summaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Tosa/Transforms/TosaDecomposeTransposeConv.cpp
blob: 50a556dfc6945d7918f8d3ea7387072ac3211191 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
//===- TosaDecomposeTransposeConv.cpp -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Decompose TOSA TransposeConv operation to a series of TOSA Ops specifically
// (1) Convert a Dilated TransposeConv2D to Conv2D including reversing/reshaping
// etc.. of the weights (2) Convert a Strided TransposeConv2D to Conv2D
// including transposing/reversing/reshaping etc..
//     of the weights and input/output tenors and reversing/reshaping etc .. of
//     the weights
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
#include "mlir/Dialect/Tosa/Utils/ShapeUtils.h"
#include "mlir/Pass/Pass.h"

using namespace mlir;
using namespace mlir::tosa;

namespace {

template <typename TosaOp, typename... Args>
TosaOp createOpAndInfer(PatternRewriter &rewriter, Location loc, Type resultTy,
                        Args &&...args) {
  auto op = rewriter.create<TosaOp>(loc, resultTy, args...);

  InferShapedTypeOpInterface shapeInterface =
      dyn_cast<InferShapedTypeOpInterface>(op.getOperation());
  if (!shapeInterface)
    return op;

  SmallVector<ShapedTypeComponents> returnedShapes;
  if (shapeInterface
          .inferReturnTypeComponents(
              op.getContext(), op.getLoc(), op->getOperands(),
              op->getDiscardableAttrDictionary(), op->getPropertiesStorage(),
              op->getRegions(), returnedShapes)
          .failed())
    return op;

  // We need to use the element type of the existing result type to generate
  // the new result shaped type. This is because rescale can include a cast to
  // different bit-width types and does not have a TypeAttr to define the
  // target type.
  auto result = op->getResult(0);
  auto predictedShape = returnedShapes[0];
  auto currentKnowledge =
      mlir::tosa::ValueKnowledge::getKnowledgeFromType(resultTy);

  // Compute the knowledge based on the inferred type.
  auto inferredKnowledge =
      mlir::tosa::ValueKnowledge::getPessimisticValueState();
  inferredKnowledge.dtype = cast<ShapedType>(resultTy).getElementType();
  inferredKnowledge.hasRank = predictedShape.hasRank();
  if (predictedShape.hasRank()) {
    for (auto dim : predictedShape.getDims()) {
      inferredKnowledge.sizes.push_back(dim);
    }
  }

  // Compute the new type based on the joined version.
  auto newKnowledge =
      mlir::tosa::ValueKnowledge::join(currentKnowledge, inferredKnowledge);
  auto newTy = newKnowledge.getType();
  result.setType(newTy);
  return op;
}

class TransposeConvNonStridedConverter
    : public OpRewritePattern<tosa::TransposeConv2DOp> {
public:
  using OpRewritePattern<tosa::TransposeConv2DOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(tosa::TransposeConv2DOp op,
                                PatternRewriter &rewriter) const final {
    Location loc = op->getLoc();
    Value input = op->getOperand(0);
    Value weight = op->getOperand(1);
    Value bias = op->getOperand(2);

    ShapedType inputTy = cast<ShapedType>(input.getType());
    ShapedType weightTy = cast<ShapedType>(weight.getType());
    ShapedType biasTy = cast<ShapedType>(bias.getType());
    ShapedType resultTy = cast<ShapedType>(op->getResult(0).getType());

    llvm::ArrayRef<int64_t> stride = op.getStride();
    llvm::ArrayRef<int64_t> pad = op.getOutPad();

    // If striding is all 1 we can modify padding and reverse the kernel along
    // the x/y direction to make it a regular convolution. This is much simpler
    // then handling striding....
    if (llvm::any_of(stride, [](int64_t v) { return v != 1; }))
      return failure();

    if (!inputTy.hasStaticShape() || !weightTy.hasStaticShape() ||
        !biasTy.hasStaticShape() || !resultTy.hasStaticShape())
      return failure();

    int64_t kernelHeight = weightTy.getDimSize(1);
    int64_t kernelWidth = weightTy.getDimSize(2);

    llvm::SmallVector<int64_t> convPad(4, 0);
    convPad[0] = kernelHeight - 1 + pad[0];
    convPad[1] = kernelHeight - 1 + pad[1];
    convPad[2] = kernelWidth - 1 + pad[2];
    convPad[3] = kernelWidth - 1 + pad[3];

    auto reverse1 = rewriter.create<tosa::ReverseOp>(
        loc, weightTy, weight, rewriter.getI64IntegerAttr(1));
    auto reverse2 = rewriter.create<tosa::ReverseOp>(
        loc, weightTy, reverse1, rewriter.getI64IntegerAttr(2));

    Value conv2d;
    if (op.getQuantizationInfo()) {
      conv2d = rewriter.create<tosa::Conv2DOp>(
          loc, resultTy, input, reverse2, bias,
          rewriter.getDenseI64ArrayAttr(convPad),
          rewriter.getDenseI64ArrayAttr(stride),
          rewriter.getDenseI64ArrayAttr({1, 1}), *op.getQuantizationInfo());
    } else {
      conv2d = rewriter.create<tosa::Conv2DOp>(
          loc, resultTy, input, reverse2, bias,
          rewriter.getDenseI64ArrayAttr(convPad),
          rewriter.getDenseI64ArrayAttr(stride),
          rewriter.getDenseI64ArrayAttr({1, 1}));
    }

    rewriter.replaceOp(op, conv2d);
    return success();
  }
};

class TransposeConvStridedConverter
    : public OpRewritePattern<tosa::TransposeConv2DOp> {
public:
  using OpRewritePattern<tosa::TransposeConv2DOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(tosa::TransposeConv2DOp op,
                                PatternRewriter &rewriter) const final {
    Location loc = op->getLoc();
    Value input = op->getOperand(0);
    Value weight = op->getOperand(1);
    Value bias = op->getOperand(2);

    ShapedType inputTy = cast<ShapedType>(input.getType());
    ShapedType weightTy = cast<ShapedType>(weight.getType());
    ShapedType biasTy = cast<ShapedType>(bias.getType());
    ShapedType resultTy = cast<ShapedType>(op->getResult(0).getType());

    Type inputETy = inputTy.getElementType();
    Type weightETy = weightTy.getElementType();
    Type biasETy = biasTy.getElementType();
    Type resultETy = resultTy.getElementType();

    llvm::ArrayRef<int64_t> pad = op.getOutPad();
    llvm::ArrayRef<int64_t> stride = op.getStride();

    // If striding is all 1 we can modify padding and reverse the kernel along
    // the x/y direction to make it a regular convolution. This is much simpler
    // then handling striding....

    // If strides are all 1 we dont need to use this one.
    if (llvm::all_of(stride, [](int64_t v) { return v == 1; }))
      return rewriter.notifyMatchFailure(op, "non-one stride found.");

    if (!inputTy.hasStaticShape() || !weightTy.hasStaticShape() ||
        !biasTy.hasStaticShape() || !resultTy.hasStaticShape())
      return failure();

    int64_t batch = inputTy.getDimSize(0);

    int64_t outputChannels = weightTy.getDimSize(0);
    int64_t weightHeight = weightTy.getDimSize(1);
    int64_t weightWidth = weightTy.getDimSize(2);
    int64_t inputChannels = weightTy.getDimSize(3);

    // Pad the weight so that it is modulo of the striding.
    llvm::SmallVector<int32_t, 8> weightPadding = {0, 0, 0, 0, 0, 0, 0, 0};
    weightPadding[3] =
        weightHeight % stride[0] ? stride[0] - weightHeight % stride[0] : 0;
    weightPadding[5] =
        weightWidth % stride[1] ? stride[1] - weightWidth % stride[1] : 0;
    DenseElementsAttr weightPaddingAttr = DenseIntElementsAttr::get(
        RankedTensorType::get({4, 2}, rewriter.getI32Type()), weightPadding);
    Value weightPaddingVal = createOpAndInfer<tosa::ConstOp>(
        rewriter, loc, weightPaddingAttr.getType(), weightPaddingAttr);

    if (op.getQuantizationInfo().has_value()) {
      auto quantInfo = op.getQuantizationInfo().value();
      weight = createOpAndInfer<tosa::PadOp>(
          rewriter, loc, UnrankedTensorType::get(weightETy), weight,
          weightPaddingVal, nullptr,
          rewriter.getAttr<PadOpQuantizationAttr>(quantInfo.getWeightZp()));

    } else {
      weight = createOpAndInfer<tosa::PadOp>(rewriter, loc,
                                             UnrankedTensorType::get(weightETy),
                                             weight, weightPaddingVal);
    }

    weightTy = cast<ShapedType>(weight.getType());
    weightHeight = weightTy.getDimSize(1);
    weightWidth = weightTy.getDimSize(2);

    // Split out the width / height by the stride dimensions.
    llvm::SmallVector<int64_t, 6> weightReshapeDims0 = {
        outputChannels, weightHeight / stride[0],
        stride[0],      weightWidth / stride[1],
        stride[1],      inputChannels};
    weight = createOpAndInfer<tosa::ReshapeOp>(
        rewriter, loc, UnrankedTensorType::get(weightETy), weight,
        rewriter.getDenseI64ArrayAttr(weightReshapeDims0));

    // Transpose the factored-out stride to the output channels.
    Value transposeWeightVal = rewriter.create<tosa::ConstOp>(
        loc, RankedTensorType::get({6}, rewriter.getI32Type()),
        rewriter.getI32TensorAttr({2, 4, 0, 1, 3, 5}));

    weight = createOpAndInfer<tosa::TransposeOp>(
        rewriter, loc, UnrankedTensorType::get(weightETy), weight,
        transposeWeightVal);

    // Collapse the strides and output channels into a single dimension.
    llvm::SmallVector<int64_t, 6> weightReshapeDims1 = {
        outputChannels * stride[0] * stride[1], weightHeight / stride[0],
        weightWidth / stride[1], inputChannels};
    weight = createOpAndInfer<tosa::ReshapeOp>(
        rewriter, loc, UnrankedTensorType::get(weightETy), weight,
        rewriter.getDenseI64ArrayAttr(weightReshapeDims1));
    ShapedType restridedWeightTy = cast<ShapedType>(weight.getType());

    weight = createOpAndInfer<tosa::ReverseOp>(
        rewriter, loc, UnrankedTensorType::get(weightETy), weight,
        rewriter.getI64IntegerAttr(1));
    weight = createOpAndInfer<tosa::ReverseOp>(
        rewriter, loc, UnrankedTensorType::get(weightETy), weight,
        rewriter.getI64IntegerAttr(2));

    // We need to pad the input far enough that we can pull all values.
    llvm::SmallVector<int32_t, 8> inputPadding = {0, 0, 0, 0, 0, 0, 0, 0};
    inputPadding[2] += restridedWeightTy.getDimSize(1) - 1;
    inputPadding[3] += restridedWeightTy.getDimSize(1) - 1;
    inputPadding[4] += restridedWeightTy.getDimSize(2) - 1;
    inputPadding[5] += restridedWeightTy.getDimSize(2) - 1;

    DenseElementsAttr inputPaddingAttr = DenseIntElementsAttr::get(
        RankedTensorType::get({4, 2}, rewriter.getI32Type()), inputPadding);

    Value inputPaddingVal = createOpAndInfer<tosa::ConstOp>(
        rewriter, loc, inputPaddingAttr.getType(), inputPaddingAttr);

    if (op.getQuantizationInfo().has_value()) {
      auto quantInfo = op.getQuantizationInfo().value();
      input = createOpAndInfer<tosa::PadOp>(
          rewriter, loc, UnrankedTensorType::get(inputETy), input,
          inputPaddingVal, nullptr,
          rewriter.getAttr<PadOpQuantizationAttr>(quantInfo.getInputZp()));
    } else {
      input = createOpAndInfer<tosa::PadOp>(rewriter, loc,
                                            UnrankedTensorType::get(inputETy),
                                            input, inputPaddingVal);
    }

    // We use a zero bias as we need to broadcast the bias.
    auto zeroBias = rewriter.create<tosa::ConstOp>(
        loc,
        RankedTensorType::get({outputChannels * stride[0] * stride[1]},
                              biasETy),
        DenseElementsAttr::get(
            RankedTensorType::get({outputChannels * stride[0] * stride[1]},
                                  biasETy),
            rewriter.getZeroAttr(biasETy)));

    // Perform the convolution using the zero bias.
    Value conv2d;
    if (op.getQuantizationInfo()) {
      conv2d = createOpAndInfer<tosa::Conv2DOp>(
                   rewriter, loc, UnrankedTensorType::get(resultETy), input,
                   weight, zeroBias,
                   /*pad=*/rewriter.getDenseI64ArrayAttr({0, 0, 0, 0}),
                   /*stride=*/rewriter.getDenseI64ArrayAttr({1, 1}),
                   /*dilation=*/rewriter.getDenseI64ArrayAttr({1, 1}),
                   *op.getQuantizationInfo())
                   .getResult();
    } else {
      conv2d = createOpAndInfer<tosa::Conv2DOp>(
                   rewriter, loc, UnrankedTensorType::get(resultETy), input,
                   weight, zeroBias,
                   /*pad=*/rewriter.getDenseI64ArrayAttr({0, 0, 0, 0}),
                   /*stride=*/rewriter.getDenseI64ArrayAttr({1, 1}),
                   /*dilation=*/rewriter.getDenseI64ArrayAttr({1, 1}))
                   .getResult();
    }

    // Factor the resulting width / height.
    ShapedType convTy = cast<ShapedType>(conv2d.getType());
    Type convETy = convTy.getElementType();

    int64_t convHeight = convTy.getDimSize(1);
    int64_t convWidth = convTy.getDimSize(2);

    // Factor striding out of the convolution result.
    llvm::SmallVector<int64_t, 6> convReshapeDims0 = {
        batch, convHeight, convWidth, stride[0], stride[1], outputChannels};
    conv2d = createOpAndInfer<tosa::ReshapeOp>(
        rewriter, loc, UnrankedTensorType::get(resultETy), conv2d,
        rewriter.getDenseI64ArrayAttr(convReshapeDims0));

    // Transpose the factored-out stride to the output channels.
    Value transposeConvVal = rewriter.create<tosa::ConstOp>(
        loc, RankedTensorType::get({6}, rewriter.getI32Type()),
        rewriter.getI32TensorAttr({0, 1, 3, 2, 4, 5}));

    conv2d = createOpAndInfer<tosa::TransposeOp>(
        rewriter, loc, UnrankedTensorType::get(convETy), conv2d,
        transposeConvVal);

    // Fuse striding behavior back into width / height.
    llvm::SmallVector<int64_t, 6> convReshapeDims1 = {
        batch, convHeight * stride[0], convWidth * stride[1], outputChannels};
    conv2d = createOpAndInfer<tosa::ReshapeOp>(
        rewriter, loc, UnrankedTensorType::get(resultETy), conv2d,
        rewriter.getDenseI64ArrayAttr(convReshapeDims1));

    // Determine the amount to slice / pad from the result start.
    int64_t resultSliceTop = std::max<int64_t>(0, -pad[0]);
    int64_t resultSliceLeft = std::max<int64_t>(0, -pad[2]);
    int64_t resultPadTop = std::max<int64_t>(0, pad[0]);
    int64_t resultPadLeft = std::max<int64_t>(0, pad[2]);

    // Try to slice the targetted result size, cap to the convolutions width.
    int64_t resultSliceHeight =
        std::min<int64_t>(convReshapeDims1[1] - resultSliceTop,
                          resultTy.getDimSize(1) - resultPadTop);
    int64_t resultSliceWidth =
        std::min<int64_t>(convReshapeDims1[2] - resultSliceLeft,
                          resultTy.getDimSize(2) - resultPadLeft);

    llvm::SmallVector<int64_t, 4> sliceBegin = {0, resultSliceTop,
                                                resultSliceLeft, 0};
    llvm::SmallVector<int64_t, 4> sliceSize(convReshapeDims1.begin(),
                                            convReshapeDims1.end());
    sliceSize[1] = resultSliceHeight;
    sliceSize[2] = resultSliceWidth;

    auto slice = createOpAndInfer<tosa::SliceOp>(
                     rewriter, loc, UnrankedTensorType::get(resultETy), conv2d,
                     rewriter.getDenseI64ArrayAttr(sliceBegin),
                     rewriter.getDenseI64ArrayAttr(sliceSize))
                     .getResult();

    llvm::SmallVector<int32_t, 8> resultPadding = {0, 0, 0, 0, 0, 0, 0, 0};
    resultPadding[2] = resultPadTop;
    resultPadding[3] = resultTy.getDimSize(1) - resultPadTop - sliceSize[1];
    resultPadding[4] = resultPadLeft;
    resultPadding[5] = resultTy.getDimSize(2) - resultPadLeft - sliceSize[2];

    DenseElementsAttr resultPaddingAttr = DenseIntElementsAttr::get(
        RankedTensorType::get({4, 2}, rewriter.getI32Type()), resultPadding);

    Value resultPaddingVal = createOpAndInfer<tosa::ConstOp>(
        rewriter, loc, resultPaddingAttr.getType(), resultPaddingAttr);

    auto resultPad = createOpAndInfer<tosa::PadOp>(
        rewriter, loc, UnrankedTensorType::get(resultETy), slice,
        resultPaddingVal);

    rewriter.replaceOpWithNewOp<tosa::AddOp>(op, op.getType(), resultPad, bias);
    return success();
  }
};

} // namespace

void mlir::tosa::populateTosaDecomposeTransposeConv(
    MLIRContext *ctx, RewritePatternSet &patterns) {
  patterns.add<TransposeConvNonStridedConverter>(ctx);
  patterns.add<TransposeConvStridedConverter>(ctx);
}