1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
//===- OptimizeSharedMemory.cpp - MLIR NVGPU pass implementation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements transforms to optimize accesses to shared memory.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/NVGPU/Passes.h"
#include "mlir/Dialect/NVGPU/Transforms/Transforms.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
using namespace mlir;
using namespace mlir::nvgpu;
/// The size of a shared memory line according to NV documentation.
constexpr int64_t kSharedMemoryLineSizeBytes = 128;
/// We optimize for 128bit accesses, but this can be made an argument in the
/// future.
constexpr int64_t kDefaultVectorSizeBits = 128;
/// Uses `srcIndexValue` to permute `tgtIndexValue` via
/// `result = xor(floordiv(srcIdxVal,permuteEveryN),
/// floordiv(tgtIdxVal,vectorSize)))
/// + tgtIdxVal % vectorSize`
/// This is done using an optimized sequence of `arith` operations.
static Value permuteVectorOffset(OpBuilder &b, Location loc,
ArrayRef<Value> indices, MemRefType memrefTy,
int64_t srcDim, int64_t tgtDim) {
// Adjust the src index to change how often the permutation changes
// if necessary.
Value src = indices[srcDim];
// We only want to permute every N iterations of the target dim where N is
// ceil(sharedMemoryLineSizeBytes / dimSizeBytes(tgtDim)).
const int64_t permuteEveryN = std::max<int64_t>(
1, kSharedMemoryLineSizeBytes / ((memrefTy.getDimSize(tgtDim) *
memrefTy.getElementTypeBitWidth()) /
8));
// clang-format off
// Index bit representation (b0 = least significant bit) for dim(1)
// of a `memref<?x?xDT>` is as follows:
// N := log2(128/elementSizeBits)
// M := log2(dimSize(1))
// then
// bits[0:N] = sub-vector element offset
// bits[N:M] = vector index
// clang-format on
int64_t N =
llvm::Log2_64(kDefaultVectorSizeBits / memrefTy.getElementTypeBitWidth());
int64_t M = llvm::Log2_64(memrefTy.getDimSize(tgtDim));
// Capture bits[0:(M-N)] of src by first creating a (M-N) mask.
int64_t mask = (1LL << (M - N)) - 1;
if (permuteEveryN > 1)
mask = mask << llvm::Log2_64(permuteEveryN);
Value srcBits = b.create<arith::ConstantIndexOp>(loc, mask);
srcBits = b.create<arith::AndIOp>(loc, src, srcBits);
// Use the src bits to permute the target bits b[N:M] containing the
// vector offset.
if (permuteEveryN > 1) {
int64_t shlBits = N - llvm::Log2_64(permuteEveryN);
if (shlBits > 0) {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, shlBits);
srcBits = b.createOrFold<arith::ShLIOp>(loc, srcBits, finalShiftVal);
} else if (shlBits < 0) {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, -1 * shlBits);
srcBits = b.createOrFold<arith::ShRUIOp>(loc, srcBits, finalShiftVal);
}
} else {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, N);
srcBits = b.createOrFold<arith::ShLIOp>(loc, srcBits, finalShiftVal);
}
Value permutedVectorIdx =
b.create<arith::XOrIOp>(loc, indices[tgtDim], srcBits);
return permutedVectorIdx;
}
static void transformIndices(OpBuilder &builder, Location loc,
SmallVector<Value, 4> &indices,
MemRefType memrefTy, int64_t srcDim,
int64_t tgtDim) {
indices[tgtDim] =
permuteVectorOffset(builder, loc, indices, memrefTy, srcDim, tgtDim);
}
Operation::operand_range getIndices(Operation *op) {
if (auto ldmatrixOp = dyn_cast<LdMatrixOp>(op))
return ldmatrixOp.getIndices();
if (auto copyOp = dyn_cast<DeviceAsyncCopyOp>(op))
return copyOp.getDstIndices();
if (auto loadOp = dyn_cast<memref::LoadOp>(op))
return loadOp.getIndices();
if (auto storeOp = dyn_cast<memref::StoreOp>(op))
return storeOp.getIndices();
if (auto vectorReadOp = dyn_cast<vector::LoadOp>(op))
return vectorReadOp.getIndices();
if (auto vectorStoreOp = dyn_cast<vector::StoreOp>(op))
return vectorStoreOp.getIndices();
llvm_unreachable("unsupported op type");
}
void setIndices(Operation *op, ArrayRef<Value> indices) {
if (auto ldmatrixOp = dyn_cast<LdMatrixOp>(op))
return ldmatrixOp.getIndicesMutable().assign(indices);
if (auto copyOp = dyn_cast<DeviceAsyncCopyOp>(op))
return copyOp.getDstIndicesMutable().assign(indices);
if (auto loadOp = dyn_cast<memref::LoadOp>(op))
return loadOp.getIndicesMutable().assign(indices);
if (auto storeOp = dyn_cast<memref::StoreOp>(op))
return storeOp.getIndicesMutable().assign(indices);
if (auto vectorReadOp = dyn_cast<vector::LoadOp>(op))
return vectorReadOp.getIndicesMutable().assign(indices);
if (auto vectorStoreOp = dyn_cast<vector::StoreOp>(op))
return vectorStoreOp.getIndicesMutable().assign(indices);
llvm_unreachable("unsupported op type");
}
/// Return all operations within `parentOp` that read from or write to
/// `shmMemRef`.
static LogicalResult
getShmReadAndWriteOps(Operation *parentOp, Value shmMemRef,
SmallVector<Operation *, 16> &readOps,
SmallVector<Operation *, 16> &writeOps) {
parentOp->walk([&](Operation *op) {
MemoryEffectOpInterface iface = dyn_cast<MemoryEffectOpInterface>(op);
if (!iface)
return;
Optional<MemoryEffects::EffectInstance> effect =
iface.getEffectOnValue<MemoryEffects::Read>(shmMemRef);
if (effect) {
readOps.push_back(op);
return;
}
effect = iface.getEffectOnValue<MemoryEffects::Write>(shmMemRef);
if (effect)
writeOps.push_back(op);
});
// Restrict to a supported set of ops. We also require at least 2D access,
// although this could be relaxed.
if (llvm::any_of(readOps, [](Operation *op) {
return !isa<memref::LoadOp, vector::LoadOp, nvgpu::LdMatrixOp>(op) ||
getIndices(op).size() < 2;
}))
return failure();
if (llvm::any_of(writeOps, [](Operation *op) {
return !isa<memref::StoreOp, vector::StoreOp, nvgpu::DeviceAsyncCopyOp>(
op) ||
getIndices(op).size() < 2;
}))
return failure();
return success();
}
mlir::LogicalResult
mlir::nvgpu::optimizeSharedMemoryReadsAndWrites(Operation *parentOp,
Value memrefValue) {
auto memRefType = memrefValue.getType().dyn_cast<MemRefType>();
if (!memRefType || memRefType.getMemorySpaceAsInt() !=
gpu::GPUDialect::getWorkgroupAddressSpace())
return failure();
// Abort if the given value has any sub-views; we do not do any alias
// analysis.
bool hasSubView = false;
parentOp->walk([&](memref::SubViewOp subView) { hasSubView = true; });
if (hasSubView)
return failure();
// Check if this is necessary given the assumption of 128b accesses:
// If dim[rank-1] is small enough to fit 8 rows in a 128B line.
const int64_t rowSize = memRefType.getDimSize(memRefType.getRank() - 1);
const int64_t rowsPerLine =
(8 * kSharedMemoryLineSizeBytes / memRefType.getElementTypeBitWidth()) /
rowSize;
const int64_t threadGroupSize =
1LL << (7 - llvm::Log2_64(kDefaultVectorSizeBits / 8));
if (rowsPerLine >= threadGroupSize)
return failure();
// Get sets of operations within the function that read/write to shared
// memory.
SmallVector<Operation *, 16> shmReadOps;
SmallVector<Operation *, 16> shmWriteOps;
if (failed(getShmReadAndWriteOps(parentOp, memrefValue, shmReadOps,
shmWriteOps)))
return failure();
if (shmReadOps.empty() || shmWriteOps.empty())
return failure();
OpBuilder builder(parentOp->getContext());
int64_t tgtDim = memRefType.getRank() - 1;
int64_t srcDim = memRefType.getRank() - 2;
// Transform indices for the ops writing to shared memory.
while (!shmWriteOps.empty()) {
Operation *shmWriteOp = shmWriteOps.back();
shmWriteOps.pop_back();
builder.setInsertionPoint(shmWriteOp);
auto indices = getIndices(shmWriteOp);
SmallVector<Value, 4> transformedIndices(indices.begin(), indices.end());
transformIndices(builder, shmWriteOp->getLoc(), transformedIndices,
memRefType, srcDim, tgtDim);
setIndices(shmWriteOp, transformedIndices);
}
// Transform indices for the ops reading from shared memory.
while (!shmReadOps.empty()) {
Operation *shmReadOp = shmReadOps.back();
shmReadOps.pop_back();
builder.setInsertionPoint(shmReadOp);
auto indices = getIndices(shmReadOp);
SmallVector<Value, 4> transformedIndices(indices.begin(), indices.end());
transformIndices(builder, shmReadOp->getLoc(), transformedIndices,
memRefType, srcDim, tgtDim);
setIndices(shmReadOp, transformedIndices);
}
return success();
}
namespace {
class OptimizeSharedMemoryPass
: public OptimizeSharedMemoryBase<OptimizeSharedMemoryPass> {
public:
OptimizeSharedMemoryPass() = default;
void runOnOperation() override {
Operation *op = getOperation();
SmallVector<memref::AllocOp> shmAllocOps;
op->walk([&](memref::AllocOp allocOp) {
if (allocOp.getMemref()
.getType()
.cast<MemRefType>()
.getMemorySpaceAsInt() !=
gpu::GPUDialect::getWorkgroupAddressSpace())
return;
shmAllocOps.push_back(allocOp);
});
for (auto allocOp : shmAllocOps) {
if (failed(optimizeSharedMemoryReadsAndWrites(getOperation(),
allocOp.getMemref())))
return;
}
}
};
} // namespace
std::unique_ptr<Pass> mlir::nvgpu::createOptimizeSharedMemoryPass() {
return std::make_unique<OptimizeSharedMemoryPass>();
}
|