summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
blob: 3578db643c98b1515735b5d35f952d05975a8220 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/ReshapeOpsUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/StringRef.h"
#include <algorithm>

using namespace mlir;
using namespace mlir::tensor;

/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *TensorDialect::materializeConstant(OpBuilder &builder,
                                              Attribute value, Type type,
                                              Location loc) {
  if (arith::ConstantOp::isBuildableWith(value, type))
    return builder.create<arith::ConstantOp>(loc, value, type);
  if (complex::ConstantOp::isBuildableWith(value, type))
    return builder.create<complex::ConstantOp>(loc, type,
                                               value.cast<ArrayAttr>());
  return nullptr;
}

SmallVector<OpFoldResult> tensor::getMixedSizes(OpBuilder &builder,
                                                Location loc, Value value) {
  auto tensorType = value.getType().cast<RankedTensorType>();
  SmallVector<OpFoldResult> result;
  for (int64_t i = 0; i < tensorType.getRank(); ++i) {
    if (tensorType.isDynamicDim(i)) {
      Value size = builder.create<tensor::DimOp>(loc, value, i);
      result.push_back(size);
    } else {
      result.push_back(builder.getIndexAttr(tensorType.getDimSize(i)));
    }
  }
  return result;
}

FailureOr<Value> tensor::getOrCreateDestination(OpBuilder &b, Location loc,
                                                OpResult opResult) {
  auto tensorType = opResult.getType().dyn_cast<TensorType>();
  assert(tensorType && "expected tensor type");

  // If the op has a destination, it implements DestinationStyleOpInterface and
  // we can query the destination operand from that interface.
  auto destOp = opResult.getDefiningOp<DestinationStyleOpInterface>();
  if (destOp)
    return destOp.getTiedOpOperand(opResult)->get();

  // Otherwise, create a new destination tensor with the same shape.
  OpBuilder::InsertionGuard g(b);
  b.setInsertionPoint(opResult.getDefiningOp());

  // Compute sizes.
  SmallVector<OpFoldResult> mixedSizes;
  if (!tensorType.hasStaticShape()) {
    // Dynamic shape: Query ReifyRankedShapedTypeOpInterface.
    ReifiedRankedShapedTypeDims reifiedShapes;
    ReifyRankedShapedTypeOpInterface reifyShapedTypeInterface =
        dyn_cast<ReifyRankedShapedTypeOpInterface>(opResult.getDefiningOp());
    if (!reifyShapedTypeInterface)
      return failure();
    if (failed(reifyShapedTypeInterface.reifyResultShapes(b, reifiedShapes)))
      return failure();
    mixedSizes = getAsOpFoldResult(reifiedShapes[opResult.getResultNumber()]);
  } else {
    // Static shape: Take static sizes directly.
    for (int64_t sz : tensorType.getShape())
      mixedSizes.push_back(b.getIndexAttr(sz));
  }

  // Create empty tensor.
  Value emptyTensor =
      b.create<tensor::EmptyOp>(loc, mixedSizes, tensorType.getElementType());
  return emptyTensor;
}

LogicalResult tensor::getOrCreateDestinations(OpBuilder &b, Location loc,
                                              Operation *op,
                                              SmallVector<Value> &result) {
  for (OpResult opResult : op->getResults()) {
    if (opResult.getType().isa<TensorType>()) {
      FailureOr<Value> destination = getOrCreateDestination(b, loc, opResult);
      if (failed(destination))
        return failure();
      result.push_back(*destination);
    }
  }
  return success();
}

//===----------------------------------------------------------------------===//
// CastOp
//===----------------------------------------------------------------------===//

void CastOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "cast");
}

/// Returns true if `target` is a ranked tensor type that preserves static
/// information available in the `source` ranked tensor type.
bool mlir::tensor::preservesStaticInformation(Type source, Type target) {
  auto sourceType = source.dyn_cast<RankedTensorType>();
  auto targetType = target.dyn_cast<RankedTensorType>();

  // Requires RankedTensorType.
  if (!sourceType || !targetType)
    return false;

  // Requires same elemental type.
  if (sourceType.getElementType() != targetType.getElementType())
    return false;

  // Requires same rank.
  if (sourceType.getRank() != targetType.getRank())
    return false;

  // If cast is towards more static sizes along any dimension, don't fold.
  for (auto t : llvm::zip(sourceType.getShape(), targetType.getShape())) {
    if (!ShapedType::isDynamic(std::get<0>(t)) &&
        ShapedType::isDynamic(std::get<1>(t)))
      return false;
  }

  return true;
}

/// Determines whether tensor::CastOp casts to a more dynamic version of the
/// source tensor. This is useful to fold a tensor.cast into a consuming op and
/// implement canonicalization patterns for ops in different dialects that may
/// consume the results of tensor.cast operations. Such foldable tensor.cast
/// operations are typically inserted as `slice` ops and are canonicalized,
/// to preserve the type compatibility of their uses.
///
/// Returns true when all conditions are met:
/// 1. source and result are ranked tensors with same element type and rank.
/// 2. the tensor type has more static information than the result
///
/// Example:
/// ```mlir
///   %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
///   %2 = consumer %1 ... : tensor<?x?xf32> ...
/// ```
///
/// folds into:
///
/// ```mlir
///   %2 = consumer %0 ... : tensor<8x16xf32> ...
/// ```
bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) {
  if (!castOp)
    return false;

  // Can fold if the source of cast has at least as much static information as
  // its results.
  return preservesStaticInformation(castOp.getType(),
                                    castOp.getSource().getType());
}

/// Determines whether the tensor::CastOp casts to a more static version of the
/// source tensor. This is useful to fold into a producing op and implement
/// canonicaliation patterns with the `tensor.cast` op as the root, but producer
/// being from different dialects. Returns true when all conditions are met:
/// 1. source and result and ranked tensors with same element type and rank.
/// 2. the result type has more static information than the source.
///
/// Example:
/// ```mlir
///   %1 = producer ... : tensor<?x?xf32>
///   %2 = tensor.cast %1 : tensor<?x?xf32> to tensor<8x16xf32>
/// ```
///
/// can be canonicalized to :
///
/// ```mlir
///   %2 = producer ... : tensor<8x16xf32>
/// ```
/// Not all ops might be canonicalizable this way, but for those that can be,
/// this method provides a check that it is worth doing the canonicalization.
bool mlir::tensor::canFoldIntoProducerOp(CastOp castOp) {
  if (!castOp)
    return false;
  return preservesStaticInformation(castOp.getSource().getType(),
                                    castOp.getType());
}

/// Performs folding of any operand of `op` if it comes from a tensor::CastOp
/// that can be folded.
LogicalResult mlir::tensor::foldTensorCast(Operation *op) {
  bool folded = false;
  for (OpOperand &operand : op->getOpOperands()) {
    auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
    if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
      operand.set(castOp.getOperand());
      folded = true;
    }
  }
  return success(folded);
}

bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
  if (inputs.size() != 1 || outputs.size() != 1)
    return false;
  Type a = inputs.front(), b = outputs.front();
  auto aT = a.dyn_cast<TensorType>();
  auto bT = b.dyn_cast<TensorType>();
  if (!aT || !bT)
    return false;

  if (aT.getElementType() != bT.getElementType())
    return false;

  return succeeded(verifyCompatibleShape(aT, bT));
}

/// Compute a TensorType that has the joined shape knowledge of the two
/// given TensorTypes. The element types need to match.
static TensorType joinShapes(TensorType one, TensorType two) {
  assert(one.getElementType() == two.getElementType());

  if (!one.hasRank())
    return two;
  if (!two.hasRank())
    return one;

  int64_t rank = one.getRank();
  if (rank != two.getRank())
    return {};

  SmallVector<int64_t, 4> join;
  join.reserve(rank);
  for (int64_t i = 0; i < rank; ++i) {
    if (one.isDynamicDim(i)) {
      join.push_back(two.getDimSize(i));
      continue;
    }
    if (two.isDynamicDim(i)) {
      join.push_back(one.getDimSize(i));
      continue;
    }
    if (one.getDimSize(i) != two.getDimSize(i))
      return {};
    join.push_back(one.getDimSize(i));
  }
  return RankedTensorType::get(join, one.getElementType());
}

namespace {

/// Replaces chains of two tensor.cast operations by a single tensor.cast
/// operation if doing so does not remove runtime constraints.
struct ChainedTensorCast : public OpRewritePattern<CastOp> {
  using OpRewritePattern<CastOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(CastOp tensorCast,
                                PatternRewriter &rewriter) const final {
    auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>();

    if (!tensorCastOperand)
      return failure();

    auto sourceType =
        tensorCastOperand.getOperand().getType().cast<TensorType>();
    auto intermediateType = tensorCastOperand.getType().cast<TensorType>();
    auto resultType = tensorCast.getType().cast<TensorType>();

    // We can remove the intermediate cast if joining all three produces the
    // same result as just joining the source and result shapes.
    auto firstJoin =
        joinShapes(joinShapes(sourceType, intermediateType), resultType);

    // The join might not exist if the cast sequence would fail at runtime.
    if (!firstJoin)
      return failure();

    // The newJoin always exists if the above join exists, it might just contain
    // less information. If so, we cannot drop the intermediate cast, as doing
    // so would remove runtime checks.
    auto newJoin = joinShapes(sourceType, resultType);
    if (firstJoin != newJoin)
      return failure();

    rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType,
                                        tensorCastOperand.getOperand());
    return success();
  }
};

/// Fold tensor.cast into tesor.extract_slice producer.
/// Example:
/// ```
///  %0 = tensor.extract_slice %arg0[%o, 0] [%s, 512] [1, 1] :
///    tensor<128x512xf32> to tensor<?x512xf32>
///  %1 = tensor.cast %0 : tensor<?x512xf32> to tensor<16x512xf32>
/// ```
/// ->
/// ```
/// %1 = tensor.extract_slice %arg0[%o, 0] [16, 512] [1, 1] :
///   tensor<128x512xf32> to tensor<16x512xf32>
/// ```
struct TensorCastExtractSlice : public OpRewritePattern<CastOp> {
  using OpRewritePattern<CastOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(CastOp tensorCast,
                                PatternRewriter &rewriter) const final {
    auto extractOperand =
        tensorCast.getOperand().getDefiningOp<ExtractSliceOp>();

    if (!extractOperand || !canFoldIntoProducerOp(tensorCast) ||
        tensorCast.getType().getShape() == tensorCast.getSource()
                                               .getType()
                                               .cast<RankedTensorType>()
                                               .getShape())
      return failure();

    SmallVector<OpFoldResult, 4> sizes = extractOperand.getMixedSizes();
    auto dimMask = computeRankReductionMask(
        extractOperand.getStaticSizes(), extractOperand.getType().getShape());
    size_t dimIndex = 0;
    for (size_t i = 0, e = sizes.size(); i < e; i++) {
      if (dimMask && dimMask->count(i))
        continue;
      int64_t dim = tensorCast.getType().getShape()[dimIndex++];
      if (ShapedType::isDynamic(dim))
        continue;
      sizes[i] = rewriter.getIndexAttr(dim);
    }

    rewriter.replaceOpWithNewOp<ExtractSliceOp>(
        tensorCast, tensorCast.getType().cast<RankedTensorType>(),
        extractOperand.getSource(), extractOperand.getMixedOffsets(), sizes,
        extractOperand.getMixedStrides());
    return success();
  }
};

} // namespace

void CastOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                         MLIRContext *context) {
  results.add<ChainedTensorCast, TensorCastExtractSlice>(context);
}

//===----------------------------------------------------------------------===//
// DimOp
//===----------------------------------------------------------------------===//

void DimOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "dim");
}

void DimOp::build(OpBuilder &builder, OperationState &result, Value source,
                  int64_t index) {
  auto loc = result.location;
  Value indexValue = builder.create<arith::ConstantIndexOp>(loc, index);
  build(builder, result, source, indexValue);
}

Optional<int64_t> DimOp::getConstantIndex() {
  return getConstantIntValue(getIndex());
}

Speculation::Speculatability DimOp::getSpeculatability() {
  auto constantIndex = getConstantIndex();
  if (!constantIndex)
    return Speculation::NotSpeculatable;

  auto rankedSourceType = dyn_cast<RankedTensorType>(getSource().getType());
  if (!rankedSourceType)
    return Speculation::NotSpeculatable;

  // The verifier rejects operations that violate this assertion.
  assert(constantIndex < rankedSourceType.getRank());
  return Speculation::Speculatable;
}

LogicalResult DimOp::verify() {
  // Assume unknown index to be in range.
  Optional<int64_t> index = getConstantIndex();
  if (!index)
    return success();

  // Check that constant index is not knowingly out of range.
  auto type = getSource().getType();
  if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
    if (*index >= tensorType.getRank())
      return emitOpError("index is out of range");
  } else if (type.isa<UnrankedTensorType>()) {
    // Assume index to be in range.
  } else {
    llvm_unreachable("expected operand with tensor type");
  }
  return success();
}

OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
  // All forms of folding require a known index.
  auto index = operands[1].dyn_cast_or_null<IntegerAttr>();
  if (!index)
    return {};

  // Folding for unranked types (UnrankedTensorType) is not supported.
  auto tensorType = getSource().getType().dyn_cast<RankedTensorType>();
  if (!tensorType)
    return {};

  // Fold if the shape extent along the given index is known.
  if (!tensorType.isDynamicDim(index.getInt())) {
    Builder builder(getContext());
    return builder.getIndexAttr(tensorType.getShape()[index.getInt()]);
  }

  Operation *definingOp = getSource().getDefiningOp();

  // Fold dim to the operand of tensor.generate.
  if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) {
    auto resultType =
        fromElements.getResult().getType().cast<RankedTensorType>();
    // The case where the type encodes the size of the dimension is handled
    // above.
    assert(ShapedType::isDynamic(resultType.getShape()[index.getInt()]));

    // Find the operand of the fromElements that corresponds to this index.
    auto dynExtents = fromElements.getDynamicExtents().begin();
    for (auto dim : resultType.getShape().take_front(index.getInt()))
      if (ShapedType::isDynamic(dim))
        dynExtents++;

    return Value{*dynExtents};
  }

  // The size at the given index is now known to be a dynamic size.
  unsigned unsignedIndex = index.getValue().getZExtValue();

  if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) {
    // Fold only for non-rank reduced ops. For the rank-reduced version, rely on
    // `resolve-shaped-type-result-dims` pass.
    if (sliceOp.getType().getRank() == sliceOp.getSourceType().getRank() &&
        sliceOp.isDynamicSize(unsignedIndex)) {
      return {sliceOp.getDynamicSize(unsignedIndex)};
    }
  }

  // dim(cast) -> dim
  if (succeeded(foldTensorCast(*this)))
    return getResult();

  return {};
}

namespace {
/// Fold dim of a cast into the dim of the source of the tensor cast.
struct DimOfCastOp : public OpRewritePattern<DimOp> {
  using OpRewritePattern<DimOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(DimOp dimOp,
                                PatternRewriter &rewriter) const override {
    auto castOp = dimOp.getSource().getDefiningOp<CastOp>();
    if (!castOp)
      return failure();
    Value newSource = castOp.getOperand();
    rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.getIndex());
    return success();
  }
};
} // namespace

void DimOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                        MLIRContext *context) {
  results.add<DimOfCastOp>(context);
}

//===----------------------------------------------------------------------===//
// EmptyOp
//===----------------------------------------------------------------------===//

void EmptyOp::build(OpBuilder &builder, OperationState &result,
                    ArrayRef<int64_t> staticShape, Type elementType,
                    Attribute encoding) {
  assert(all_of(staticShape,
                [](int64_t sz) { return !ShapedType::isDynamic(sz); }) &&
         "expected only static sizes");
  build(builder, result, staticShape, elementType, ValueRange{}, encoding);
}

void EmptyOp::build(OpBuilder &builder, OperationState &result,
                    ArrayRef<int64_t> staticShape, Type elementType,
                    ValueRange dynamicSizes, Attribute encoding) {
  auto tensorType = RankedTensorType::get(staticShape, elementType, encoding);
  build(builder, result, tensorType, dynamicSizes);
}

void EmptyOp::build(OpBuilder &builder, OperationState &result,
                    ArrayRef<OpFoldResult> sizes, Type elementType,
                    Attribute encoding) {
  SmallVector<int64_t> staticShape;
  SmallVector<Value> dynamicSizes;
  dispatchIndexOpFoldResults(sizes, dynamicSizes, staticShape,
                             ShapedType::kDynamic);
  build(builder, result, staticShape, elementType, dynamicSizes, encoding);
}

LogicalResult EmptyOp::verify() {
  if (getType().getNumDynamicDims() !=
      static_cast<int64_t>(getDynamicSizes().size()))
    return emitOpError("incorrect number of dynamic sizes, has ")
           << getDynamicSizes().size() << ", expected "
           << getType().getNumDynamicDims();
  return success();
}

LogicalResult
EmptyOp::reifyResultShapes(OpBuilder &builder,
                           ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
  reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank()));
  unsigned ctr = 0;
  for (int64_t i = 0; i < getType().getRank(); ++i) {
    if (getType().isDynamicDim(i)) {
      reifiedReturnShapes[0][i] = getDynamicSizes()[ctr++];
    } else {
      reifiedReturnShapes[0][i] =
          builder.create<arith::ConstantIndexOp>(getLoc(), i);
    }
  }
  return success();
}

Value EmptyOp::getDynamicSize(unsigned idx) {
  assert(getType().isDynamicDim(idx) && "expected dynamic dim");
  unsigned ctr = 0;
  for (int64_t i = 0; i < static_cast<int64_t>(idx); ++i)
    if (getType().isDynamicDim(i))
      ++ctr;
  return getDynamicSizes()[ctr];
}

SmallVector<OpFoldResult> EmptyOp::getMixedSizes() {
  SmallVector<OpFoldResult> result;
  unsigned ctr = 0;
  OpBuilder b(getContext());
  for (int64_t i = 0; i < getType().getRank(); ++i) {
    if (getType().isDynamicDim(i)) {
      result.push_back(getDynamicSizes()[ctr++]);
    } else {
      result.push_back(b.getIndexAttr(getType().getShape()[i]));
    }
  }
  return result;
}

namespace {
/// Change the type of the result of a `tensor.empty` by making the result
/// type statically sized along dimensions that in the original operation were
/// defined as dynamic, but the size was defined using a `constant` op. For
/// example
///
///  %c5 = arith.constant 5: index
///  %0 = tensor.empty(%arg0, %c5) : tensor<?x?xf32>
///
///  to
///
///  %0 = tensor.empty(%arg0) : tensor<?x5xf32>
struct ReplaceEmptyTensorStaticShapeDims : OpRewritePattern<EmptyOp> {
  using OpRewritePattern<EmptyOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(EmptyOp op,
                                PatternRewriter &rewriter) const override {
    SmallVector<int64_t> staticShape(op.getType().getShape().begin(),
                                     op.getType().getShape().end());
    SmallVector<Value> dynamicSizes;

    // Compute new static and dynamic sizes.
    unsigned ctr = 0;
    bool changedType = false;
    for (int64_t i = 0; i < op.getType().getRank(); ++i) {
      if (op.getType().isDynamicDim(i)) {
        Value dynamicSize = op.getDynamicSizes()[ctr++];
        Optional<int64_t> cst = getConstantIntValue(dynamicSize);
        if (cst.has_value()) {
          staticShape[i] = *cst;
          changedType = true;
        } else {
          dynamicSizes.push_back(dynamicSize);
        }
      }
    }

    // Stop here if no dynamic size was promoted to static.
    if (!changedType)
      return failure();

    auto tensorType = RankedTensorType::get(
        staticShape, op.getType().getElementType(), op.getType().getEncoding());
    auto newOp =
        rewriter.create<EmptyOp>(op.getLoc(), tensorType, dynamicSizes);
    rewriter.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(), newOp);
    return success();
  }
};

struct FoldEmptyTensorWithDimOp : public OpRewritePattern<DimOp> {
  using OpRewritePattern<DimOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::DimOp dimOp,
                                PatternRewriter &rewriter) const override {
    Optional<int64_t> maybeConstantIndex = dimOp.getConstantIndex();
    auto emptyTensorOp = dimOp.getSource().getDefiningOp<EmptyOp>();
    if (!emptyTensorOp || !maybeConstantIndex)
      return failure();
    if (!emptyTensorOp.getType().isDynamicDim(*maybeConstantIndex))
      return failure();
    rewriter.replaceOp(dimOp,
                       emptyTensorOp.getDynamicSize(*maybeConstantIndex));
    return success();
  }
};

/// Canonicalize
///
/// ```mlir
///   %0 = tensor.empty(%d0, %d1) : tensor<?x?xf32>
///   %1 = tensor.cast %0 : tensor<?x?xf32> to tensor<4x?xf32>
/// ```
///
/// into
///
/// ```mlir
///   %0 = tensor.empty(%d1) : tensor<4x?xf32>
/// ```
///
/// This assumes the input program is correct in terms of its shape. So it is
/// safe to assume that `%d0` is in fact 4.
struct FoldEmptyTensorWithCastOp : public OpRewritePattern<CastOp> {
  using OpRewritePattern<CastOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(CastOp castOp,
                                PatternRewriter &rewriter) const override {
    if (!canFoldIntoProducerOp(castOp))
      return failure();
    auto producer = castOp.getSource().getDefiningOp<EmptyOp>();
    if (!producer)
      return failure();

    auto resultType = castOp->getResult(0).getType().cast<RankedTensorType>();
    ArrayRef<int64_t> resultShape = resultType.getShape();
    SmallVector<OpFoldResult> currMixedSizes = producer.getMixedSizes();
    SmallVector<OpFoldResult> newMixedSizes;
    newMixedSizes.reserve(currMixedSizes.size());
    assert(resultShape.size() == currMixedSizes.size() &&
           "mismatch in result shape and sizes of empty op");
    for (auto it : llvm::zip(resultShape, currMixedSizes)) {
      int64_t newDim = std::get<0>(it);
      OpFoldResult currDim = std::get<1>(it);
      // Case 1: The empty tensor dim is static. Check that the tensor cast
      // result dim matches.
      if (auto attr = currDim.dyn_cast<Attribute>()) {
        if (ShapedType::isDynamic(newDim) ||
            newDim != attr.cast<IntegerAttr>().getInt()) {
          // Something is off, the cast result shape cannot be more dynamic
          // than the empty tensor result shape (enforced by
          // `canFoldIntoProducer`). Abort for now.
          return rewriter.notifyMatchFailure(
              producer, "mismatch in static value of shape of empty tensor "
                        "result and cast result");
        }
        newMixedSizes.push_back(attr);
        continue;
      }

      // Case 2 : The tensor cast shape is static, but empty tensor result
      // shape is dynamic.
      if (!ShapedType::isDynamic(newDim)) {
        newMixedSizes.push_back(rewriter.getIndexAttr(newDim));
        continue;
      }

      // Case 3 : The tensor cast shape is dynamic and empty tensor result
      // shape is dynamic. Use the dynamic value from the empty tensor op.
      newMixedSizes.push_back(currDim);
    }

    // TODO: Do not drop tensor encoding.
    rewriter.replaceOpWithNewOp<EmptyOp>(castOp, newMixedSizes,
                                         resultType.getElementType());
    return success();
  }
};

} // namespace

void EmptyOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                          MLIRContext *context) {
  results.add<FoldEmptyTensorWithCastOp, FoldEmptyTensorWithDimOp,
              ReplaceEmptyTensorStaticShapeDims>(context);
}

//===----------------------------------------------------------------------===//
// ExtractOp
//===----------------------------------------------------------------------===//

namespace {

/// Canonicalizes the pattern of the form
///
/// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32>
/// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32>
///
/// to
///
/// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32>
struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> {
  using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::ExtractOp extract,
                                PatternRewriter &rewriter) const final {
    auto tensorCast = extract.getTensor().getDefiningOp<tensor::CastOp>();
    if (!tensorCast)
      return failure();
    if (!tensorCast.getSource().getType().isa<RankedTensorType>())
      return failure();
    rewriter.replaceOpWithNewOp<tensor::ExtractOp>(
        extract, tensorCast.getSource(), extract.getIndices());
    return success();
  }
};

} // namespace

void ExtractOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "extracted");
}

LogicalResult ExtractOp::verify() {
  // Verify the # indices match if we have a ranked type.
  auto tensorType = getTensor().getType().cast<RankedTensorType>();
  if (tensorType.getRank() != static_cast<int64_t>(getIndices().size()))
    return emitOpError("incorrect number of indices for extract_element");
  return success();
}

OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) {
  // If this is a splat elements attribute, simply return the value. All of
  // the elements of a splat attribute are the same.
  if (Attribute tensor = operands.front())
    if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>())
      return splatTensor.getSplatValue<Attribute>();

  // Collect the constant indices into the tensor.
  SmallVector<uint64_t, 8> indices;
  for (Attribute indice : llvm::drop_begin(operands, 1)) {
    if (!indice || !indice.isa<IntegerAttr>())
      return {};
    indices.push_back(indice.cast<IntegerAttr>().getInt());
  }

  // Fold extract(from_elements(...)).
  if (auto fromElementsOp = getTensor().getDefiningOp<FromElementsOp>()) {
    auto tensorType = fromElementsOp.getType().cast<RankedTensorType>();
    auto rank = tensorType.getRank();
    assert(static_cast<int64_t>(indices.size()) == tensorType.getRank() &&
           "rank mismatch");
    int flatIndex = 0;
    int stride = 1;
    for (int i = rank - 1; i >= 0; --i) {
      if (i < rank - 1)
        stride *= tensorType.getDimSize(i);
      flatIndex += indices[i] * stride;
    }
    // Prevent out of bounds accesses. This can happen in invalid code that
    // will never execute.
    if (static_cast<int>(fromElementsOp.getElements().size()) <= flatIndex ||
        flatIndex < 0)
      return {};
    return fromElementsOp.getElements()[flatIndex];
  }

  // If this is an elements attribute, query the value at the given indices.
  if (Attribute tensor = operands.front()) {
    auto elementsAttr = tensor.dyn_cast<ElementsAttr>();
    if (elementsAttr && elementsAttr.isValidIndex(indices))
      return elementsAttr.getValues<Attribute>()[indices];
  }

  return {};
}

void ExtractOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                            MLIRContext *context) {
  results.add<ExtractFromTensorCast>(context);
}

//===----------------------------------------------------------------------===//
// FromElementsOp
//===----------------------------------------------------------------------===//

void FromElementsOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "from_elements");
}

void FromElementsOp::build(OpBuilder &builder, OperationState &result,
                           Type resultType, ValueRange elements) {
  result.addOperands(elements);
  result.addTypes(resultType);
}

void FromElementsOp::build(OpBuilder &builder, OperationState &result,
                           ValueRange elements) {
  assert(!elements.empty() && "expected at least one element");
  Type resultType = RankedTensorType::get(
      {static_cast<int64_t>(elements.size())}, elements.front().getType());
  build(builder, result, resultType, elements);
}

OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) {
  if (!llvm::is_contained(operands, nullptr))
    return DenseElementsAttr::get(getType(), operands);
  return {};
}

namespace {

// Pushes the index_casts that occur before extractions to after the extract.
// This minimizes type conversion in some cases and enables the extract
// canonicalizer. This changes:
//
// %cast = arith.index_cast %tensor : tensor<1xi32> to tensor<1xindex>
// %extract = tensor.extract %cast[%index] : tensor<1xindex>
//
// to the following:
//
// %extract = tensor.extract %tensor[%index] : tensor<1xindex>
// %cast = arith.index_cast %extract : i32 to index
//
// to just %element.
//
// Consider expanding this to a template and handle all tensor cast
// operations.
struct ExtractElementFromIndexCast
    : public OpRewritePattern<tensor::ExtractOp> {
  using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::ExtractOp extract,
                                PatternRewriter &rewriter) const final {
    Location loc = extract.getLoc();
    auto indexCast = extract.getTensor().getDefiningOp<arith::IndexCastOp>();
    if (!indexCast)
      return failure();

    Type elementTy = getElementTypeOrSelf(indexCast.getIn());

    auto newExtract = rewriter.create<tensor::ExtractOp>(
        loc, elementTy, indexCast.getIn(), extract.getIndices());

    rewriter.replaceOpWithNewOp<arith::IndexCastOp>(extract, extract.getType(),
                                                    newExtract);

    return success();
  }
};

} // namespace

void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                 MLIRContext *context) {
  results.add<ExtractElementFromIndexCast>(context);
}

//===----------------------------------------------------------------------===//
// GatherOp
//===----------------------------------------------------------------------===//

void GatherOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "gather");
}

/// Return the inferred result type for a gatherOp where:
///   - sourceType is the type of the source tensor gathered from
///   - indicesType is the type of the indices used to gather
///   - gatherDims are the dims along which the gather occurs.
/// Return a full rank or ranked-reduced variant of the type depending on
/// the value of rankReduced.
///
/// The leading dimensions of the index tensor give the result tensor its
/// leading dimensions.
/// The trailing dimensions of the result tensor are obtained from the source
/// tensor by setting the dimensions specified in gather_dims to `1` (if
/// rankedReduced is false), or skipping them (otherwise).
RankedTensorType GatherOp::inferResultType(RankedTensorType sourceType,
                                           RankedTensorType indicesType,
                                           ArrayRef<int64_t> gatherDims,
                                           bool rankReduced) {
  SmallVector<int64_t> resultShape(indicesType.getShape().drop_back());
  resultShape.reserve(resultShape.size() + sourceType.getRank());
  for (int64_t idx : llvm::seq<int64_t>(0, sourceType.getRank())) {
    if (std::binary_search(gatherDims.begin(), gatherDims.end(), idx)) {
      if (!rankReduced)
        resultShape.push_back(1);
      continue;
    }
    resultShape.push_back(sourceType.getDimSize(idx));
  }
  return RankedTensorType::Builder(sourceType).setShape(resultShape);
}

static LogicalResult
verifyGatherOrScatterDims(Operation *op, ArrayRef<int64_t> dims, int64_t rank,
                          StringRef gatherOrScatter, StringRef sourceOrDest) {
  if (dims.empty())
    return op->emitOpError(gatherOrScatter) << "_dims must be non-empty";

  int64_t numGatherDims = dims.size();
  if (numGatherDims > rank)
    return op->emitOpError(gatherOrScatter)
           << "_dims overflow " << sourceOrDest << " rank";
  for (int64_t val : dims) {
    if (val < 0)
      return op->emitOpError(gatherOrScatter)
             << "_dims value must be non-negative";
    if (val >= rank)
      return op->emitOpError(gatherOrScatter)
             << "_dims value must be smaller than " << sourceOrDest << " rank";
  }
  for (int64_t i = 1; i < numGatherDims; ++i) {
    if (dims[i - 1] >= dims[i])
      return op->emitOpError(gatherOrScatter)
             << "_dims values must be strictly increasing";
  }
  return success();
}

LogicalResult GatherOp::verify() {
  int64_t sourceRank = getSourceType().getRank();
  ArrayRef<int64_t> gatherDims = getGatherDims();
  if (failed(verifyGatherOrScatterDims(getOperation(), gatherDims, sourceRank,
                                       "gather", "source")))
    return failure();

  RankedTensorType expectedResultType = GatherOp::inferResultType(
      getSourceType(), getIndicesType(), gatherDims, /*rankReduced=*/false);
  RankedTensorType expectedRankReducedResultType = GatherOp::inferResultType(
      getSourceType(), getIndicesType(), gatherDims, /*rankReduced=*/true);
  if (getResultType() != expectedResultType &&
      getResultType() != expectedRankReducedResultType) {
    return emitOpError("result type "
                       "mismatch: "
                       "expected ")
           << expectedResultType << " or its rank-reduced variant "
           << expectedRankReducedResultType << " (got: " << getResultType()
           << ")";
  }

  return success();
}

//===----------------------------------------------------------------------===//
// InsertOp
//===----------------------------------------------------------------------===//

void InsertOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "inserted");
}

LogicalResult InsertOp::verify() {
  // Verify the # indices match if we have a ranked type.
  auto destType = getDest().getType().cast<RankedTensorType>();
  if (destType.getRank() != static_cast<int64_t>(getIndices().size()))
    return emitOpError("incorrect number of indices");
  return success();
}

OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) {
  Attribute scalar = operands[0];
  Attribute dest = operands[1];
  if (scalar && dest)
    if (auto splatDest = dest.dyn_cast<SplatElementsAttr>())
      if (scalar == splatDest.getSplatValue<Attribute>())
        return dest;
  return {};
}

//===----------------------------------------------------------------------===//
// GenerateOp
//===----------------------------------------------------------------------===//

void GenerateOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "generated");
}

LogicalResult GenerateOp::reifyResultShapes(
    OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
  reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank()));
  int idx = 0;
  for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) {
    if (getType().isDynamicDim(dim)) {
      reifiedReturnShapes[0][dim] = getOperand(idx++);
    } else {
      reifiedReturnShapes[0][dim] = builder.create<arith::ConstantIndexOp>(
          getLoc(), getType().getDimSize(dim));
    }
  }
  return success();
}

LogicalResult GenerateOp::verify() {
  // Ensure that the tensor type has as many dynamic dimensions as are
  // specified by the operands.
  RankedTensorType resultTy = getType().cast<RankedTensorType>();
  if (getNumOperands() != resultTy.getNumDynamicDims())
    return emitError("must have as many index operands as dynamic extents "
                     "in the result type");

  return success();
}

LogicalResult GenerateOp::verifyRegions() {
  RankedTensorType resultTy = getType().cast<RankedTensorType>();
  // Ensure that region arguments span the index space.
  if (!llvm::all_of(getBody().getArgumentTypes(),
                    [](Type ty) { return ty.isIndex(); }))
    return emitError("all body arguments must be index");
  if (getBody().getNumArguments() != resultTy.getRank())
    return emitError("must have one body argument per input dimension");

  // Ensure that the region yields an element of the right type.
  auto yieldOp = cast<YieldOp>(getBody().getBlocks().front().getTerminator());

  if (yieldOp.getValue().getType() != resultTy.getElementType())
    return emitOpError(
        "body must be terminated with a `yield` operation of the tensor "
        "element type");

  return success();
}

void GenerateOp::build(
    OpBuilder &b, OperationState &result, Type resultTy,
    ValueRange dynamicExtents,
    function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
  build(b, result, resultTy, dynamicExtents);

  // Build and populate body.
  OpBuilder::InsertionGuard guard(b);
  Region *bodyRegion = result.regions.front().get();
  auto rank = resultTy.cast<RankedTensorType>().getRank();
  SmallVector<Type, 2> argumentTypes(rank, b.getIndexType());
  SmallVector<Location, 2> argumentLocs(rank, result.location);
  Block *bodyBlock =
      b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes, argumentLocs);
  bodyBuilder(b, result.location, bodyBlock->getArguments());
}

namespace {

/// Canonicalizes tensor.generate operations with a constant
/// operand into the equivalent operation with the operand expressed in the
/// result type, instead. We also insert a type cast to make sure that the
/// resulting IR is still well-typed.
struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> {
  using OpRewritePattern<GenerateOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(GenerateOp tensorFromElements,
                                PatternRewriter &rewriter) const final {
    auto resultType =
        tensorFromElements.getResult().getType().cast<RankedTensorType>();

    if (resultType.hasStaticShape())
      return failure();

    SmallVector<Value, 4> newOperands;
    SmallVector<int64_t, 4> newShape;
    auto operandsIt = tensorFromElements.getDynamicExtents().begin();

    for (int64_t dim : resultType.getShape()) {
      if (!ShapedType::isDynamic(dim)) {
        newShape.push_back(dim);
        continue;
      }
      APInt index;
      if (!matchPattern(*operandsIt, m_ConstantInt(&index))) {
        newShape.push_back(ShapedType::kDynamic);
        newOperands.push_back(*operandsIt++);
        continue;
      }
      newShape.push_back(index.getSExtValue());
      operandsIt++;
    }

    if (newOperands.size() == tensorFromElements.getDynamicExtents().size())
      return failure();

    auto loc = tensorFromElements.getLoc();
    auto newOp = rewriter.create<GenerateOp>(
        loc, RankedTensorType::get(newShape, resultType.getElementType()),
        newOperands);
    rewriter.inlineRegionBefore(tensorFromElements.getBody(), newOp.getBody(),
                                newOp.getBody().begin());
    rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType,
                                                newOp);
    return success();
  }
};

/// Canonicalizes the pattern of the form
///
/// %tensor = tensor.generate %x {
///   ^bb0(%arg0: index):
///   <computation>
///   yield %1 : index
/// } : tensor<?xindex>
/// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32>
///
/// to just <computation> with %arg0 replaced by %c0. We only do this if the
/// tensor.generate operation has no side-effects.
struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> {
  using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::ExtractOp extract,
                                PatternRewriter &rewriter) const final {
    auto tensorFromElements = extract.getTensor().getDefiningOp<GenerateOp>();
    if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements))
      return failure();

    BlockAndValueMapping mapping;
    Block *body = &tensorFromElements.getBody().front();
    mapping.map(body->getArguments(), extract.getIndices());
    for (auto &op : body->without_terminator())
      rewriter.clone(op, mapping);

    auto yield = cast<YieldOp>(body->getTerminator());

    rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.getValue()));
    return success();
  }
};

} // namespace

void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                             MLIRContext *context) {
  // TODO: Move extract pattern to tensor::ExtractOp.
  results.add<ExtractFromTensorGenerate, StaticTensorGenerate>(context);
}

//===----------------------------------------------------------------------===//
// RankOp
//===----------------------------------------------------------------------===//

void RankOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "rank");
}

OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) {
  // Constant fold rank when the rank of the operand is known.
  auto type = getOperand().getType();
  auto shapedType = type.dyn_cast<ShapedType>();
  if (shapedType && shapedType.hasRank())
    return IntegerAttr::get(IndexType::get(getContext()), shapedType.getRank());
  return IntegerAttr();
}

//===----------------------------------------------------------------------===//
// ReshapeOp
//===----------------------------------------------------------------------===//

void ReshapeOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "reshape");
}

static int64_t getNumElements(ShapedType type) {
  int64_t numElements = 1;
  for (auto dim : type.getShape())
    numElements *= dim;
  return numElements;
}

LogicalResult ReshapeOp::verify() {
  TensorType operandType = getSource().getType().cast<TensorType>();
  TensorType resultType = getResult().getType().cast<TensorType>();

  if (operandType.getElementType() != resultType.getElementType())
    return emitOpError("element types of source and destination tensor "
                       "types should be the same");

  int64_t shapeSize =
      getShape().getType().cast<RankedTensorType>().getDimSize(0);
  auto resultRankedType = resultType.dyn_cast<RankedTensorType>();
  auto operandRankedType = operandType.dyn_cast<RankedTensorType>();

  if (resultRankedType) {
    if (operandRankedType && resultRankedType.hasStaticShape() &&
        operandRankedType.hasStaticShape()) {
      if (getNumElements(operandRankedType) != getNumElements(resultRankedType))
        return emitOpError("source and destination tensor should have the "
                           "same number of elements");
    }
    if (ShapedType::isDynamic(shapeSize))
      return emitOpError("cannot use shape operand with dynamic length to "
                         "reshape to statically-ranked tensor type");
    if (shapeSize != resultRankedType.getRank())
      return emitOpError(
          "length of shape operand differs from the result's tensor rank");
  }
  return success();
}

//===----------------------------------------------------------------------===//
// Reassociative reshape ops
//===----------------------------------------------------------------------===//

void CollapseShapeOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "collapsed");
}

void ExpandShapeOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "expanded");
}

int64_t ExpandShapeOp::getCorrespondingSourceDim(int64_t resultDim) {
  assert(resultDim >= 0 && resultDim < getResultType().getRank() &&
         "invalid resultDim");
  for (const auto &it : llvm::enumerate(getReassociationIndices()))
    if (llvm::find(it.value(), resultDim) != it.value().end())
      return it.index();
  llvm_unreachable("could not find reassociation group");
}

SmallVector<AffineMap, 4> CollapseShapeOp::getReassociationMaps() {
  return getSymbolLessAffineMaps(getReassociationExprs());
}
SmallVector<ReassociationExprs, 4> CollapseShapeOp::getReassociationExprs() {
  return convertReassociationIndicesToExprs(getContext(),
                                            getReassociationIndices());
}

SmallVector<AffineMap, 4> ExpandShapeOp::getReassociationMaps() {
  return getSymbolLessAffineMaps(getReassociationExprs());
}
SmallVector<ReassociationExprs, 4> ExpandShapeOp::getReassociationExprs() {
  return convertReassociationIndicesToExprs(getContext(),
                                            getReassociationIndices());
}

/// Compute the RankedTensorType obtained by applying `reassociation` to
/// `type`.
static RankedTensorType
computeTensorReshapeCollapsedType(RankedTensorType type,
                                  ArrayRef<AffineMap> reassociation) {
  auto shape = type.getShape();
  SmallVector<int64_t, 4> newShape;
  newShape.reserve(reassociation.size());

  // Use the fact that reassociation is valid to simplify the logic: only use
  // each map's rank.
  assert(isReassociationValid(reassociation) && "invalid reassociation");
  unsigned currentDim = 0;
  for (AffineMap m : reassociation) {
    unsigned dim = m.getNumResults();
    auto band = shape.slice(currentDim, dim);
    int64_t size = 1;
    if (llvm::is_contained(band, ShapedType::kDynamic))
      size = ShapedType::kDynamic;
    else
      for (unsigned d = 0; d < dim; ++d)
        size *= shape[currentDim + d];
    newShape.push_back(size);
    currentDim += dim;
  }

  return RankedTensorType::get(newShape, type.getElementType());
}

void CollapseShapeOp::build(OpBuilder &b, OperationState &result, Value src,
                            ArrayRef<ReassociationIndices> reassociation,
                            ArrayRef<NamedAttribute> attrs) {
  auto resultType = computeTensorReshapeCollapsedType(
      src.getType().cast<RankedTensorType>(),
      getSymbolLessAffineMaps(
          convertReassociationIndicesToExprs(b.getContext(), reassociation)));
  build(b, result, resultType, src, attrs);
  result.addAttribute(getReassociationAttrStrName(),
                      getReassociationIndicesAttribute(b, reassociation));
}

// Checks if types are the same, but ignoring encoding on ranked tensors.
static bool isSameTypesWithoutEncoding(Type tp1, Type tp2) {
  if (auto rtp1 = tp1.dyn_cast<RankedTensorType>()) {
    if (auto rtp2 = tp2.dyn_cast<RankedTensorType>())
      return rtp1.getShape() == rtp2.getShape() &&
             rtp1.getElementType() == rtp2.getElementType();
    return false;
  }
  // Default implementation.
  return tp1 == tp2;
}

template <typename TensorReshapeOp, bool isExpansion = std::is_same<
                                        TensorReshapeOp, ExpandShapeOp>::value>
static LogicalResult verifyTensorReshapeOp(TensorReshapeOp op,
                                           RankedTensorType expandedType,
                                           RankedTensorType collapsedType) {
  if (failed(
          verifyReshapeLikeTypes(op, expandedType, collapsedType, isExpansion)))
    return failure();

  auto maps = op.getReassociationMaps();
  RankedTensorType expectedType =
      computeTensorReshapeCollapsedType(expandedType, maps);
  if (!isSameTypesWithoutEncoding(collapsedType, expectedType))
    return op.emitOpError("expected collapsed type to be ")
           << expectedType << ", but got " << collapsedType;
  return success();
}

LogicalResult ExpandShapeOp::verify() {
  auto srcType = getSrcType();
  auto resultType = getResultType();
  if (srcType.getRank() >= resultType.getRank())
    return emitOpError("expected rank expansion, but found source rank ")
           << srcType.getRank() << " >= result rank " << resultType.getRank();

  return verifyTensorReshapeOp(*this, getResultType(), getSrcType());
}

LogicalResult CollapseShapeOp::verify() {
  auto srcType = getSrcType();
  auto resultType = getResultType();
  if (srcType.getRank() <= resultType.getRank())
    return emitOpError("expected rank reduction, but found source rank ")
           << srcType.getRank() << " <= result rank " << resultType.getRank();

  return verifyTensorReshapeOp(*this, getSrcType(), getResultType());
}

namespace {
/// Reshape of a splat constant can be replaced with a constant of the result
/// type.
template <typename TensorReshapeOp>
struct FoldReshapeWithConstant : OpRewritePattern<TensorReshapeOp> {
  using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
                                PatternRewriter &rewriter) const override {
    DenseElementsAttr attr;
    if (!matchPattern(reshapeOp.getSrc(), m_Constant(&attr)))
      return failure();
    if (!attr || !attr.isSplat())
      return failure();
    DenseElementsAttr newAttr = DenseElementsAttr::getFromRawBuffer(
        reshapeOp.getResultType(), attr.getRawData());
    rewriter.replaceOpWithNewOp<arith::ConstantOp>(reshapeOp, newAttr);
    return success();
  }
};

/// Reshape of a FromElements can be replaced with a FromElements of the
/// result type
template <typename TensorReshapeOp>
struct FoldReshapeWithFromElements : OpRewritePattern<TensorReshapeOp> {
  using OpRewritePattern<TensorReshapeOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(TensorReshapeOp reshapeOp,
                                PatternRewriter &rewriter) const override {
    auto fromElements =
        reshapeOp.getSrc().template getDefiningOp<FromElementsOp>();
    if (!fromElements)
      return failure();

    auto shapedTy = reshapeOp.getType().template cast<ShapedType>();

    if (!shapedTy.hasStaticShape())
      return failure();

    rewriter.replaceOpWithNewOp<FromElementsOp>(reshapeOp, reshapeOp.getType(),
                                                fromElements.getElements());
    return success();
  }
};

// Fold CastOp into CollapseShapeOp when adding static information.
struct FoldCollapseOfCastOp : public OpRewritePattern<CollapseShapeOp> {
  using OpRewritePattern<CollapseShapeOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(CollapseShapeOp collapseShapeOp,
                                PatternRewriter &rewriter) const override {
    auto castOp = collapseShapeOp.getSrc().getDefiningOp<tensor::CastOp>();
    if (!tensor::canFoldIntoConsumerOp(castOp))
      return failure();

    RankedTensorType srcType =
        castOp.getSource().getType().cast<RankedTensorType>();
    RankedTensorType newResultType = computeTensorReshapeCollapsedType(
        srcType, collapseShapeOp.getReassociationMaps());

    if (newResultType == collapseShapeOp.getResultType()) {
      rewriter.updateRootInPlace(collapseShapeOp, [&]() {
        collapseShapeOp.getSrcMutable().assign(castOp.getSource());
      });
    } else {
      auto newOp = rewriter.create<CollapseShapeOp>(
          collapseShapeOp.getLoc(), newResultType, castOp.getSource(),
          collapseShapeOp.getReassociation());
      rewriter.replaceOpWithNewOp<tensor::CastOp>(
          collapseShapeOp, collapseShapeOp.getResultType(), newOp);
    }
    return success();
  }
};

struct FoldDimOfExpandShape : public OpRewritePattern<DimOp> {
  using OpRewritePattern<DimOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(DimOp dimOp,
                                PatternRewriter &rewriter) const override {
    auto expandShapeOp = dimOp.getSource().getDefiningOp<ExpandShapeOp>();
    if (!expandShapeOp)
      return failure();

    // Only constant dimension values are supported.
    Optional<int64_t> dim = dimOp.getConstantIndex();
    if (!dim.has_value())
      return failure();

    // Skip static dims. These are folded to constant ops.
    TensorType resultType = expandShapeOp.getResultType();
    if (!resultType.isDynamicDim(*dim))
      return failure();

    // Find reassociation group that contains this result dimension.
    int64_t srcDim = expandShapeOp.getCorrespondingSourceDim(*dim);

    // `dim` is the only dynamic dimension in `group`. (Otherwise, the
    // ExpandShapeOp would be ambiguous.)
    int64_t product = 1;
    ReassociationIndices grp = expandShapeOp.getReassociationIndices()[srcDim];
    for (int64_t d : grp) {
      if (d != dim) {
        assert(!resultType.isDynamicDim(d) && "expected static dim");
        product *= resultType.getDimSize(d);
      }
    }

    // result dim size = src dim size / (product(other dims in reassoc group))
    Value srcDimSz =
        rewriter.create<DimOp>(dimOp.getLoc(), expandShapeOp.getSrc(), srcDim);
    AffineExpr expr;
    bindSymbols(dimOp.getContext(), expr);
    rewriter.replaceOpWithNewOp<AffineApplyOp>(dimOp, expr.floorDiv(product),
                                               srcDimSz);
    return success();
  }
};

struct FoldDimOfCollapseShape : public OpRewritePattern<DimOp> {
  using OpRewritePattern<DimOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(DimOp dimOp,
                                PatternRewriter &rewriter) const override {
    auto collapseShapeOp = dimOp.getSource().getDefiningOp<CollapseShapeOp>();
    if (!collapseShapeOp)
      return failure();

    // Only constant dimension values are supported.
    Optional<int64_t> dim = dimOp.getConstantIndex();
    if (!dim.has_value())
      return failure();

    // Skip static dims. These are folded to constant ops.
    TensorType resultType = collapseShapeOp.getResultType();
    if (!resultType.isDynamicDim(*dim))
      return failure();

    // Get reassociation group of the result dimension.
    ReassociationIndices group =
        collapseShapeOp.getReassociationIndices()[*dim];

    // result dim size = product(dims in reassoc group)
    SmallVector<Value> srcDimSizes;
    SmallVector<AffineExpr> syms;
    AffineExpr product;
    for (const auto &it : llvm::enumerate(group)) {
      srcDimSizes.push_back(rewriter.create<DimOp>(
          dimOp.getLoc(), collapseShapeOp.getSrc(), it.value()));
      syms.push_back(rewriter.getAffineSymbolExpr(it.index()));
      product = product ? product * syms.back() : syms.back();
    }
    rewriter.replaceOpWithNewOp<AffineApplyOp>(dimOp, product, srcDimSizes);
    return success();
  }
};
} // namespace

void ExpandShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                MLIRContext *context) {
  results.add<ComposeReassociativeReshapeOps<ExpandShapeOp>,
              ComposeExpandOfCollapseOp<ExpandShapeOp, CollapseShapeOp>,
              FoldReshapeWithConstant<ExpandShapeOp>,
              FoldReshapeWithFromElements<ExpandShapeOp>, FoldDimOfExpandShape,
              FoldDimOfCollapseShape>(context);
}

void CollapseShapeOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                  MLIRContext *context) {
  results
      .add<ComposeReassociativeReshapeOps<CollapseShapeOp>,
           ComposeCollapseOfExpandOp<CollapseShapeOp, ExpandShapeOp, CastOp>,
           FoldReshapeWithConstant<CollapseShapeOp>,
           FoldReshapeWithFromElements<CollapseShapeOp>, FoldCollapseOfCastOp>(
          context);
}

OpFoldResult ExpandShapeOp::fold(ArrayRef<Attribute> operands) {
  return foldReshapeOp<ExpandShapeOp, CollapseShapeOp>(*this, operands);
}
OpFoldResult CollapseShapeOp::fold(ArrayRef<Attribute> operands) {
  return foldReshapeOp<CollapseShapeOp, ExpandShapeOp>(*this, operands);
}

//===----------------------------------------------------------------------===//
// ExtractSliceOp
//===----------------------------------------------------------------------===//

void ExtractSliceOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "extracted_slice");
}

/// An extract_slice result type can be inferred, when it is not
/// rank-reduced, from the source type and the static representation of
/// offsets, sizes and strides. Special sentinels encode the dynamic case.
RankedTensorType ExtractSliceOp::inferResultType(
    ShapedType sourceShapedTensorType, ArrayRef<int64_t> staticOffsets,
    ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides) {
  // An extract_slice op may specify only a leading subset of offset/sizes/
  // strides in which case we complete with offset=0, sizes from memref type
  // and strides=1.
  assert(static_cast<int64_t>(staticSizes.size()) ==
             sourceShapedTensorType.getRank() &&
         "unexpected staticSizes not equal to rank of source");
  return RankedTensorType::get(staticSizes,
                               sourceShapedTensorType.getElementType());
}

RankedTensorType ExtractSliceOp::inferResultType(
    ShapedType sourceShapedTensorType, ArrayRef<OpFoldResult> offsets,
    ArrayRef<OpFoldResult> sizes, ArrayRef<OpFoldResult> strides) {
  SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
  SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
  dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
                             ShapedType::kDynamic);
  dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
                             ShapedType::kDynamic);
  dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
                             ShapedType::kDynamic);
  return ExtractSliceOp::inferResultType(sourceShapedTensorType, staticOffsets,
                                         staticSizes, staticStrides);
}

/// If the rank is reduced (i.e. the desiredResultRank is smaller than the
/// number of sizes), drop as many size 1 as needed to produce an inferred
/// type with the desired rank.
///
/// Note that there may be multiple ways to compute this rank-reduced type:
///   e.g. 1x6x1 can rank-reduce to either 1x6 or 6x1 2-D tensors.
///
/// To disambiguate, this function always drops the first 1 sizes occurrences.
RankedTensorType ExtractSliceOp::inferCanonicalRankReducedResultType(
    unsigned desiredResultRank, RankedTensorType sourceRankedTensorType,
    ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
    ArrayRef<int64_t> strides) {
  // Type inferred in the absence of rank-reducing behavior.
  auto inferredType =
      inferResultType(sourceRankedTensorType, offsets, sizes, strides)
          .cast<RankedTensorType>();
  int rankDiff = inferredType.getRank() - desiredResultRank;
  if (rankDiff > 0) {
    auto shape = inferredType.getShape();
    llvm::SmallBitVector dimsToProject =
        getPositionsOfShapeOne(rankDiff, shape);
    SmallVector<int64_t> projectedShape;
    // Best effort rank-reducing: drop 1s in order.
    for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
      if (!dimsToProject.test(pos))
        projectedShape.push_back(shape[pos]);
    inferredType =
        RankedTensorType::get(projectedShape, inferredType.getElementType());
  }
  return inferredType;
}

RankedTensorType ExtractSliceOp::inferCanonicalRankReducedResultType(
    unsigned desiredResultRank, RankedTensorType sourceRankedTensorType,
    ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes,
    ArrayRef<OpFoldResult> strides) {
  SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
  SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
  dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
                             ShapedType::kDynamic);
  dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
                             ShapedType::kDynamic);
  dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
                             ShapedType::kDynamic);
  return ExtractSliceOp::inferCanonicalRankReducedResultType(
      desiredResultRank, sourceRankedTensorType, staticOffsets, staticSizes,
      staticStrides);
}

/// Build an ExtractSliceOp with mixed static and dynamic entries and custom
/// result type. If the type passed is nullptr, it is inferred.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
                           RankedTensorType resultType, Value source,
                           ArrayRef<OpFoldResult> offsets,
                           ArrayRef<OpFoldResult> sizes,
                           ArrayRef<OpFoldResult> strides,
                           ArrayRef<NamedAttribute> attrs) {
  SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
  SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
  dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
                             ShapedType::kDynamic);
  dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
                             ShapedType::kDynamic);
  dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
                             ShapedType::kDynamic);
  auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
  // Structuring implementation this way avoids duplication between builders.
  if (!resultType) {
    resultType =
        ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
                                        staticSizes, staticStrides)
            .cast<RankedTensorType>();
  }
  build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
        dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets),
        b.getDenseI64ArrayAttr(staticSizes),
        b.getDenseI64ArrayAttr(staticStrides));
  result.addAttributes(attrs);
}

/// Build an ExtractSliceOp with mixed static and dynamic entries and inferred
/// result type.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
                           ArrayRef<OpFoldResult> offsets,
                           ArrayRef<OpFoldResult> sizes,
                           ArrayRef<OpFoldResult> strides,
                           ArrayRef<NamedAttribute> attrs) {
  build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
}

/// Build an ExtractSliceOp with mixed static and dynamic entries packed into
/// a Range vector.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
                           ArrayRef<Range> ranges,
                           ArrayRef<NamedAttribute> attrs) {
  auto [offsets, sizes, strides] = getOffsetsSizesAndStrides(ranges);
  build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
}

/// Build an ExtractSliceOp with dynamic entries and custom result type. If
/// the type passed is nullptr, it is inferred.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
                           RankedTensorType resultType, Value source,
                           ValueRange offsets, ValueRange sizes,
                           ValueRange strides, ArrayRef<NamedAttribute> attrs) {
  SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
      llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
  SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
      llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
  SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
      llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
  build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
}

/// Build an ExtractSliceOp with dynamic entries and inferred result type.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
                           ValueRange offsets, ValueRange sizes,
                           ValueRange strides, ArrayRef<NamedAttribute> attrs) {
  build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
}

template <typename OpTy>
static LogicalResult produceSliceErrorMsg(SliceVerificationResult result,
                                          OpTy op, Type expectedType) {
  auto memrefType = expectedType.cast<ShapedType>();
  switch (result) {
  case SliceVerificationResult::Success:
    return success();
  case SliceVerificationResult::RankTooLarge:
    return op.emitError("expected rank to be smaller or equal to ")
           << "the other rank. ";
  case SliceVerificationResult::SizeMismatch:
    return op.emitError("expected type to be ")
           << expectedType << " or a rank-reduced version. (size mismatch) ";
  case SliceVerificationResult::ElemTypeMismatch:
    return op.emitError("expected element type to be ")
           << memrefType.getElementType();
  default:
    llvm_unreachable("unexpected extract_slice op verification result");
  }
}

/// Verifier for ExtractSliceOp.
LogicalResult ExtractSliceOp::verify() {
  // Verify result type against inferred type.
  RankedTensorType expectedType = ExtractSliceOp::inferResultType(
      getSourceType(), getMixedOffsets(), getMixedSizes(), getMixedStrides());
  SliceVerificationResult result = isRankReducedType(expectedType, getType());
  return produceSliceErrorMsg(result, *this, expectedType);
}

llvm::SmallBitVector ExtractSliceOp::getDroppedDims() {
  ArrayRef<int64_t> resultShape = getType().getShape();
  SmallVector<OpFoldResult> mixedSizes = getMixedSizes();
  llvm::SmallBitVector droppedDims(mixedSizes.size());
  unsigned shapePos = 0;
  for (const auto &size : enumerate(mixedSizes)) {
    Optional<int64_t> sizeVal = getConstantIntValue(size.value());
    // If the size is not 1, or if the current matched dimension of the result
    // is the same static shape as the size value (which is 1), then the
    // dimension is preserved.
    if (!sizeVal || *sizeVal != 1 ||
        (shapePos < resultShape.size() && resultShape[shapePos] == 1)) {
      shapePos++;
      continue;
    }
    droppedDims.set(size.index());
  }
  return droppedDims;
}

FailureOr<Value>
ExtractSliceOp::rankReduceIfNeeded(OpBuilder &b, Location loc, Value value,
                                   ArrayRef<int64_t> desiredShape) {
  auto sourceTensorType = value.getType().dyn_cast<RankedTensorType>();
  assert(sourceTensorType && "not a ranked tensor type");
  auto sourceShape = sourceTensorType.getShape();
  if (sourceShape.equals(desiredShape))
    return value;
  auto maybeRankReductionMask =
      mlir::computeRankReductionMask(sourceShape, desiredShape);
  if (!maybeRankReductionMask)
    return failure();
  return createCanonicalRankReducingExtractSliceOp(
      b, loc, value,
      RankedTensorType::Builder(sourceTensorType).setShape(desiredShape));
}

LogicalResult ExtractSliceOp::reifyResultShapes(
    OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
  reifiedReturnShapes.resize(1);
  reifiedReturnShapes[0].reserve(getType().getRank());
  SmallVector<OpFoldResult> mixedSizes = getMixedSizes();
  llvm::SmallBitVector droppedDims = getDroppedDims();
  Location loc = getLoc();
  for (const auto &size : enumerate(mixedSizes)) {
    if (droppedDims.test(size.index()))
      continue;
    if (auto attr = size.value().dyn_cast<Attribute>()) {
      reifiedReturnShapes[0].push_back(builder.create<arith::ConstantIndexOp>(
          loc, attr.cast<IntegerAttr>().getInt()));
      continue;
    }
    reifiedReturnShapes[0].push_back(size.value().get<Value>());
  }
  return success();
}

namespace {
/// Pattern to rewrite an extract_slice op with tensor::Cast arguments.
/// This essentially pushes memref_cast past its consuming slice when
/// `canFoldIntoConsumerOp` is true.
///
/// Example:
/// ```
///   %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32>
///   %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to
///   tensor<3x4xf32>
/// ```
/// is rewritten into:
/// ```
///   %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to
///   tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32>
/// ```
class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> {
public:
  using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
                                PatternRewriter &rewriter) const override {
    // Any constant operand, just return to let the constant folder kick in.
    if (llvm::any_of(sliceOp.getOperands(), [](Value operand) {
          return matchPattern(operand, matchConstantIndex());
        }))
      return failure();

    auto castOp = sliceOp.getSource().getDefiningOp<tensor::CastOp>();
    if (!castOp)
      return failure();

    if (!canFoldIntoConsumerOp(castOp))
      return failure();

    /// Deduce the type of the result to use for the canonicalized operation.
    RankedTensorType resultType =
        ExtractSliceOp::inferCanonicalRankReducedResultType(
            sliceOp.getType().getRank(), sliceOp.getSourceType(),
            sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(),
            sliceOp.getMixedStrides());
    Value newSlice = rewriter.create<ExtractSliceOp>(
        sliceOp.getLoc(), resultType, castOp.getSource(), sliceOp.getOffsets(),
        sliceOp.getSizes(), sliceOp.getStrides(), sliceOp.getStaticOffsets(),
        sliceOp.getStaticSizes(), sliceOp.getStaticStrides());
    rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(),
                                                newSlice);
    return success();
  }
};

/// Slice elements from `values` into `outValues`. `counts` represents the
/// numbers of elements to stride in the original values for each dimension.
/// The output values can be used to construct a DenseElementsAttr.
template <typename IterTy, typename ElemTy>
static void sliceElements(IterTy values, ArrayRef<int64_t> counts,
                          ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
                          ArrayRef<int64_t> strides,
                          llvm::SmallVectorImpl<ElemTy> *outValues) {
  assert(offsets.size() == sizes.size());
  assert(offsets.size() == strides.size());
  if (offsets.empty())
    return;

  int64_t offset = offsets.front();
  int64_t size = sizes.front();
  int64_t stride = strides.front();
  if (offsets.size() == 1) {
    for (int64_t i = 0; i < size; ++i, offset += stride)
      outValues->push_back(*(values + offset));

    return;
  }

  for (int64_t i = 0; i < size; ++i, offset += stride) {
    auto begin = values + offset * counts.front();
    sliceElements<IterTy, ElemTy>(begin, counts.drop_front(),
                                  offsets.drop_front(), sizes.drop_front(),
                                  strides.drop_front(), outValues);
  }
}

/// Fold arith.constant and tensor.extract_slice into arith.constant. The
/// folded operation might introduce more constant data; Users can control
/// their heuristics by the control function.
class ConstantOpExtractSliceFolder final
    : public OpRewritePattern<ExtractSliceOp> {
public:
  using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;

  ConstantOpExtractSliceFolder(MLIRContext *context,
                               ControlConstantExtractSliceFusionFn controlFn)
      : OpRewritePattern<ExtractSliceOp>(context),
        controlFn(std::move(controlFn)) {}

  LogicalResult matchAndRewrite(ExtractSliceOp op,
                                PatternRewriter &rewriter) const override {
    DenseElementsAttr attr;
    if (!matchPattern(op.getSource(), m_Constant(&attr)))
      return failure();

    // A constant splat is handled by fold().
    if (attr.isSplat())
      return failure();

    // Dynamic result shape is not supported.
    auto sourceType = op.getSource().getType().cast<ShapedType>();
    auto resultType = op.getResult().getType().cast<ShapedType>();
    if (!sourceType.hasStaticShape() || !resultType.hasStaticShape())
      return failure();

    // Customized control over the folding.
    if (!controlFn(op))
      return failure();

    int64_t count = sourceType.getNumElements();
    if (count == 0)
      return failure();

    // Check if there are any dynamic parts, which are not supported.
    auto offsets = op.getStaticOffsets();
    if (llvm::is_contained(offsets, ShapedType::kDynamic))
      return failure();
    auto sizes = op.getStaticSizes();
    if (llvm::is_contained(sizes, ShapedType::kDynamic))
      return failure();
    auto strides = op.getStaticStrides();
    if (llvm::is_contained(strides, ShapedType::kDynamic))
      return failure();

    // Compute the stride for each dimension.
    SmallVector<int64_t> counts;
    ArrayRef<int64_t> shape = sourceType.getShape();
    counts.reserve(shape.size());
    for (int64_t v : shape) {
      count = count / v;
      counts.push_back(count);
    }

    // New attribute constructed by the sliced values.
    DenseElementsAttr newAttr;

    if (auto elems = attr.dyn_cast<DenseIntElementsAttr>()) {
      SmallVector<APInt> outValues;
      outValues.reserve(sourceType.getNumElements());
      sliceElements<DenseElementsAttr::IntElementIterator, APInt>(
          elems.begin(), counts, offsets, sizes, strides, &outValues);
      newAttr = DenseElementsAttr::get(resultType, outValues);
    } else if (auto elems = attr.dyn_cast<DenseFPElementsAttr>()) {
      SmallVector<APFloat> outValues;
      outValues.reserve(sourceType.getNumElements());
      sliceElements<DenseElementsAttr::FloatElementIterator, APFloat>(
          elems.begin(), counts, offsets, sizes, strides, &outValues);
      newAttr = DenseElementsAttr::get(resultType, outValues);
    }

    if (newAttr) {
      rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, resultType, newAttr);
      return success();
    }

    return failure();
  }

private:
  /// This additionally controls whether the fold happens or not. Users can
  /// impose their heuristics in the function.
  ControlConstantExtractSliceFusionFn controlFn;
};

} // namespace

void mlir::tensor::populateFoldConstantExtractSlicePatterns(
    RewritePatternSet &patterns,
    const ControlConstantExtractSliceFusionFn &controlFn) {
  patterns.add<ConstantOpExtractSliceFolder>(patterns.getContext(), controlFn);
}

/// Return the canonical type of the result of an extract_slice op.
struct SliceReturnTypeCanonicalizer {
  RankedTensorType operator()(ExtractSliceOp op,
                              ArrayRef<OpFoldResult> mixedOffsets,
                              ArrayRef<OpFoldResult> mixedSizes,
                              ArrayRef<OpFoldResult> mixedStrides) {
    return ExtractSliceOp::inferCanonicalRankReducedResultType(
        op.getType().getRank(), op.getSourceType(), mixedOffsets, mixedSizes,
        mixedStrides);
  }
};

/// A canonicalizer wrapper to replace ExtractSliceOps.
struct SliceCanonicalizer {
  void operator()(PatternRewriter &rewriter, ExtractSliceOp op,
                  ExtractSliceOp newOp) {
    Value replacement = newOp.getResult();
    if (replacement.getType() != op.getType())
      replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(),
                                                    replacement);
    rewriter.replaceOp(op, replacement);
  }
};

void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                 MLIRContext *context) {
  results.add<
      OpWithOffsetSizesAndStridesConstantArgumentFolder<
          ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>,
      ExtractSliceOpCastFolder>(context);
}

//
static LogicalResult
foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op,
                                           ShapedType shapedType) {
  OpBuilder b(op.getContext());
  for (OpFoldResult ofr : op.getMixedOffsets())
    if (getConstantIntValue(ofr) != static_cast<int64_t>(0))
      return failure();
  // Rank-reducing noops only need to inspect the leading dimensions:
  // llvm::zip is appropriate.
  auto shape = shapedType.getShape();
  for (auto it : llvm::zip(op.getMixedSizes(), shape))
    if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it))
      return failure();
  for (OpFoldResult ofr : op.getMixedStrides())
    if (getConstantIntValue(ofr) != static_cast<int64_t>(1))
      return failure();
  return success();
}

/// If we have an ExtractSliceOp consuming an InsertSliceOp with the same
/// slice, we can return the InsertSliceOp's source directly.
// TODO: This only checks the immediate producer; extend to go up the
// insert/extract chain if the slices are disjoint.
static Value foldExtractAfterInsertSlice(ExtractSliceOp extractOp) {
  auto insertOp = extractOp.getSource().getDefiningOp<InsertSliceOp>();

  auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
  if (insertOp && insertOp.getSource().getType() == extractOp.getType() &&
      insertOp.isSameAs(extractOp, isSame))
    return insertOp.getSource();

  return {};
}

OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute> operands) {
  if (auto splat = operands[0].dyn_cast_or_null<SplatElementsAttr>()) {
    auto resultType = getResult().getType().cast<ShapedType>();
    if (resultType.hasStaticShape())
      return splat.resizeSplat(resultType);
  }
  if (getSourceType() == getType() &&
      succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
    return this->getSource();
  if (Value slice = foldExtractAfterInsertSlice(*this))
    return slice;

  return OpFoldResult();
}

Value mlir::tensor::createCanonicalRankReducingExtractSliceOp(
    OpBuilder &b, Location loc, Value tensor, RankedTensorType targetType) {
  auto rankedTensorType = tensor.getType().cast<RankedTensorType>();
  unsigned rank = rankedTensorType.getRank();
  SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
  SmallVector<OpFoldResult> sizes = getMixedSizes(b, loc, tensor);
  SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
  return b.createOrFold<tensor::ExtractSliceOp>(loc, targetType, tensor,
                                                offsets, sizes, strides);
}

//===----------------------------------------------------------------------===//
// InsertSliceOp
//===----------------------------------------------------------------------===//

void InsertSliceOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "inserted_slice");
}

// Build a InsertSliceOp with mixed static and dynamic entries.
void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
                          Value dest, ArrayRef<OpFoldResult> offsets,
                          ArrayRef<OpFoldResult> sizes,
                          ArrayRef<OpFoldResult> strides,
                          ArrayRef<NamedAttribute> attrs) {
  SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
  SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
  dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
                             ShapedType::kDynamic);
  dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
                             ShapedType::kDynamic);
  dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
                             ShapedType::kDynamic);
  build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes,
        dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets),
        b.getDenseI64ArrayAttr(staticSizes),
        b.getDenseI64ArrayAttr(staticStrides));
  result.addAttributes(attrs);
}

/// Build an InsertSliceOp with mixed static and dynamic entries packed into a
/// Range vector.
void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
                          Value dest, ArrayRef<Range> ranges,
                          ArrayRef<NamedAttribute> attrs) {
  auto [offsets, sizes, strides] = getOffsetsSizesAndStrides(ranges);
  build(b, result, source, dest, offsets, sizes, strides, attrs);
}

// Build a InsertSliceOp with dynamic entries.
void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
                          Value dest, ValueRange offsets, ValueRange sizes,
                          ValueRange strides, ArrayRef<NamedAttribute> attrs) {
  SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
      llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
  SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
      llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
  SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
      llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
  build(b, result, source, dest, offsetValues, sizeValues, strideValues);
}

/// Rank-reducing type verification for both InsertSliceOp and
/// ParallelInsertSliceOp.
static SliceVerificationResult verifyInsertSliceOp(
    ShapedType srcType, ShapedType dstType, ArrayRef<int64_t> staticOffsets,
    ArrayRef<int64_t> staticSizes, ArrayRef<int64_t> staticStrides,
    ShapedType *expectedType = nullptr) {
  // insert_slice is the inverse of extract_slice, use the same type
  // inference.
  RankedTensorType expected = ExtractSliceOp::inferResultType(
      dstType, staticOffsets, staticSizes, staticStrides);
  if (expectedType)
    *expectedType = expected;
  return isRankReducedType(expected, srcType);
}

/// Verifier for InsertSliceOp.
LogicalResult InsertSliceOp::verify() {
  ShapedType expectedType;
  SliceVerificationResult result =
      verifyInsertSliceOp(getSourceType(), getType(), getStaticOffsets(),
                          getStaticSizes(), getStaticStrides(), &expectedType);
  return produceSliceErrorMsg(result, *this, expectedType);
}

/// If we have two consecutive InsertSliceOp writing to the same slice, we
/// can mutate the second InsertSliceOp's destination to the first one's.
///
/// Example:
///
/// ```mlir
///   %0 = tensor.insert_slice %slice0 into %input[0, 0] [64, 64] [1, 1]
///   %1 = tensor.insert_slice %slice1 into %0[0, 0] [64, 64] [1, 1]
/// ```
///
/// folds into:
///
/// ```mlir
///   %1 = tensor.insert_slice %slice1 into %input[0, 0] [64, 64] [1, 1]
/// ```
///
/// This pattern works with both InsertSliceOp and ParallelInsertSliceOp.
static LogicalResult foldInsertAfterInsertSlice(InsertSliceOp insertOp) {
  auto prevInsertOp = insertOp.getDest().getDefiningOp<InsertSliceOp>();

  auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
  if (!prevInsertOp ||
      prevInsertOp.getSource().getType() != insertOp.getSource().getType() ||
      !prevInsertOp.isSameAs(insertOp, isSame))
    return failure();

  insertOp.getDestMutable().assign(prevInsertOp.getDest());
  return success();
}

/// Folds round-trip extract/insert slice op pairs.
/// Example:
/// ```mlir
/// %0 = tensor.extract_slice %val[0, 0, 0, 0] [1, 1, 2, 4] [1, 1, 1, 1]
/// %1 = tensor.insert_slice %0 into %val[0, 0, 0, 0] [1, 1, 2, 4] [1, 1, 1, 1]
/// ```
/// can be folded into %val.
static Value foldInsertAfterExtractSlice(InsertSliceOp insertOp) {
  auto extractOp = insertOp.getSource().getDefiningOp<ExtractSliceOp>();

  auto isSame = [](OpFoldResult a, OpFoldResult b) { return a == b; };
  if (!extractOp || extractOp.getSource() != insertOp.getDest() ||
      !extractOp.isSameAs(insertOp, isSame))
    return nullptr;

  return extractOp.getSource();
}

OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) {
  if (getSourceType().hasStaticShape() && getType().hasStaticShape() &&
      getSourceType() == getType() &&
      succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
    return this->getSource();
  if (succeeded(foldInsertAfterInsertSlice(*this)))
    return getResult();
  if (auto result = foldInsertAfterExtractSlice(*this))
    return result;
  return OpFoldResult();
}

LogicalResult InsertSliceOp::reifyResultShapes(
    OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
  reifiedReturnShapes.resize(1, SmallVector<Value>(getType().getRank()));
  for (auto dim : llvm::seq<int64_t>(0, getType().getRank())) {
    reifiedReturnShapes[0][dim] =
        builder.createOrFold<tensor::DimOp>(getLoc(), getDest(), dim);
  }
  return success();
}

namespace {
/// Pattern to rewrite a insert_slice op with constant arguments.
///
/// This pattern works with both InsertSliceOp and ParallelInsertSliceOp.
template <typename InsertOpTy>
class InsertSliceOpConstantArgumentFolder final
    : public OpRewritePattern<InsertOpTy> {
public:
  using OpRewritePattern<InsertOpTy>::OpRewritePattern;

  LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
                                PatternRewriter &rewriter) const override {
    // No constant operand, just return.
    if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) {
          return matchPattern(operand, matchConstantIndex());
        }))
      return failure();

    // At least one of offsets/sizes/strides is a new constant.
    // Form the new list of operands and constant attributes from the
    // existing.
    SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets());
    SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes());
    SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides());
    canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamic);
    canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic);
    canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamic);

    // Create the new op in canonical form.
    auto sourceType = ExtractSliceOp::inferCanonicalRankReducedResultType(
        insertSliceOp.getSourceType().getRank(), insertSliceOp.getDestType(),
        mixedOffsets, mixedSizes, mixedStrides);
    Value toInsert = insertSliceOp.getSource();
    if (sourceType != insertSliceOp.getSourceType()) {
      OpBuilder::InsertionGuard g(rewriter);
      // The only difference between InsertSliceOp and ParallelInsertSliceOp
      // is the the insertion point is just before the ParallelCombiningOp in
      // the parallel case.
      if (std::is_same<InsertOpTy, ParallelInsertSliceOp>::value)
        rewriter.setInsertionPoint(insertSliceOp->getParentOp());
      toInsert = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(),
                                                 sourceType, toInsert);
    }
    rewriter.replaceOpWithNewOp<InsertOpTy>(
        insertSliceOp, toInsert, insertSliceOp.getDest(), mixedOffsets,
        mixedSizes, mixedStrides);
    return success();
  }
};

/// Fold tensor_casts with insert_slice operations. If the source or
/// destination tensor is a tensor_cast that removes static type information,
/// the cast is folded into the insert_slice operation. E.g.:
///
/// ```mlir
///   %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
///   %2 = tensor.insert_slice %1 into ... : tensor<?x?xf32> into ...
/// ```
///
/// folds into:
///
/// ```mlir
///   %2 = tensor.insert_slice %0 into ... : tensor<8x16xf32> into ...
/// ```
///
/// Note: When folding a cast on the destination tensor, the result of the
/// insert_slice operation is casted to ensure that the type of the result did
/// not change.
///
/// This pattern works with both InsertSliceOp and ParallelInsertSliceOp.
template <typename InsertOpTy>
struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertOpTy> {
  using OpRewritePattern<InsertOpTy>::OpRewritePattern;

  LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
                                PatternRewriter &rewriter) const override {
    if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) {
          return matchPattern(operand, matchConstantIndex());
        }))
      return failure();

    auto getSourceOfCastOp = [](Value v) -> Optional<Value> {
      auto castOp = v.getDefiningOp<tensor::CastOp>();
      if (!castOp || !canFoldIntoConsumerOp(castOp))
        return std::nullopt;
      return castOp.getSource();
    };
    Optional<Value> sourceCastSource =
        getSourceOfCastOp(insertSliceOp.getSource());
    Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.getDest());
    if (!sourceCastSource && !destCastSource)
      return failure();

    auto src =
        (sourceCastSource ? *sourceCastSource : insertSliceOp.getSource());
    auto dst = (destCastSource ? *destCastSource : insertSliceOp.getDest());
    auto srcType = src.getType().template cast<ShapedType>();
    auto dstType = dst.getType().template cast<ShapedType>();
    if (verifyInsertSliceOp(srcType, dstType, insertSliceOp.getStaticOffsets(),
                            insertSliceOp.getStaticSizes(),
                            insertSliceOp.getStaticStrides()) !=
        SliceVerificationResult::Success)
      return failure();

    Operation *replacement = rewriter.create<InsertOpTy>(
        insertSliceOp.getLoc(), src, dst, insertSliceOp.getMixedOffsets(),
        insertSliceOp.getMixedSizes(), insertSliceOp.getMixedStrides());

    // In the parallel case there is no result and so nothing to cast.
    bool isParallelInsert =
        std::is_same<InsertOpTy, ParallelInsertSliceOp>::value;
    if (!isParallelInsert && dst.getType() != insertSliceOp.getDestType()) {
      replacement = rewriter.create<tensor::CastOp>(insertSliceOp.getLoc(),
                                                    insertSliceOp.getDestType(),
                                                    replacement->getResult(0));
    }
    rewriter.replaceOp(insertSliceOp, replacement->getResults());
    return success();
  }
};

/// If additional static type information can be deduced from a insert_slice's
/// size operands, insert an explicit cast of the op's source operand. This
/// enables other canonicalization patterns that are matching for tensor_cast
/// ops such as `ForOpTensorCastFolder` in SCF.
///
/// Example:
///
/// ```mlir
///   %r = tensor.insert_slice %0 into %1[...] [64, 64] [1, 1]
///       : tensor<?x?xf32> into ...
/// ```
///
/// folds into:
///
/// ```mlir
///   %tmp = tensor.cast %0 : tensor<?x?xf32> to tensor<64x64xf32>
///   %r = tensor.insert_slice %tmp into %1[...] [64, 64] [1, 1]
///       : tensor<64x64xf32> into ...
/// ```
///
/// This patterns works with both InsertSliceOp and ParallelInsertSliceOp.
template <typename InsertOpTy>
struct InsertSliceOpSourceCastInserter final
    : public OpRewritePattern<InsertOpTy> {
  using OpRewritePattern<InsertOpTy>::OpRewritePattern;

  LogicalResult matchAndRewrite(InsertOpTy insertSliceOp,
                                PatternRewriter &rewriter) const override {
    RankedTensorType srcType = insertSliceOp.getSourceType();
    if (srcType.getRank() != insertSliceOp.getDestType().getRank())
      return failure();
    SmallVector<int64_t> newSrcShape(srcType.getShape().begin(),
                                     srcType.getShape().end());
    for (int64_t i = 0; i < srcType.getRank(); ++i) {
      if (Optional<int64_t> constInt =
              getConstantIntValue(insertSliceOp.getMixedSizes()[i]))
        newSrcShape[i] = *constInt;
    }

    RankedTensorType newSrcType =
        RankedTensorType::get(newSrcShape, srcType.getElementType());
    if (srcType == newSrcType ||
        !preservesStaticInformation(srcType, newSrcType) ||
        !tensor::CastOp::areCastCompatible(srcType, newSrcType))
      return failure();

    // newSrcType is:
    //   1) Different from srcType.
    //   2) "More static" than srcType.
    //   3) Cast-compatible with srcType.
    // Insert the cast.
    OpBuilder::InsertionGuard g(rewriter);
    // The only difference between InsertSliceOp and ParallelInsertSliceOp is
    // the the insertion point is just before the ParallelCombiningOp in the
    // parallel case.
    if (std::is_same<InsertOpTy, ParallelInsertSliceOp>::value)
      rewriter.setInsertionPoint(insertSliceOp->getParentOp());
    Value cast = rewriter.create<tensor::CastOp>(
        insertSliceOp.getLoc(), newSrcType, insertSliceOp.getSource());
    rewriter.replaceOpWithNewOp<InsertOpTy>(
        insertSliceOp, cast, insertSliceOp.getDest(),
        insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
        insertSliceOp.getMixedStrides());
    return success();
  }
};
} // namespace

void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                                MLIRContext *context) {
  results.add<InsertSliceOpConstantArgumentFolder<InsertSliceOp>,
              InsertSliceOpCastFolder<InsertSliceOp>,
              InsertSliceOpSourceCastInserter<InsertSliceOp>>(context);
}

Value mlir::tensor::createCanonicalRankReducingInsertSliceOp(OpBuilder &b,
                                                             Location loc,
                                                             Value tensor,
                                                             Value dest) {
  auto rankedTensorType = dest.getType().cast<RankedTensorType>();
  unsigned rank = rankedTensorType.getRank();
  SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
  SmallVector<OpFoldResult> sizes = getMixedSizes(b, loc, dest);
  SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
  return b.createOrFold<tensor::InsertSliceOp>(loc, tensor, dest, offsets,
                                               sizes, strides);
}

//===----------------------------------------------------------------------===//
// PadOp
//===----------------------------------------------------------------------===//

void PadOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "padded");
}

// TODO: Replace custom<InferType> directive with AllTypesMatch as soon as it
// supports optional types.
void printInferType(OpAsmPrinter &printer, Operation *op, Value optOperand,
                    Type typeToInfer, Type typeToInferFrom) {}

ParseResult parseInferType(OpAsmParser &parser,
                           Optional<OpAsmParser::UnresolvedOperand> optOperand,
                           Type &typeToInfer, Type typeToInferFrom) {
  if (optOperand)
    typeToInfer = typeToInferFrom;
  return success();
}

LogicalResult PadOp::verify() {
  auto sourceType = getSource().getType().cast<RankedTensorType>();
  auto resultType = getResult().getType().cast<RankedTensorType>();
  auto expectedType =
      PadOp::inferResultType(sourceType, getStaticLow(), getStaticHigh());
  for (int i = 0, e = sourceType.getRank(); i < e; ++i) {
    if (resultType.getDimSize(i) == expectedType.getDimSize(i))
      continue;
    if (expectedType.isDynamicDim(i))
      continue;
    return emitError("specified type ")
           << resultType << " does not match the inferred type "
           << expectedType;
  }

  return success();
}

LogicalResult PadOp::verifyRegions() {
  auto &region = getRegion();
  unsigned rank = getResult().getType().cast<RankedTensorType>().getRank();
  Block &block = region.front();
  if (block.getNumArguments() != rank)
    return emitError("expected the block to have ") << rank << " arguments";

  // Note: the number and type of yield values are checked in the YieldOp.
  for (const auto &en : llvm::enumerate(block.getArgumentTypes())) {
    if (!en.value().isIndex())
      return emitOpError("expected block argument ")
             << (en.index() + 1) << " to be an index";
  }

  // Ensure that the region yields an element of the right type.
  auto yieldOp = llvm::cast<YieldOp>(block.getTerminator());
  if (yieldOp.getValue().getType() !=
      getType().cast<ShapedType>().getElementType())
    return emitOpError("expected yield type to match shape element type");

  return success();
}

RankedTensorType PadOp::inferResultType(RankedTensorType sourceType,
                                        ArrayRef<int64_t> staticLow,
                                        ArrayRef<int64_t> staticHigh,
                                        ArrayRef<int64_t> resultShape) {
  unsigned rank = sourceType.getRank();
  assert(staticLow.size() == rank && "unexpected staticLow size mismatch");
  assert(staticHigh.size() == rank && "unexpected staticHigh size mismatch");
  assert((resultShape.empty() || resultShape.size() == rank) &&
         "unexpected resultShape size mismatch");

  SmallVector<int64_t, 4> inferredShape;
  for (auto i : llvm::seq<unsigned>(0, rank)) {
    if (sourceType.isDynamicDim(i) || staticLow[i] == ShapedType::kDynamic ||
        staticHigh[i] == ShapedType::kDynamic) {
      inferredShape.push_back(resultShape.empty() ? ShapedType::kDynamic
                                                  : resultShape[i]);
    } else {
      int64_t size = sourceType.getDimSize(i) + staticLow[i] + staticHigh[i];
      assert((resultShape.empty() || size == resultShape[i] ||
              resultShape[i] == ShapedType::kDynamic) &&
             "mismatch between inferred shape and result shape");
      inferredShape.push_back(size);
    }
  }

  return RankedTensorType::get(inferredShape, sourceType.getElementType());
}

void PadOp::build(OpBuilder &b, OperationState &result, Value source,
                  ArrayRef<int64_t> staticLow, ArrayRef<int64_t> staticHigh,
                  ValueRange low, ValueRange high, bool nofold,
                  ArrayRef<NamedAttribute> attrs) {
  auto sourceType = source.getType().cast<RankedTensorType>();
  auto resultType = inferResultType(sourceType, staticLow, staticHigh);
  build(b, result, resultType, source, low, high,
        b.getDenseI64ArrayAttr(staticLow), b.getDenseI64ArrayAttr(staticHigh),
        nofold ? b.getUnitAttr() : UnitAttr());
  result.addAttributes(attrs);
}

void PadOp::build(OpBuilder &b, OperationState &result, Value source,
                  ValueRange low, ValueRange high, bool nofold,
                  ArrayRef<NamedAttribute> attrs) {
  auto sourceType = source.getType().cast<RankedTensorType>();
  unsigned rank = sourceType.getRank();
  SmallVector<int64_t, 4> staticVector(rank, ShapedType::kDynamic);
  build(b, result, source, staticVector, staticVector, low, high, nofold,
        attrs);
}

void PadOp::build(OpBuilder &b, OperationState &result, Type resultType,
                  Value source, ArrayRef<OpFoldResult> low,
                  ArrayRef<OpFoldResult> high, bool nofold,
                  ArrayRef<NamedAttribute> attrs) {
  auto sourceType = source.getType().cast<RankedTensorType>();
  SmallVector<Value, 4> dynamicLow, dynamicHigh;
  SmallVector<int64_t, 4> staticLow, staticHigh;
  // staticLow and staticHigh have full information of the padding config.
  // This will grow staticLow and staticHigh with 1 value. If the config is
  // dynamic (ie not a constant), dynamicLow and dynamicHigh will grow with 1
  // value as well.
  dispatchIndexOpFoldResults(low, dynamicLow, staticLow, ShapedType::kDynamic);
  dispatchIndexOpFoldResults(high, dynamicHigh, staticHigh,
                             ShapedType::kDynamic);
  if (!resultType) {
    resultType = PadOp::inferResultType(sourceType, staticLow, staticHigh);
  }
  assert(resultType.isa<RankedTensorType>());
  build(b, result, resultType, source, dynamicLow, dynamicHigh,
        b.getDenseI64ArrayAttr(staticLow), b.getDenseI64ArrayAttr(staticHigh),
        nofold ? b.getUnitAttr() : UnitAttr());
  result.addAttributes(attrs);
}

void PadOp::build(OpBuilder &b, OperationState &result, Type resultType,
                  Value source, ArrayRef<OpFoldResult> low,
                  ArrayRef<OpFoldResult> high, Value constantPadValue,
                  bool nofold, ArrayRef<NamedAttribute> attrs) {
  build(b, result, resultType, source, low, high, nofold, attrs);

  // Add a region and a block to yield the pad value.
  Region *region = result.regions[0].get();
  int sourceRank = source.getType().cast<RankedTensorType>().getRank();
  SmallVector<Type> blockArgTypes(sourceRank, b.getIndexType());
  SmallVector<Location> blockArgLocs(sourceRank, result.location);

  // `builder.createBlock` changes the insertion point within the block. Create
  // a guard to reset the insertion point of the builder after it is destroyed.
  OpBuilder::InsertionGuard guard(b);
  b.createBlock(region, region->end(), blockArgTypes, blockArgLocs);
  b.create<tensor::YieldOp>(result.location, constantPadValue);
}

llvm::SmallBitVector PadOp::getPaddedDims() {
  llvm::SmallBitVector paddedDims(getSourceType().getRank());
  auto extractPaddedDims = [&](ArrayRef<OpFoldResult> paddingWidths) {
    for (const auto &en : enumerate(paddingWidths))
      if (getConstantIntValue(en.value()) != static_cast<int64_t>(0))
        paddedDims.set(en.index());
  };
  extractPaddedDims(getMixedLowPad());
  extractPaddedDims(getMixedHighPad());
  return paddedDims;
}

namespace {
// Folds tensor.pad when padding is static zeros and the attribute
// doesn't request otherwise.
struct FoldStaticZeroPadding : public OpRewritePattern<PadOp> {
  using OpRewritePattern<PadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(PadOp padTensorOp,
                                PatternRewriter &rewriter) const override {
    if (!padTensorOp.hasZeroLowPad() || !padTensorOp.hasZeroHighPad())
      return failure();
    if (padTensorOp.getNofold())
      return failure();
    rewriter.replaceOpWithNewOp<tensor::CastOp>(
        padTensorOp, padTensorOp.getResult().getType(),
        padTensorOp.getSource());
    return success();
  }
};

// Fold CastOp into PadOp when adding static information.
struct FoldSourceTensorCast : public OpRewritePattern<PadOp> {
  using OpRewritePattern<PadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(PadOp padTensorOp,
                                PatternRewriter &rewriter) const override {
    auto castOp = padTensorOp.getSource().getDefiningOp<tensor::CastOp>();
    if (!tensor::canFoldIntoConsumerOp(castOp))
      return failure();

    auto newResultType = PadOp::inferResultType(
        castOp.getSource().getType().cast<RankedTensorType>(),
        padTensorOp.getStaticLow(), padTensorOp.getStaticHigh(),
        padTensorOp.getResultType().getShape());

    if (newResultType == padTensorOp.getResultType()) {
      rewriter.updateRootInPlace(padTensorOp, [&]() {
        padTensorOp.getSourceMutable().assign(castOp.getSource());
      });
    } else {
      auto newOp = rewriter.create<PadOp>(
          padTensorOp->getLoc(), newResultType, padTensorOp.getSource(),
          padTensorOp.getLow(), padTensorOp.getHigh(),
          padTensorOp.getStaticLow(), padTensorOp.getStaticHigh(),
          padTensorOp.getNofold());
      BlockAndValueMapping mapper;
      padTensorOp.getRegion().cloneInto(&newOp.getRegion(), mapper);

      rewriter.replaceOpWithNewOp<tensor::CastOp>(
          padTensorOp, padTensorOp.getResultType(), newOp);
    }
    return success();
  }
};

// Fold CastOp using the result of PadOp back into the latter if it adds
// static information.
struct FoldTargetTensorCast : public OpRewritePattern<PadOp> {
  using OpRewritePattern<PadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(PadOp padTensorOp,
                                PatternRewriter &rewriter) const override {
    if (!padTensorOp.getResult().hasOneUse())
      return failure();
    auto tensorCastOp =
        dyn_cast<tensor::CastOp>(*padTensorOp->getUsers().begin());
    if (!tensorCastOp)
      return failure();
    if (!tensor::preservesStaticInformation(padTensorOp.getResult().getType(),
                                            tensorCastOp.getDest().getType()))
      return failure();

    auto replacementOp = rewriter.create<PadOp>(
        padTensorOp.getLoc(), tensorCastOp.getDest().getType(),
        padTensorOp.getSource(), padTensorOp.getLow(), padTensorOp.getHigh(),
        padTensorOp.getStaticLow(), padTensorOp.getStaticHigh(),
        padTensorOp.getNofold());
    replacementOp.getRegion().takeBody(padTensorOp.getRegion());

    rewriter.replaceOp(padTensorOp, replacementOp.getResult());
    rewriter.replaceOp(tensorCastOp, replacementOp.getResult());
    return success();
  }
};

/// Fold chains of tensor::ExtractSliceOp, tensor::PadOp pairs that pad
/// different dimensions. The pattern applies if the following preconditions
/// hold:
///   1) the tensor::ExtractSliceOps are not rank-reducing,
///   2) the tensor::ExtractSliceOps have only unit-strides,
///   3) the tensor::PadOps perform only high-padding,
///   4) the tensor::PadOps have the same constant padding value,
///   5) the tensor::PadOps do not have common padding dimensions,
///   6) one tensor::ExtractSliceOp, tensor::PadOp pair has zero-padding and
///      zero-offset for every dimension.
///   7) the tensor::ExtractSliceOp sizes match the source tensor sizes for
///   the
///      padded source dimensions.
///
/// Example:
///
/// ```mlir
///   %0 = tensor.extract_slice %input[16, 0] [%sz0, 64] [1, 1]
///       : tensor<64x64xf32> to tensor<?x64xf32>
///   %1 = tensor.pad %0 low[0, 0] high[%pw0, 0] { ...
///     } : tensor<?x64xf32> to tensor<8x64xf32>
///   %2 = tensor.extract_slice %1[0, 4] [8, %sz1] [1, 1]
///        : tensor<8x64xf32> to tensor<8x?xf32>
///   %res = tensor.pad %2 nofold low[0, 0] high[0, %pw1] { ...
///     } : tensor<8x?xf32> to tensor<8x4xf32>
/// ```
///
/// folds into:
///
/// ```mlir
///   %0 = tensor.extract_slice %input[16, 4] [%sz0, %sz1] [1, 1]
///        : tensor<64x64xf32> to tensor<?x?xf32>
///   %res = tensor.pad %0 nofold low[0, 0] high[%pw0, %pw1] { ...
///     } : tensor<?x?xf32> to tensor<8x4xf32>
/// ```
struct FoldOrthogonalPaddings : public OpRewritePattern<PadOp> {
  using OpRewritePattern<PadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(PadOp padOp,
                                PatternRewriter &rewriter) const override {
    auto innerSliceOp = padOp.getSource().getDefiningOp<ExtractSliceOp>();
    if (!innerSliceOp)
      return failure();
    auto outerPadOp = innerSliceOp.getSource().getDefiningOp<PadOp>();
    if (!outerPadOp || outerPadOp.getNofold())
      return failure();
    auto outerSliceOp = outerPadOp.getSource().getDefiningOp<ExtractSliceOp>();
    if (!outerSliceOp)
      return failure();

    // 1) Fail if the chain is rank-reducing.
    int64_t rank = padOp.getSourceType().getRank();
    if (outerSliceOp.getSourceType().getRank() != rank) {
      return rewriter.notifyMatchFailure(padOp,
                                         "cannot fold rank-reducing chain");
    }

    // 2) Fail if the tensor::ExtractSliceOps have non-unit strides.
    if (!innerSliceOp.hasUnitStride() || !outerSliceOp.hasUnitStride()) {
      return rewriter.notifyMatchFailure(
          padOp, "cannot fold non-unit stride ExtractSliceOps");
    }

    // 3) Fail if the tensor::PadOps have non-zero low padding.
    if (!padOp.hasZeroLowPad() || !outerPadOp.hasZeroLowPad()) {
      return rewriter.notifyMatchFailure(padOp,
                                         "cannot fold PadOps with low padding");
    }

    // 4) Fail if the tensor::PadOps padding values do not match.
    Attribute innerAttr, outerAttr;
    Value innerValue = padOp.getConstantPaddingValue();
    Value outerValue = outerPadOp.getConstantPaddingValue();
    if (!innerValue || !outerValue ||
        !matchPattern(innerValue, m_Constant(&innerAttr)) ||
        !matchPattern(outerValue, m_Constant(&outerAttr)) ||
        innerAttr != outerAttr) {
      return rewriter.notifyMatchFailure(
          padOp, "cannot fold PadOps with different padding values");
    }

    // 5) Fail if a dimension is padded by both tensor::PadOps.
    llvm::SmallBitVector innerDims = padOp.getPaddedDims();
    llvm::SmallBitVector outerDims = outerPadOp.getPaddedDims();
    if (innerDims.anyCommon(outerDims)) {
      return rewriter.notifyMatchFailure(
          padOp, "cannot fold PadOps with common padding dimensions");
    }

    // 6) Combine the offsets of the two tensor::ExtractSliceOps. Find the
    // zero-offset and zero-padding tensor::ExtractSliceOp, tensor::PadOp pair
    // for every dimension, and use the offset the other pair. Fail if no
    // zero-offset and zero-padding tensor::ExtractSliceOp, tensor::PadOp pair
    // exists.
    SmallVector<OpFoldResult> newOffsets(rank, rewriter.getIndexAttr(0));
    for (auto &en : enumerate(newOffsets)) {
      OpFoldResult innerOffset = innerSliceOp.getMixedOffsets()[en.index()];
      OpFoldResult outerOffset = outerSliceOp.getMixedOffsets()[en.index()];
      if (!innerDims.test(en.index()) &&
          (getConstantIntValue(innerOffset) == static_cast<int64_t>(0))) {
        en.value() = outerOffset;
        continue;
      }
      if (!outerDims.test(en.index()) &&
          (getConstantIntValue(outerOffset) == static_cast<int64_t>(0))) {
        en.value() = innerOffset;
        continue;
      }
      return rewriter.notifyMatchFailure(
          padOp, "cannot find zero-offset and zero-padding pair");
    }

    // 7) Combine the sizes of the two tensor::ExtractSliceOps. Take the size
    // of the outer tensor::ExtractSliceOp for the dimensions padded by the
    // outer tensor::PadOp and fail if the size of the inner
    // tensor::ExtractSliceOp does not match the size of the padded dimension.
    // Otherwise, take the size of the inner tensor::ExtractSliceOp.
    SmallVector<OpFoldResult> newSizes = innerSliceOp.getMixedSizes();
    for (auto &en : enumerate(newSizes)) {
      if (!outerDims.test(en.index()))
        continue;
      OpFoldResult sliceSize = innerSliceOp.getMixedSizes()[en.index()];
      int64_t sourceSize = innerSliceOp.getSourceType().getShape()[en.index()];
      assert(!ShapedType::isDynamic(sourceSize) &&
             "expected padded dimension to have a static size");
      if (getConstantIntValue(sliceSize) != sourceSize) {
        return rewriter.notifyMatchFailure(
            padOp, "cannot fold since the inner ExtractSliceOp size does not "
                   "match the size of the outer padding");
      }
      en.value() = outerSliceOp.getMixedSizes()[en.index()];
    }

    // Combine the high paddings of the two tensor::PadOps.
    SmallVector<OpFoldResult> newHighPad(rank, rewriter.getIndexAttr(0));
    for (auto &en : enumerate(newHighPad)) {
      if (innerDims.test(en.index()))
        newHighPad[en.index()] = padOp.getMixedHighPad()[en.index()];
      if (outerDims.test(en.index()))
        newHighPad[en.index()] = outerPadOp.getMixedHighPad()[en.index()];
    }

    // Create a new tensor::ExtractSliceOp, tensor::PadOp pair that performs
    // the two paddings in one step.
    auto newSliceOp = rewriter.create<ExtractSliceOp>(
        padOp.getLoc(), outerSliceOp.getSource(), newOffsets, newSizes,
        innerSliceOp.getMixedStrides());
    auto newPadOp = rewriter.create<PadOp>(
        padOp.getLoc(), padOp.getResultType(), newSliceOp.getResult(),
        padOp.getMixedLowPad(), newHighPad, padOp.getNofold());
    rewriter.inlineRegionBefore(padOp.getRegion(), newPadOp.getRegion(),
                                newPadOp.getRegion().begin());
    rewriter.replaceOp(padOp, newPadOp.getResult());
    return success();
  }
};

} // namespace

void PadOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                        MLIRContext *context) {
  results.add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast,
              FoldOrthogonalPaddings>(context);
}

/// Return the padding value of the PadOp if it constant. In this context,
/// "constant" means an actual constant or "defined outside of the block".
///
/// Values are considered constant in three cases:
///  - A ConstantLike value.
///  - A basic block argument from a different block.
///  - A value defined outside of the block.
///
/// If the padding value is not constant, an empty Value is returned.
Value PadOp::getConstantPaddingValue() {
  auto yieldOp = dyn_cast<YieldOp>(getRegion().front().getTerminator());
  if (!yieldOp)
    return {};
  Value padValue = yieldOp.getValue();
  // Check if yield value is a constant.
  if (matchPattern(padValue, m_Constant()))
    return padValue;
  // Check if yield value is defined inside the PadOp block.
  if (padValue.getParentBlock() == &getRegion().front())
    return {};
  // Else: Yield value defined outside of the PadOp block.
  return padValue;
}

OpFoldResult PadOp::fold(ArrayRef<Attribute>) {
  if (getResultType().hasStaticShape() && getResultType() == getSourceType() &&
      !getNofold())
    return getSource();
  return {};
}

//===----------------------------------------------------------------------===//
// ParallelInsertSliceOp
//===----------------------------------------------------------------------===//

OpResult ParallelInsertSliceOp::getTiedOpResult() {
  ParallelCombiningOpInterface parallelCombiningParent =
      getParallelCombiningParent();
  for (const auto &it :
       llvm::enumerate(parallelCombiningParent.getYieldingOps())) {
    Operation &nextOp = it.value();
    if (&nextOp == getOperation())
      return parallelCombiningParent.getParentResult(it.index());
  }
  llvm_unreachable("ParallelInsertSliceOp no tied OpResult found");
}

// Build a ParallelInsertSliceOp with mixed static and dynamic entries.
void ParallelInsertSliceOp::build(OpBuilder &b, OperationState &result,
                                  Value source, Value dest,
                                  ArrayRef<OpFoldResult> offsets,
                                  ArrayRef<OpFoldResult> sizes,
                                  ArrayRef<OpFoldResult> strides,
                                  ArrayRef<NamedAttribute> attrs) {
  SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
  SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
  dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
                             ShapedType::kDynamic);
  dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
                             ShapedType::kDynamic);
  dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
                             ShapedType::kDynamic);
  build(b, result, {}, source, dest, dynamicOffsets, dynamicSizes,
        dynamicStrides, b.getDenseI64ArrayAttr(staticOffsets),
        b.getDenseI64ArrayAttr(staticSizes),
        b.getDenseI64ArrayAttr(staticStrides));
  result.addAttributes(attrs);
}

/// Build an ParallelInsertSliceOp with mixed static and dynamic entries
/// packed into a Range vector.
void ParallelInsertSliceOp::build(OpBuilder &b, OperationState &result,
                                  Value source, Value dest,
                                  ArrayRef<Range> ranges,
                                  ArrayRef<NamedAttribute> attrs) {
  auto [offsets, sizes, strides] = getOffsetsSizesAndStrides(ranges);
  build(b, result, source, dest, offsets, sizes, strides, attrs);
}

// Build a ParallelInsertSliceOp with dynamic entries.
void ParallelInsertSliceOp::build(OpBuilder &b, OperationState &result,
                                  Value source, Value dest, ValueRange offsets,
                                  ValueRange sizes, ValueRange strides,
                                  ArrayRef<NamedAttribute> attrs) {
  SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
      llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
  SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
      llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
  SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
      llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
  build(b, result, source, dest, offsetValues, sizeValues, strideValues);
}

LogicalResult ParallelInsertSliceOp::verify() {
  if (!isa<ParallelCombiningOpInterface>(getOperation()->getParentOp()))
    return this->emitError("expected ParallelCombiningOpInterface parent, got:")
           << *(getOperation()->getParentOp());

  ShapedType expectedType;
  SliceVerificationResult result =
      verifyInsertSliceOp(getSourceType(), getDestType(), getStaticOffsets(),
                          getStaticSizes(), getStaticStrides(), &expectedType);
  return produceSliceErrorMsg(result, *this, expectedType);
}

void ParallelInsertSliceOp::getCanonicalizationPatterns(
    RewritePatternSet &results, MLIRContext *context) {
  results.add<InsertSliceOpConstantArgumentFolder<ParallelInsertSliceOp>,
              InsertSliceOpCastFolder<ParallelInsertSliceOp>,
              InsertSliceOpSourceCastInserter<ParallelInsertSliceOp>>(context);
}

//===----------------------------------------------------------------------===//
// ScatterOp
//===----------------------------------------------------------------------===//

void ScatterOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "scatter");
}

LogicalResult ScatterOp::verify() {
  int64_t destRank = getDestType().getRank();
  ArrayRef<int64_t> scatterDims = getScatterDims();
  if (failed(verifyGatherOrScatterDims(getOperation(), scatterDims, destRank,
                                       "scatter", "dest")))
    return failure();

  if (!getUnique())
    return emitOpError("requires 'unique' attribute to be set");
  // TODO: we could also check statically that there are fewer leading index
  // tensor dims than the dest dims. If this is not the case, the unique
  // attribute cannot be true.

  // Use the GatherOp::inferResultType on the `dest` type and verify the
  // expected type matches the source type.
  RankedTensorType expectedSourceType = GatherOp::inferResultType(
      getDestType(), getIndicesType(), scatterDims, /*rankReduced=*/false);
  RankedTensorType expectedRankReducedSourceType = GatherOp::inferResultType(
      getDestType(), getIndicesType(), scatterDims, /*rankReduced=*/true);
  if (getSourceType() != expectedSourceType &&
      getSourceType() != expectedRankReducedSourceType) {
    return emitOpError("source type "
                       "mismatch: "
                       "expected ")
           << expectedSourceType << " or its rank-reduced variant "
           << expectedRankReducedSourceType << " (got: " << getSourceType()
           << ")";
  }

  return success();
}

//===----------------------------------------------------------------------===//
// SplatOp
//===----------------------------------------------------------------------===//

void SplatOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "splat");
}

OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
  auto constOperand = operands.front();
  if (!constOperand.isa_and_nonnull<IntegerAttr, FloatAttr>())
    return {};

  // SplatElementsAttr::get treats single value for second arg as being a
  // splat.
  return SplatElementsAttr::get(getType(), {constOperand});
}

//===----------------------------------------------------------------------===//
// PackOp/UnPackOp Common
//===----------------------------------------------------------------------===//

template <typename OpTy>
static LogicalResult
reifyResultShapesImpl(OpTy op, OpBuilder &builder,
                      ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
  static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value,
                "applies to only pack or unpack operations");
  int64_t destRank = op.getDestRank();
  reifiedReturnShapes.resize(1, SmallVector<Value>(destRank));
  for (auto dim : llvm::seq<int64_t>(0, destRank)) {
    reifiedReturnShapes[0][dim] =
        builder.createOrFold<tensor::DimOp>(op.getLoc(), op.getDest(), dim);
  }
  return success();
}

template <typename OpTy>
static DenseMap<int64_t, OpFoldResult> getDimAndTileMappingImpl(OpTy op) {
  static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value,
                "applies to only pack or unpack operations");
  DenseMap<int64_t, OpFoldResult> dimAndTileMapping;
  ArrayRef<int64_t> dimsToTile = op.getInnerDimsPos();
  SmallVector<OpFoldResult> tiles = op.getMixedTiles();
  assert(tiles.size() == dimsToTile.size() &&
         "tiles must match indices of dimension to block");
  // bind the dimension `i` with the tile factor.
  for (auto i : llvm::seq<int64_t>(0, dimsToTile.size()))
    dimAndTileMapping[dimsToTile[i]] = tiles[i];
  return dimAndTileMapping;
}

template <typename OpTy>
static SmallVector<OpFoldResult> getMixedTilesImpl(OpTy op) {
  static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value,
                "applies to only pack or unpack operations");
  Builder builder(op);
  SmallVector<OpFoldResult> mixedInnerTiles;
  unsigned dynamicValIndex = 0;
  for (int64_t staticTile : op.getStaticInnerTiles()) {
    if (!ShapedType::isDynamic(staticTile))
      mixedInnerTiles.push_back(builder.getI64IntegerAttr(staticTile));
    else
      mixedInnerTiles.push_back(op.getInnerTiles()[dynamicValIndex++]);
  }
  return mixedInnerTiles;
}

template <typename OpTy>
static SmallVector<int64_t> getStaticTilesImpl(OpTy op) {
  static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value,
                "applies to only pack or unpack operations");
  SmallVector<Value> dynamicTiles;
  SmallVector<int64_t> staticTiles;
  dispatchIndexOpFoldResults(op.getMixedTiles(), dynamicTiles, staticTiles,
                             ShapedType::kDynamic);
  return staticTiles;
}

/// Returns true if `dimsPos` is invalid. It is invalid when:
/// a) It contains duplicate.
/// b) At least one dimension is out of bound (`dimPos` is >= 0 and < rank).
/// c) The number of elements in `dimsPos` is > than `rank`.
static bool isInvalidPackingPosSpecification(ArrayRef<int64_t> dimsPos,
                                             size_t rank) {
  size_t dimsPosSize = dimsPos.size();
  if (dimsPosSize > rank)
    return true;
  DenseSet<int64_t> uniqued;
  for (int64_t dim : dimsPos)
    uniqued.insert(dim);
  if (dimsPosSize != uniqued.size())
    return true;
  return llvm::any_of(dimsPos, [rank](int64_t dimPos) {
    return dimPos < 0 || dimPos >= static_cast<int64_t>(rank);
  });
}

/// Returns true if the dimension of `sourceShape` is smaller than the dimension
/// of the `limitShape`.
static bool areAllInBound(ArrayRef<int64_t> sourceShape,
                          ArrayRef<int64_t> limitShape) {
  assert(
      sourceShape.size() == limitShape.size() &&
      "expected source shape rank, and limit of the shape to have same rank");
  return llvm::all_of(
      llvm::zip(sourceShape, limitShape), [](std::tuple<int64_t, int64_t> it) {
        int64_t sourceExtent = std::get<0>(it);
        int64_t limit = std::get<1>(it);
        return ShapedType::isDynamic(sourceExtent) ||
               ShapedType::isDynamic(limit) || sourceExtent <= limit;
      });
}

template <typename OpTy>
static LogicalResult commonVerifierPackAndUnPackOp(OpTy packOrUnPack) {
  static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value,
                "applies to only pack or unpack operations");
  Operation *op = packOrUnPack.getOperation();

  // Return true if we have a zero-value tile.
  auto hasZeros = [&](ArrayRef<OpFoldResult> tiles) {
    return llvm::any_of(
        tiles, [](OpFoldResult tile) { return isConstantIntValue(tile, 0); });
  };

  // Verify tiles. Do not allow zero tiles.
  SmallVector<OpFoldResult> mixedTiles = packOrUnPack.getMixedTiles();
  if (hasZeros(mixedTiles))
    return op->emitError("invalid zero tile factor");

  // Verify inner_dims_pos and outer_dims_perm.
  ShapedType unpackedType = (std::is_same<OpTy, PackOp>::value)
                                ? packOrUnPack.getSourceType()
                                : packOrUnPack.getDestType();
  size_t unpackedRank = unpackedType.getRank();
  ArrayRef<int64_t> innerDimsPos = packOrUnPack.getInnerDimsPos();
  ArrayRef<int64_t> outerDimPerm = packOrUnPack.getOuterDimsPerm();
  if (isInvalidPackingPosSpecification(innerDimsPos, unpackedRank))
    return op->emitError("invalid inner_dims_pos vector");
  if (isInvalidPackingPosSpecification(outerDimPerm, unpackedRank))
    return op->emitError("invalid outer_dims_perm vector");
  if (!outerDimPerm.empty() && outerDimPerm.size() != unpackedRank)
    return op->emitError("outer_dims_perm must be a permutation or empty");

  // Tiling factors must be less than or equal to the input rank for pack (or
  // output rank for unpack), and must match the number of `inner_dims_pos`.
  if (mixedTiles.size() > unpackedRank) {
    return op->emitError("tiling factors must be less than or equal to the "
                         "input rank for pack or output rank for unpack");
  }
  if (mixedTiles.size() != innerDimsPos.size()) {
    return op->emitError(
        "tiling factors must equal the number of dimensions to tile");
  }

  ShapedType packedType = (std::is_same<OpTy, PackOp>::value)
                              ? packOrUnPack.getDestType()
                              : packOrUnPack.getSourceType();
  size_t packedRank = packedType.getRank();
  // Require output rank to match input rank + number of blocking factors.
  if (unpackedRank + mixedTiles.size() != packedRank) {
    return op->emitError(
        "packed rank must equal unpacked rank + tiling factors");
  }

  // Verify result shape is greater than the minimum expected
  // by the pack operation, and that the output shape
  // represents full tiles.
  ShapedType expectedPackedType = PackOp::inferPackedType(
      unpackedType, packOrUnPack.getStaticTiles(), innerDimsPos, outerDimPerm);
  if (!areAllInBound(expectedPackedType.getShape(), packedType.getShape())) {
    return op->emitError("the shape of output is not large enough to hold the "
                         "packed data. Expected at least ")
           << expectedPackedType << ", got " << packedType;
  }
  if (!llvm::all_of(
          llvm::zip(packedType.getShape().take_back(mixedTiles.size()),
                    mixedTiles),
          [](std::tuple<int64_t, OpFoldResult> it) {
            Optional<int64_t> constTileSize =
                getConstantIntValue(std::get<1>(it));
            int64_t shape = std::get<0>(it);
            if (!constTileSize) {
              // If specified tile size is dynamic, output shape should
              // be dynamic too.
              return ShapedType::isDynamic(shape);
            } else {
              if (ShapedType::isDynamic(shape)) {
                // For the shape being dynamic when tile size is
                // specified, return true. In canonical form a constant
                // tile size should lead to constant shape of the tiled
                // dimension, but not needed for verification.
                return true;
              }
              return shape == constTileSize.value();
            }
          })) {
    return op->emitError("mismatch in inner tile sizes specified and shaped of "
                         "tiled dimension in the packed type");
  }
  return success();
}

//===----------------------------------------------------------------------===//
// PackOp
//===----------------------------------------------------------------------===//

void PackOp::getAsmResultNames(function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "pack");
}

void PackOp::build(OpBuilder &builder, OperationState &state, Value source,
                   Value dest, ArrayRef<int64_t> innerDimsPos,
                   ArrayRef<OpFoldResult> innerTiles,
                   Optional<Value> paddingValue,
                   ArrayRef<int64_t> outerDimsPerm) {
  assert(innerDimsPos.size() == innerTiles.size() &&
         "number of tile sizes specified must match the specified number of "
         "original dimensions to be tiled");
  SmallVector<int64_t> staticTileSizes;
  SmallVector<Value> dynamicTileSizes;
  dispatchIndexOpFoldResults(innerTiles, dynamicTileSizes, staticTileSizes,
                             ShapedType::kDynamic);
  build(builder, state, dest.getType(), source, dest,
        paddingValue ? paddingValue.value() : nullptr,
        outerDimsPerm.empty() ? nullptr
                              : builder.getDenseI64ArrayAttr(outerDimsPerm),
        builder.getDenseI64ArrayAttr(innerDimsPos), dynamicTileSizes,
        builder.getDenseI64ArrayAttr(staticTileSizes));
}

LogicalResult
PackOp::reifyResultShapes(OpBuilder &builder,
                          ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
  return reifyResultShapesImpl(*this, builder, reifiedReturnShapes);
}

DenseMap<int64_t, OpFoldResult> PackOp::getDimAndTileMapping() {
  return getDimAndTileMappingImpl(*this);
}

SmallVector<OpFoldResult> PackOp::getMixedTiles() {
  return getMixedTilesImpl(*this);
}

SmallVector<int64_t> PackOp::getStaticTiles() {
  return getStaticTilesImpl(*this);
}

/// Check if we have enough static information to catch undefined behavior when
/// the tile size does not divide perfectly the dimension of the input tensor.
static bool
areNotFullTiles(ArrayRef<int64_t> inputShape,
                DenseMap<int64_t, OpFoldResult> const &dimAndTileMapping) {
  int64_t rank = inputShape.size();
  for (int64_t dim = 0; dim < rank; dim++) {
    if (ShapedType::isDynamic(inputShape[dim]))
      continue;
    auto it = dimAndTileMapping.find(dim);
    if (it == dimAndTileMapping.end())
      continue;
    Optional<int64_t> constantTile = getConstantIntValue(it->second);
    if (!constantTile)
      continue;
    if (inputShape[dim] % (*constantTile) != 0)
      return true;
  }
  return false;
}

LogicalResult PackOp::verify() {
  if (failed(commonVerifierPackAndUnPackOp(*this)))
    return failure();

  // Verify padding value, and bail out if the tile does not divide the
  // dimension fully. In the case of dynamic tile factors or dimensions, having
  // a partial tile is undefined behavior.
  auto paddingValue = getPaddingValue();
  if (paddingValue &&
      paddingValue.getType() != getSourceType().getElementType()) {
    return emitOpError("expected padding_value has ")
           << getSourceType().getElementType()
           << " but got: " << paddingValue.getType();
  }

  auto dimAndTileMapping = getDimAndTileMapping();
  if (!paddingValue &&
      areNotFullTiles(getSourceType().getShape(), dimAndTileMapping)) {
    return emitOpError("invalid tile factor provided. Only full tiles are "
                       "supported when padding_value is not set");
  }
  return success();
}

/// Get the expected packed type based on source type, tile factors, position of
/// the inner tiles and permutation of the outer tiled loop.
ShapedType PackOp::inferPackedType(ShapedType sourceType,
                                   ArrayRef<int64_t> innerTileSizes,
                                   ArrayRef<int64_t> innerDimsPos,
                                   ArrayRef<int64_t> outerDimsPerm) {
  SmallVector<int64_t> resultShape = llvm::to_vector(sourceType.getShape());
  for (const auto &tiledDim : llvm::enumerate(innerDimsPos)) {
    if (ShapedType::isDynamic(resultShape[tiledDim.value()]))
      continue;
    if (ShapedType::isDynamic(innerTileSizes[tiledDim.index()])) {
      resultShape[tiledDim.value()] = ShapedType::kDynamic;
      continue;
    }
    resultShape[tiledDim.value()] = ceilDiv(resultShape[tiledDim.value()],
                                            innerTileSizes[tiledDim.index()]);
  }

  if (!outerDimsPerm.empty())
    applyPermutationToVector(resultShape, outerDimsPerm);

  // Append the inner tile dimensions.
  resultShape.append(innerTileSizes.begin(), innerTileSizes.end());
  return RankedTensorType::get(resultShape, sourceType.getElementType());
}

Value PackOp::createDestinationTensor(OpBuilder &b, Location loc, Value source,
                                      ArrayRef<OpFoldResult> innerTileSizes,
                                      ArrayRef<int64_t> innerDimsPos,
                                      ArrayRef<int64_t> outerDimsPerm) {
  AffineExpr dim0, dim1;
  bindDims(b.getContext(), dim0, dim1);
  auto ceilDiv = [&](OpFoldResult v1, OpFoldResult v2) -> OpFoldResult {
    return makeComposedFoldedAffineApply(b, loc, dim0.ceilDiv(dim1), {v1, v2});
  };

  SmallVector<OpFoldResult> mixedSizes;
  for (auto [index, value] :
       llvm::enumerate(source.getType().cast<RankedTensorType>().getShape())) {
    if (ShapedType::isDynamic(value))
      mixedSizes.push_back(b.create<DimOp>(loc, source, index).getResult());
    else
      mixedSizes.push_back(b.getIndexAttr(value));
  }
  for (auto it : llvm::zip(innerDimsPos, innerTileSizes)) {
    int64_t dimPos = std::get<0>(it);
    OpFoldResult tileSize = std::get<1>(it);
    mixedSizes[dimPos] = ceilDiv(mixedSizes[dimPos], tileSize);
  }
  if (!outerDimsPerm.empty())
    applyPermutationToVector<OpFoldResult>(mixedSizes, outerDimsPerm);

  mixedSizes.append(innerTileSizes.begin(), innerTileSizes.end());
  auto elemType = source.getType().cast<ShapedType>().getElementType();
  return b.create<tensor::EmptyOp>(loc, mixedSizes, elemType);
}

/// Returns true if the tiles and the tiled dims are constant.
template <typename OpTy>
bool areTilesAndTiledDimsAllConstant(OpTy op) {
  static_assert(llvm::is_one_of<OpTy, PackOp, UnPackOp>::value,
                "applies to only pack or unpack operations");
  ShapedType packedType = (std::is_same<OpTy, PackOp>::value)
                              ? op.getDestType()
                              : op.getSourceType();
  SmallVector<OpFoldResult> mixedTiles = op.getMixedTiles();
  for (auto [dimDest, tile] : llvm::zip(
           packedType.getShape().take_back(mixedTiles.size()), mixedTiles)) {
    Optional<int64_t> constTileSize = getConstantIntValue(tile);
    if (!constTileSize || ShapedType::isDynamic(dimDest))
      return false;
  }
  return true;
}

Speculation::Speculatability PackOp::getSpeculatability() {
  if (auto paddingValue = getPaddingValue())
    return Speculation::Speculatable;

  // The verifier rejects already operations if we can statically prove that the
  // sizes of the tiles do not divide perfectly the dimension; thus, check only
  // to have constant tiles and tiled inner dimensions.
  if (!areTilesAndTiledDimsAllConstant(*this))
    return Speculation::NotSpeculatable;

  return Speculation::Speculatable;
}

//===----------------------------------------------------------------------===//
// UnPackOp
//===----------------------------------------------------------------------===//

void UnPackOp::getAsmResultNames(
    function_ref<void(Value, StringRef)> setNameFn) {
  setNameFn(getResult(), "unpack");
}

LogicalResult
UnPackOp::reifyResultShapes(OpBuilder &builder,
                            ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
  return reifyResultShapesImpl(*this, builder, reifiedReturnShapes);
}

DenseMap<int64_t, OpFoldResult> UnPackOp::getDimAndTileMapping() {
  return getDimAndTileMappingImpl(*this);
}

SmallVector<OpFoldResult> UnPackOp::getMixedTiles() {
  return getMixedTilesImpl(*this);
}

SmallVector<int64_t> UnPackOp::getStaticTiles() {
  return getStaticTilesImpl(*this);
}

LogicalResult UnPackOp::verify() {
  return commonVerifierPackAndUnPackOp(*this);
}

Speculation::Speculatability UnPackOp::getSpeculatability() {
  // See PackOp::getSpeculatability.
  if (!areTilesAndTiledDimsAllConstant(*this))
    return Speculation::NotSpeculatable;

  return Speculation::Speculatable;
}

void UnPackOp::build(OpBuilder &builder, OperationState &state, Value source,
                     Value dest, ArrayRef<int64_t> innerDimsPos,
                     ArrayRef<OpFoldResult> innerTiles,
                     ArrayRef<int64_t> outerDimsPerm) {
  assert(innerDimsPos.size() == innerTiles.size() &&
         "number of tile sizes specified must match the specified number of "
         "original dimensions to be tiled");
  SmallVector<int64_t> staticTileSizes;
  SmallVector<Value> dynamicTileSizes;
  dispatchIndexOpFoldResults(innerTiles, dynamicTileSizes, staticTileSizes,
                             ShapedType::kDynamic);
  build(builder, state, dest.getType(), source, dest,
        outerDimsPerm.empty() ? nullptr
                              : builder.getDenseI64ArrayAttr(outerDimsPerm),
        builder.getDenseI64ArrayAttr(innerDimsPos), dynamicTileSizes,
        builder.getDenseI64ArrayAttr(staticTileSizes));
}

/// pack(unpack(x)) -> x
LogicalResult UnPackOp::canonicalize(UnPackOp unpackOp,
                                     PatternRewriter &rewriter) {
  PackOp packOp = unpackOp.getSource().getDefiningOp<tensor::PackOp>();
  if (!packOp || packOp.getDestType() != unpackOp.getSourceType())
    return failure();
  if (packOp.getInnerDimsPos() != unpackOp.getInnerDimsPos())
    return failure();
  if (packOp.getOuterDimsPerm() != unpackOp.getOuterDimsPerm())
    return failure();
  rewriter.replaceOp(unpackOp, packOp.getSource());
  return success();
}

//===----------------------------------------------------------------------===//
// Common Canonicalizers and Folders.
//===----------------------------------------------------------------------===//

/// Folds a tensor.cast op into a consuming DestinationStyleOpInterface op if
/// the `tensor.cast` has source that is more static than the consuming op.
///
/// Example:
/// ```mlir
///   %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
///   %2 = consumer %1 ... : tensor<?x?xf32> ...
/// ```
///
/// folds into:
///
/// ```mlir
///   %2 = consumer %0 ... : tensor<8x16xf32> ...
/// ```
/// TODO: Move the pattern to a proper place, so all other DestinationStyleOp
/// can add the pattern to their canonicalizers.
struct FoldTensorCastProducerOp
    : public OpInterfaceRewritePattern<DestinationStyleOpInterface> {
  using OpInterfaceRewritePattern<
      DestinationStyleOpInterface>::OpInterfaceRewritePattern;

  LogicalResult matchAndRewrite(DestinationStyleOpInterface op,
                                PatternRewriter &rewriter) const override {
    // InsertSliceOp has its own logic about folding tensor.cast ops.
    if (isa<InsertSliceOp>(op.getOperation()))
      return failure();

    // If no operand comes from a tensor::CastOp and can be folded then fail.
    bool hasTensorCastOperand =
        llvm::any_of(op->getOpOperands(), [&](OpOperand &opOperand) {
          if (opOperand.get().isa<BlockArgument>())
            return false;
          auto castOp = opOperand.get().getDefiningOp<tensor::CastOp>();
          return castOp && canFoldIntoConsumerOp(castOp);
        });
    if (!hasTensorCastOperand)
      return failure();

    SmallVector<Type, 4> newResultTypes;
    newResultTypes.reserve(op->getNumResults());
    SmallVector<Value, 4> newOperands;
    newOperands.reserve(op->getNumOperands());
    for (OpOperand &opOperand : op->getOpOperands()) {
      auto tensorCastOp = opOperand.get().getDefiningOp<tensor::CastOp>();
      bool fold = canFoldIntoConsumerOp(tensorCastOp);
      newOperands.push_back(fold ? tensorCastOp.getOperand() : opOperand.get());
      if (op.isDpsInit(&opOperand) &&
          !newOperands.back().getType().isa<MemRefType>())
        newResultTypes.push_back(newOperands.back().getType());
    }

    // Clone op.
    Operation *newOp = clone(rewriter, op, newResultTypes, newOperands);
    SmallVector<Value, 4> replacements;
    replacements.reserve(newOp->getNumResults());
    for (auto [oldResult, newResult] :
         llvm::zip(op->getResults(), newOp->getResults())) {
      if (newResult.getType() != oldResult.getType()) {
        replacements.push_back(rewriter.create<tensor::CastOp>(
            op->getLoc(), oldResult.getType(), newResult));
      } else {
        replacements.push_back(newResult);
      }
    }
    rewriter.replaceOp(op, replacements);

    return success();
  }
};

//===----------------------------------------------------------------------===//
// TensorDialect
//===----------------------------------------------------------------------===//

void TensorDialect::getCanonicalizationPatterns(
    RewritePatternSet &results) const {
  results.add<FoldTensorCastProducerOp>(getContext());
}

//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//

#define GET_OP_CLASSES
#include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc"