1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
|
//===- Loops.cpp - conversion from Linalg named and generic ops to loops --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Arithmetic/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::linalg;
static SmallVector<Value> makeCanonicalAffineApplies(OpBuilder &b, Location loc,
AffineMap map,
ArrayRef<Value> vals) {
if (map.isEmpty())
return {};
assert(map.getNumInputs() == vals.size());
SmallVector<Value> res;
res.reserve(map.getNumResults());
auto dims = map.getNumDims();
for (auto e : map.getResults()) {
auto exprMap = AffineMap::get(dims, map.getNumSymbols(), e);
SmallVector<Value> operands(vals.begin(), vals.end());
canonicalizeMapAndOperands(&exprMap, &operands);
res.push_back(b.create<AffineApplyOp>(loc, exprMap, operands));
}
return res;
}
template <typename LoadOpTy, typename StoreOpTy, typename OpType>
static void inlineRegionAndEmitStore(OpBuilder &b, Location loc, OpType op,
ArrayRef<Value> indexedValues,
ArrayRef<SmallVector<Value>> indexing,
ArrayRef<Value> outputBuffers) {
auto &block = op->getRegion(0).front();
BlockAndValueMapping map;
map.map(block.getArguments(), indexedValues);
for (auto &op : block.without_terminator()) {
auto *newOp = b.clone(op, map);
map.map(op.getResults(), newOp->getResults());
}
Operation *terminator = block.getTerminator();
for (OpOperand &operand : terminator->getOpOperands()) {
Value toStore = map.lookupOrDefault(operand.get());
b.create<StoreOpTy>(loc, toStore, outputBuffers[operand.getOperandNumber()],
indexing[operand.getOperandNumber()]);
}
}
// Returns a pair that contains input indices and output indices of a
// SingleInputPoolingOp `op`.
struct InputAndOutputIndices {
SmallVector<Value> inputs;
SmallVector<Value> outputs;
};
template <typename SingleInputPoolingOp>
static InputAndOutputIndices
getInputAndOutputIndices(OpBuilder &b, Location loc, ArrayRef<Value> allIvs,
SingleInputPoolingOp op) {
auto mapsRange = op.indexing_maps().template getAsRange<AffineMapAttr>();
auto maps = llvm::to_vector<8>(
llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
return InputAndOutputIndices{
makeCanonicalAffineApplies(b, loc, maps[0], allIvs),
makeCanonicalAffineApplies(b, loc, maps[2], allIvs)};
}
/// Emits the MLIR for the scalar part of the generic op by:
/// 1. Emitting load ops for each input and output view in order. This is
/// achieved by applying the appropriate input or output map to the
/// enclosing induction variables.
/// 2. Emitting a call to `op.fun()` that takes as arguments the scalars
/// from point 1. above.
/// 3. Emitting store ops to store the results of 2. to the output
/// views.
///
/// An example output may resemble:
///
/// ```
/// scf.for %i = %c0 to %0 step %c1 {
/// scf.for %j = %c0 to %1 step %c1 {
/// scf.for %k = %c0 to %4 step %c1 {
/// %11 = load %arg0[%i, %j] :
/// memref<?x?xf32, stride_specification>
/// %12 = load %arg1[%i, %j, %k] :
/// memref<?x?x?xf32, stride_specification>
/// %13 = load %arg2[%i, %k, %j] :
/// memref<?x?x?xf32, stride_specification>
/// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32)
/// store %14#0, %arg1[%i, %j, %k] :
/// memref<?x?x?Xf32, stride_specification>
/// store %14#1, %arg2[%i, %k, %j] :
/// memref<?x?x?Xf32, stride_specification>
/// }
/// }
/// }
/// ```
template <typename LoadOpTy, typename StoreOpTy>
static void emitScalarImplementation(OpBuilder &b, Location loc,
ArrayRef<Value> allIvs,
LinalgOp linalgOp) {
assert(linalgOp.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
SmallVector<Value> indexedValues;
indexedValues.reserve(linalgOp.getNumInputsAndOutputs());
auto allIvsPlusDims = SmallVector<Value>(allIvs.begin(), allIvs.end());
// TODO: Avoid the loads if the corresponding argument of the
// region has no uses.
// 1.a. Emit load from input operand or for scalars access the operand itself.
for (OpOperand *inputOperand : linalgOp.getInputOperands()) {
if (linalgOp.isScalar(inputOperand)) {
indexedValues.push_back(inputOperand->get());
continue;
}
auto indexing = makeCanonicalAffineApplies(
b, loc, linalgOp.getTiedIndexingMap(inputOperand), allIvsPlusDims);
indexedValues.push_back(
b.create<LoadOpTy>(loc, inputOperand->get(), indexing));
}
// 1.b. Emit load from output views.
for (OpOperand *outputOperand : linalgOp.getOutputOperands()) {
SmallVector<Value> indexing = makeCanonicalAffineApplies(
b, loc, linalgOp.getTiedIndexingMap(outputOperand), allIvsPlusDims);
indexedValues.push_back(
b.create<LoadOpTy>(loc, outputOperand->get(), indexing));
}
// TODO: When a region inliner exists, use it.
// 2. Inline region, currently only works for a single basic block.
// 3. Emit store.
SmallVector<SmallVector<Value>, 8> indexing;
SmallVector<Value> outputBuffers;
for (OpOperand *outputOperand : linalgOp.getOutputBufferOperands()) {
indexing.push_back(makeCanonicalAffineApplies(
b, loc, linalgOp.getTiedIndexingMap(outputOperand), allIvsPlusDims));
outputBuffers.push_back(outputOperand->get());
}
inlineRegionAndEmitStore<LoadOpTy, StoreOpTy>(b, loc, linalgOp, indexedValues,
indexing, outputBuffers);
}
/// Replace the index operations in the body of the loop nest by the matching
/// induction variables.
static void replaceIndexOpsByInductionVariables(LinalgOp linalgOp,
PatternRewriter &rewriter,
ArrayRef<Operation *> loopOps) {
// Extract the induction variables of the loop nest from outer to inner.
SmallVector<Value> allIvs;
for (Operation *loopOp : loopOps) {
llvm::TypeSwitch<Operation *>(loopOp)
.Case([&](scf::ParallelOp parallelOp) {
allIvs.append(parallelOp.getInductionVars().begin(),
parallelOp.getInductionVars().end());
})
.Case([&](scf::ForOp forOp) {
allIvs.push_back(forOp.getInductionVar());
})
.Case([&](AffineForOp affineForOp) {
allIvs.push_back(affineForOp.getInductionVar());
})
.Default([&](Operation *op) { assert(false && "unexpected op"); });
}
assert(linalgOp.getNumLoops() == allIvs.size() &&
"expected the number of loops and induction variables to match");
// Replace the index operations in the body of the innermost loop op.
if (!loopOps.empty()) {
LoopLikeOpInterface loopOp = loopOps.back();
for (IndexOp indexOp :
llvm::make_early_inc_range(loopOp.getLoopBody().getOps<IndexOp>()))
rewriter.replaceOp(indexOp, allIvs[indexOp.dim()]);
}
}
template <typename LoopTy>
static FailureOr<LinalgLoops> linalgOpToLoopsImpl(PatternRewriter &rewriter,
LinalgOp linalgOp) {
using LoadOpTy =
typename std::conditional<std::is_same<LoopTy, AffineForOp>::value,
AffineLoadOp, memref::LoadOp>::type;
using StoreOpTy =
typename std::conditional<std::is_same<LoopTy, AffineForOp>::value,
AffineStoreOp, memref::StoreOp>::type;
// The flattened loopToOperandRangesMaps is expected to be an invertible
// permutation map (which is asserted in the inverse calculation).
assert(linalgOp.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
auto loopRanges = linalgOp.createLoopRanges(rewriter, linalgOp.getLoc());
auto iteratorTypes = llvm::to_vector<4>(linalgOp.iterator_types().getValue());
SmallVector<Value> allIvs;
GenerateLoopNest<LoopTy>::doit(
rewriter, linalgOp.getLoc(), loopRanges, linalgOp, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange ivs,
ValueRange operandValuesToUse) -> scf::ValueVector {
assert(operandValuesToUse == linalgOp->getOperands() &&
"expect operands are captured and not passed by loop argument");
allIvs.append(ivs.begin(), ivs.end());
emitScalarImplementation<LoadOpTy, StoreOpTy>(b, loc, allIvs, linalgOp);
return scf::ValueVector{};
});
// Number of loop ops might be different from the number of ivs since some
// loops like affine.parallel and scf.parallel have multiple ivs.
SetVector<Operation *> loopSet;
for (Value iv : allIvs) {
if (!iv)
return failure();
// The induction variable is a block argument of the entry block of the
// loop operation.
BlockArgument ivVal = iv.dyn_cast<BlockArgument>();
if (!ivVal)
return failure();
loopSet.insert(ivVal.getOwner()->getParentOp());
}
LinalgLoops loops(loopSet.begin(), loopSet.end());
// Replace all index operations in the loop body.
replaceIndexOpsByInductionVariables(linalgOp, rewriter, loops);
return loops;
}
namespace {
template <typename LoopType>
class LinalgRewritePattern : public RewritePattern {
public:
LinalgRewritePattern(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto linalgOp = dyn_cast<LinalgOp>(op);
if (!isa<LinalgOp>(op))
return failure();
if (failed(linalgOpToLoopsImpl<LoopType>(rewriter, linalgOp)))
return failure();
rewriter.eraseOp(op);
return success();
}
};
/// Local folding pattern for AffineApplyOp that we can apply greedily.
/// This replaces AffineApplyOp by the proper value in cases where the
/// associated map is trivial.
/// A trivial map here is defined as a map with a single result and either:
/// 1. Zero operand + returns a single AffineConstantExpr
/// 2. One operand + returns a single AffineDimExpr
/// 3. One operand + returns a single AffineSymbolExpr
//
/// In the first case, the AffineApplyOp is replaced by a new constant. In the
/// other cases, it is replaced by its unique operand.
struct FoldAffineOp : public RewritePattern {
FoldAffineOp(MLIRContext *context)
: RewritePattern(AffineApplyOp::getOperationName(), 0, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
AffineApplyOp affineApplyOp = cast<AffineApplyOp>(op);
auto map = affineApplyOp.getAffineMap();
if (map.getNumResults() != 1 || map.getNumInputs() > 1)
return failure();
AffineExpr expr = map.getResult(0);
if (map.getNumInputs() == 0) {
if (auto val = expr.dyn_cast<AffineConstantExpr>()) {
rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(op, val.getValue());
return success();
}
return failure();
}
if (expr.dyn_cast<AffineDimExpr>() || expr.dyn_cast<AffineSymbolExpr>()) {
rewriter.replaceOp(op, op->getOperand(0));
return success();
}
return failure();
}
};
template <typename LoopType>
static void lowerLinalgToLoopsImpl(func::FuncOp funcOp) {
MLIRContext *context = funcOp.getContext();
RewritePatternSet patterns(context);
patterns.add<LinalgRewritePattern<LoopType>>(context);
memref::DimOp::getCanonicalizationPatterns(patterns, context);
tensor::DimOp::getCanonicalizationPatterns(patterns, context);
AffineApplyOp::getCanonicalizationPatterns(patterns, context);
patterns.add<FoldAffineOp>(context);
// Just apply the patterns greedily.
(void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns));
}
struct LowerToAffineLoops
: public LinalgLowerToAffineLoopsBase<LowerToAffineLoops> {
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<memref::MemRefDialect>();
}
void runOnOperation() override {
lowerLinalgToLoopsImpl<AffineForOp>(getOperation());
}
};
struct LowerToLoops : public LinalgLowerToLoopsBase<LowerToLoops> {
void getDependentDialects(DialectRegistry ®istry) const override {
registry.insert<memref::MemRefDialect, scf::SCFDialect>();
}
void runOnOperation() override {
lowerLinalgToLoopsImpl<scf::ForOp>(getOperation());
}
};
struct LowerToParallelLoops
: public LinalgLowerToParallelLoopsBase<LowerToParallelLoops> {
void runOnOperation() override {
lowerLinalgToLoopsImpl<scf::ParallelOp>(getOperation());
}
};
} // namespace
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::createConvertLinalgToLoopsPass() {
return std::make_unique<LowerToLoops>();
}
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::createConvertLinalgToParallelLoopsPass() {
return std::make_unique<LowerToParallelLoops>();
}
std::unique_ptr<OperationPass<func::FuncOp>>
mlir::createConvertLinalgToAffineLoopsPass() {
return std::make_unique<LowerToAffineLoops>();
}
/// Emits a loop nest of `affine.for` with the proper body for `linalgOp`.
FailureOr<LinalgLoops>
mlir::linalg::linalgOpToAffineLoops(PatternRewriter &rewriter,
LinalgOp linalgOp) {
return linalgOpToLoopsImpl<AffineForOp>(rewriter, linalgOp);
}
/// Emits a loop nest of `scf.for` with the proper body for `linalgOp`.
FailureOr<LinalgLoops> mlir::linalg::linalgOpToLoops(PatternRewriter &rewriter,
LinalgOp linalgOp) {
return linalgOpToLoopsImpl<scf::ForOp>(rewriter, linalgOp);
}
/// Emits a loop nest of `scf.parallel` with the proper body for `linalgOp`.
FailureOr<LinalgLoops>
mlir::linalg::linalgOpToParallelLoops(PatternRewriter &rewriter,
LinalgOp linalgOp) {
return linalgOpToLoopsImpl<scf::ParallelOp>(rewriter, linalgOp);
}
|