &rewriter) const override {
    rewriter.startRootUpdate(op);
    bool modifiedOutput = false;
    Location loc = op.getLoc();
    for (OpOperand *opOperand : op.getDpsInitOperands()) {
      if (!op.payloadUsesValueFromOperand(opOperand)) {
        Value operandVal = opOperand->get();
        auto operandType = operandVal.getType().dyn_cast<RankedTensorType>();
        if (!operandType)
          continue;

        // If outs is sparse, leave it to the sparse compiler.
        if (sparse_tensor::getSparseTensorEncoding(operandVal.getType()))
          continue;

        // If outs is already an `empty` operation, nothing to do.
        auto definingOp = operandVal.getDefiningOp<tensor::EmptyOp>();
        if (definingOp)
          continue;
        modifiedOutput = true;
        SmallVector<Value> dynamicDims;
        for (const auto &dim : llvm::enumerate(operandType.getShape())) {
          if (dim.value() != ShapedType::kDynamic)
            continue;
          dynamicDims.push_back(rewriter.createOrFold<tensor::DimOp>(
              loc, operandVal, dim.index()));
        }
        Value emptyTensor = rewriter.create<tensor::EmptyOp>(
            loc, operandType.getShape(), operandType.getElementType(),
            dynamicDims);
        op->setOperand(opOperand->getOperandNumber(), emptyTensor);
      }
    }
    if (!modifiedOutput) {
      rewriter.cancelRootUpdate(op);
      return failure();
    }
    rewriter.finalizeRootUpdate(op);
    return success();
  }
};

/// Fold linalg.fill into linalg.generic
struct FoldFillWithGenericOp : public OpRewritePattern<GenericOp> {
  using OpRewritePattern<GenericOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(GenericOp genericOp,
                                PatternRewriter &rewriter) const override {
    if (!genericOp.hasTensorSemantics())
      return failure();
    bool fillFound = false;
    Block &payload = genericOp.getRegion().front();
    for (OpOperand *opOperand : genericOp.getDpsInputOperands()) {
      if (!genericOp.payloadUsesValueFromOperand(opOperand))
        continue;
      FillOp fillOp = opOperand->get().getDefiningOp<FillOp>();
      if (!fillOp)
        continue;
      fillFound = true;
      Value fillVal = fillOp.value();
      auto resultType =
          fillOp.result().getType().cast<RankedTensorType>().getElementType();
      Value convertedVal =
          convertScalarToDtype(rewriter, fillOp.getLoc(), fillVal, resultType,
                               /*isUnsignedCast =*/false);
      rewriter.replaceAllUsesWith(
          payload.getArgument(opOperand->getOperandNumber()), convertedVal);
    }
    return success(fillFound);
  }
};
} // namespace

void mlir::linalg::populateFoldReshapeOpsByExpansionPatterns(
    RewritePatternSet &patterns,
    const ControlFusionFn &controlFoldingReshapes) {
  patterns.add<FoldReshapeWithGenericOpByExpansion>(patterns.getContext(),
                                                    controlFoldingReshapes);
  patterns.add<FoldWithProducerReshapeOpByExpansion>(patterns.getContext(),
                                                     controlFoldingReshapes);
}

void mlir::linalg::populateFoldReshapeOpsByCollapsingPatterns(
    RewritePatternSet &patterns,
    const ControlFusionFn &controlFoldingReshapes) {
  patterns.add<FoldWithProducerReshapeOpByCollapsing>(patterns.getContext(),
                                                      controlFoldingReshapes);
}

void mlir::linalg::populateElementwiseOpsFusionPatterns(
    RewritePatternSet &patterns,
    const ControlFusionFn &controlElementwiseOpsFusion) {
  auto *context = patterns.getContext();
  patterns.add<FuseElementwiseOps>(context, controlElementwiseOpsFusion);
  patterns.add<FoldFillWithGenericOp, FoldScalarOrSplatConstant,
               RemoveOutsDependency>(context);
  // Add the patterns that clean up dead operands and results.
  populateEraseUnusedOperandsAndResultsPatterns(patterns);
}

void mlir::linalg::populateCollapseDimensions(
    RewritePatternSet &patterns,
    const GetCollapsableDimensionsFn &controlCollapseDimensions) {
  patterns.add<CollapseLinalgDimensions>(patterns.getContext(),
                                         controlCollapseDimensions);
}

//===---------------------------------------------------------------------===//
// Passes
//===---------------------------------------------------------------------===//

namespace {

/// Pass that fuses generic ops on tensors. Used only for testing.
// TODO(ravishankarm): This pass is to be deprecated. The efficacy of the
// patterns added here heavily depends on the cost function used. Having an
// opinionated pass of this form is not recommended. Deprecate this pass in
// favor of test passes that check the functionality of each of the patterns
// added here individually.
struct LinalgElementwiseOpFusionPass
    : public impl::LinalgElementwiseOpFusionBase<
          LinalgElementwiseOpFusionPass> {
  void runOnOperation() override {
    Operation *op = getOperation();
    MLIRContext *context = op->getContext();
    RewritePatternSet patterns(context);

    // Add folding with reshape by expansion patterns.
    ControlFusionFn defaultControlFn = [](OpOperand *fusedOperand) {
      Operation *producer = fusedOperand->get().getDefiningOp();
      return producer && producer->hasOneUse();
    };

    // Add elementwise op fusion patterns.
    populateElementwiseOpsFusionPatterns(patterns, defaultControlFn);
    populateFoldReshapeOpsByExpansionPatterns(patterns, defaultControlFn);

    // General canonicalization patterns.
    affine::AffineApplyOp::getCanonicalizationPatterns(patterns, context);
    GenericOp::getCanonicalizationPatterns(patterns, context);
    tensor::ExpandShapeOp::getCanonicalizationPatterns(patterns, context);
    tensor::CollapseShapeOp::getCanonicalizationPatterns(patterns, context);
    context->getLoadedDialect<LinalgDialect>()->getCanonicalizationPatterns(
        patterns);

    // Add constant folding patterns.
    populateConstantFoldLinalgOperations(patterns, defaultControlFn);

    // Use TopDownTraversal for compile time reasons
    GreedyRewriteConfig grc;
    grc.useTopDownTraversal = true;
    (void)applyPatternsAndFoldGreedily(op, std::move(patterns), grc);
  }
};

} // namespace

std::unique_ptr<Pass> mlir::createLinalgElementwiseOpFusionPass() {
  return std::make_unique<LinalgElementwiseOpFusionPass>();
}