1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
//===- TosaDecomposeDepthwise.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Decompose TOSA Depthwise operation to a series of TOSA Ops specifically
// (1) Convert a 1x1 Depthwise to Reshape -> Mul -> Reshape -> Add
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
#include "mlir/Pass/Pass.h"
using namespace mlir;
using namespace mlir::tosa;
namespace {
struct DepthwiseConv2DIsMul : public OpRewritePattern<tosa::DepthwiseConv2DOp> {
explicit DepthwiseConv2DIsMul(MLIRContext *context)
: OpRewritePattern(context) {}
LogicalResult matchAndRewrite(tosa::DepthwiseConv2DOp op,
PatternRewriter &rewriter) const override {
Value input = op.getInput();
Value weight = op.getWeight();
ShapedType inputType = cast<ShapedType>(input.getType());
ShapedType weightType = cast<ShapedType>(weight.getType());
ShapedType resultType = cast<ShapedType>(op.getOutput().getType());
if (!(inputType.hasStaticShape() && weightType.hasStaticShape() &&
resultType.hasStaticShape())) {
return failure();
}
if (!llvm::all_of(op.getStride(), [](int64_t v) { return v == 1; }))
return failure();
// Only works for a 1x1 kernel.
ArrayRef<int64_t> weightShape = weightType.getShape();
if (weightShape[0] != 1 || weightShape[1] != 1) {
return failure();
}
// Reshape input to [N, H, W, C] -> [N, H, W, C, 1].
ArrayRef<int64_t> inputShape = inputType.getShape();
llvm::SmallVector<int64_t, 2> revisedInputShape{
inputShape[0], inputShape[1], inputShape[2], inputShape[3], 1};
inputType = RankedTensorType::get(
revisedInputShape,
dyn_cast<RankedTensorType>(input.getType()).getElementType());
input = rewriter
.create<tosa::ReshapeOp>(
op.getLoc(), inputType, input,
rewriter.getDenseI64ArrayAttr(revisedInputShape))
.getResult();
if (inputType.getElementType() != resultType.getElementType()) {
inputType = inputType.clone(resultType.getElementType());
input = rewriter.create<tosa::CastOp>(op.getLoc(), inputType, input);
}
if (weightType.getElementType() != resultType.getElementType()) {
weightType = weightType.clone(resultType.getElementType());
weight = rewriter.create<tosa::CastOp>(op.getLoc(), weightType, weight);
}
if (auto quantizationInfo = op.getQuantizationInfo()) {
auto iZp = quantizationInfo->getInputZp();
auto wZp = quantizationInfo->getWeightZp();
auto applyZp = [&](Value val, int64_t zp) -> Value {
if (zp == 0)
return val;
auto ety = cast<ShapedType>(val.getType()).getElementType();
auto zpTy = RankedTensorType::get({}, ety);
auto zpAttr =
DenseElementsAttr::get(zpTy, rewriter.getIntegerAttr(ety, zp));
auto zpVal = rewriter.create<tosa::ConstOp>(op.getLoc(), zpTy, zpAttr);
return rewriter.create<tosa::SubOp>(op.getLoc(), val.getType(), val,
zpVal);
};
input = applyZp(input, iZp);
weight = applyZp(weight, wZp);
}
ArrayRef<int64_t> padAttr = op.getPad();
llvm::SmallVector<int64_t> pad(10, 0);
for (const auto &it : llvm::enumerate(padAttr))
pad[it.index() + 2] = it.value();
if (llvm::any_of(pad, [](int64_t p) { return p != 0; })) {
Type inputETy = inputType.getElementType();
Attribute zeroAttr = rewriter.getZeroAttr(inputETy);
llvm::SmallVector<int64_t> newShape(inputType.getShape());
for (int i = 0, s = pad.size(); i < s; ++i) {
if (newShape[i / 2] != ShapedType::kDynamic) {
newShape[i / 2] += pad[i];
}
}
auto padSizeTy = RankedTensorType::get({5, 2}, rewriter.getI64Type());
auto padSize =
DenseIntElementsAttr::get(padSizeTy, ArrayRef<int64_t>(pad));
Value padSizeVal =
rewriter.create<tosa::ConstOp>(op->getLoc(), padSizeTy, padSize);
auto padTy = RankedTensorType::get({}, inputETy);
auto padAttr = DenseElementsAttr::get(padTy, zeroAttr);
Value padVal =
rewriter.create<tosa::ConstOp>(op->getLoc(), padTy, padAttr);
inputType = RankedTensorType::get(newShape, inputETy);
input = rewriter.create<tosa::PadOp>(op->getLoc(), inputType, input,
padSizeVal, padVal);
}
// Perform an elementwise mul over the reshaped input and weight.
llvm::SmallVector<int64_t, 2> mulShape{
inputType.getDimSize(0), inputType.getDimSize(1),
inputType.getDimSize(2), inputType.getDimSize(3), weightShape[3]};
auto mulShapeType = RankedTensorType::get(
mulShape,
dyn_cast<RankedTensorType>(weight.getType()).getElementType());
Value mulValue = rewriter
.create<tosa::MulOp>(op.getLoc(), mulShapeType, input,
weight, /*shift=*/0)
.getResult();
// Reshape output to [N, H, W, C * M].
auto outputShape = cast<ShapedType>(op.getOutput().getType()).getShape();
auto outputShapeType = RankedTensorType::get(
outputShape,
dyn_cast<RankedTensorType>(input.getType()).getElementType());
auto outputValue = rewriter.create<tosa::ReshapeOp>(
op.getLoc(), outputShapeType, mulValue,
rewriter.getDenseI64ArrayAttr(outputShape));
// Add in the bias.
rewriter
.replaceOpWithNewOp<tosa::AddOp>(op, outputShapeType, outputValue,
op.getBias())
.getResult();
return success();
}
};
} // namespace
void mlir::tosa::populateTosaDecomposeDepthwise(MLIRContext *ctx,
RewritePatternSet &patterns) {
patterns.add<DepthwiseConv2DIsMul>(ctx);
}
|