summaryrefslogtreecommitdiff
path: root/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp
blob: b5c1bef4d2718ff901bc70653c093cae9ab27170 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the translation between an MLIR LLVM dialect module and
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Target/LLVMIR/ModuleTranslation.h"

#include "DebugTranslation.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
#include "llvm/ADT/TypeSwitch.h"

#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <optional>

using namespace mlir;
using namespace mlir::LLVM;
using namespace mlir::LLVM::detail;

#include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"

/// Translates the given data layout spec attribute to the LLVM IR data layout.
/// Only integer, float, pointer and endianness entries are currently supported.
static FailureOr<llvm::DataLayout>
translateDataLayout(DataLayoutSpecInterface attribute,
                    const DataLayout &dataLayout,
                    std::optional<Location> loc = std::nullopt) {
  if (!loc)
    loc = UnknownLoc::get(attribute.getContext());

  // Translate the endianness attribute.
  std::string llvmDataLayout;
  llvm::raw_string_ostream layoutStream(llvmDataLayout);
  for (DataLayoutEntryInterface entry : attribute.getEntries()) {
    auto key = entry.getKey().dyn_cast<StringAttr>();
    if (!key)
      continue;
    if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
      auto value = entry.getValue().cast<StringAttr>();
      bool isLittleEndian =
          value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
      layoutStream << (isLittleEndian ? "e" : "E");
      layoutStream.flush();
      continue;
    }
    emitError(*loc) << "unsupported data layout key " << key;
    return failure();
  }

  // Go through the list of entries to check which types are explicitly
  // specified in entries. Where possible, data layout queries are used instead
  // of directly inspecting the entries.
  for (DataLayoutEntryInterface entry : attribute.getEntries()) {
    auto type = entry.getKey().dyn_cast<Type>();
    if (!type)
      continue;
    // Data layout for the index type is irrelevant at this point.
    if (type.isa<IndexType>())
      continue;
    layoutStream << "-";
    LogicalResult result =
        llvm::TypeSwitch<Type, LogicalResult>(type)
            .Case<IntegerType, Float16Type, Float32Type, Float64Type,
                  Float80Type, Float128Type>([&](Type type) -> LogicalResult {
              if (auto intType = type.dyn_cast<IntegerType>()) {
                if (intType.getSignedness() != IntegerType::Signless)
                  return emitError(*loc)
                         << "unsupported data layout for non-signless integer "
                         << intType;
                layoutStream << "i";
              } else {
                layoutStream << "f";
              }
              unsigned size = dataLayout.getTypeSizeInBits(type);
              unsigned abi = dataLayout.getTypeABIAlignment(type) * 8u;
              unsigned preferred =
                  dataLayout.getTypePreferredAlignment(type) * 8u;
              layoutStream << size << ":" << abi;
              if (abi != preferred)
                layoutStream << ":" << preferred;
              return success();
            })
            .Case([&](LLVMPointerType ptrType) {
              layoutStream << "p" << ptrType.getAddressSpace() << ":";
              unsigned size = dataLayout.getTypeSizeInBits(type);
              unsigned abi = dataLayout.getTypeABIAlignment(type) * 8u;
              unsigned preferred =
                  dataLayout.getTypePreferredAlignment(type) * 8u;
              layoutStream << size << ":" << abi << ":" << preferred;
              if (std::optional<unsigned> index = extractPointerSpecValue(
                      entry.getValue(), PtrDLEntryPos::Index))
                layoutStream << ":" << *index;
              return success();
            })
            .Default([loc](Type type) {
              return emitError(*loc)
                     << "unsupported type in data layout: " << type;
            });
    if (failed(result))
      return failure();
  }
  layoutStream.flush();
  StringRef layoutSpec(llvmDataLayout);
  if (layoutSpec.startswith("-"))
    layoutSpec = layoutSpec.drop_front();

  return llvm::DataLayout(layoutSpec);
}

/// Builds a constant of a sequential LLVM type `type`, potentially containing
/// other sequential types recursively, from the individual constant values
/// provided in `constants`. `shape` contains the number of elements in nested
/// sequential types. Reports errors at `loc` and returns nullptr on error.
static llvm::Constant *
buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
                        ArrayRef<int64_t> shape, llvm::Type *type,
                        Location loc) {
  if (shape.empty()) {
    llvm::Constant *result = constants.front();
    constants = constants.drop_front();
    return result;
  }

  llvm::Type *elementType;
  if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
    elementType = arrayTy->getElementType();
  } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
    elementType = vectorTy->getElementType();
  } else {
    emitError(loc) << "expected sequential LLVM types wrapping a scalar";
    return nullptr;
  }

  SmallVector<llvm::Constant *, 8> nested;
  nested.reserve(shape.front());
  for (int64_t i = 0; i < shape.front(); ++i) {
    nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
                                             elementType, loc));
    if (!nested.back())
      return nullptr;
  }

  if (shape.size() == 1 && type->isVectorTy())
    return llvm::ConstantVector::get(nested);
  return llvm::ConstantArray::get(
      llvm::ArrayType::get(elementType, shape.front()), nested);
}

/// Returns the first non-sequential type nested in sequential types.
static llvm::Type *getInnermostElementType(llvm::Type *type) {
  do {
    if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
      type = arrayTy->getElementType();
    } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
      type = vectorTy->getElementType();
    } else {
      return type;
    }
  } while (true);
}

/// Convert a dense elements attribute to an LLVM IR constant using its raw data
/// storage if possible. This supports elements attributes of tensor or vector
/// type and avoids constructing separate objects for individual values of the
/// innermost dimension. Constants for other dimensions are still constructed
/// recursively. Returns null if constructing from raw data is not supported for
/// this type, e.g., element type is not a power-of-two-sized primitive. Reports
/// other errors at `loc`.
static llvm::Constant *
convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
                         llvm::Type *llvmType,
                         const ModuleTranslation &moduleTranslation) {
  if (!denseElementsAttr)
    return nullptr;

  llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
  if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
    return nullptr;

  ShapedType type = denseElementsAttr.getType();
  if (type.getNumElements() == 0)
    return nullptr;

  // Compute the shape of all dimensions but the innermost. Note that the
  // innermost dimension may be that of the vector element type.
  bool hasVectorElementType = type.getElementType().isa<VectorType>();
  unsigned numAggregates =
      denseElementsAttr.getNumElements() /
      (hasVectorElementType ? 1
                            : denseElementsAttr.getType().getShape().back());
  ArrayRef<int64_t> outerShape = type.getShape();
  if (!hasVectorElementType)
    outerShape = outerShape.drop_back();

  // Handle the case of vector splat, LLVM has special support for it.
  if (denseElementsAttr.isSplat() &&
      (type.isa<VectorType>() || hasVectorElementType)) {
    llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
        innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
        moduleTranslation);
    llvm::Constant *splatVector =
        llvm::ConstantDataVector::getSplat(0, splatValue);
    SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
    ArrayRef<llvm::Constant *> constantsRef = constants;
    return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
  }
  if (denseElementsAttr.isSplat())
    return nullptr;

  // In case of non-splat, create a constructor for the innermost constant from
  // a piece of raw data.
  std::function<llvm::Constant *(StringRef)> buildCstData;
  if (type.isa<TensorType>()) {
    auto vectorElementType = type.getElementType().dyn_cast<VectorType>();
    if (vectorElementType && vectorElementType.getRank() == 1) {
      buildCstData = [&](StringRef data) {
        return llvm::ConstantDataVector::getRaw(
            data, vectorElementType.getShape().back(), innermostLLVMType);
      };
    } else if (!vectorElementType) {
      buildCstData = [&](StringRef data) {
        return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
                                               innermostLLVMType);
      };
    }
  } else if (type.isa<VectorType>()) {
    buildCstData = [&](StringRef data) {
      return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
                                              innermostLLVMType);
    };
  }
  if (!buildCstData)
    return nullptr;

  // Create innermost constants and defer to the default constant creation
  // mechanism for other dimensions.
  SmallVector<llvm::Constant *> constants;
  unsigned aggregateSize = denseElementsAttr.getType().getShape().back() *
                           (innermostLLVMType->getScalarSizeInBits() / 8);
  constants.reserve(numAggregates);
  for (unsigned i = 0; i < numAggregates; ++i) {
    StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
                   aggregateSize);
    constants.push_back(buildCstData(data));
  }

  ArrayRef<llvm::Constant *> constantsRef = constants;
  return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
}

/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
/// This currently supports integer, floating point, splat and dense element
/// attributes and combinations thereof. Also, an array attribute with two
/// elements is supported to represent a complex constant.  In case of error,
/// report it to `loc` and return nullptr.
llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
    llvm::Type *llvmType, Attribute attr, Location loc,
    const ModuleTranslation &moduleTranslation) {
  if (!attr)
    return llvm::UndefValue::get(llvmType);
  if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
    auto arrayAttr = attr.dyn_cast<ArrayAttr>();
    if (!arrayAttr || arrayAttr.size() != 2) {
      emitError(loc, "expected struct type to be a complex number");
      return nullptr;
    }
    llvm::Type *elementType = structType->getElementType(0);
    llvm::Constant *real =
        getLLVMConstant(elementType, arrayAttr[0], loc, moduleTranslation);
    if (!real)
      return nullptr;
    llvm::Constant *imag =
        getLLVMConstant(elementType, arrayAttr[1], loc, moduleTranslation);
    if (!imag)
      return nullptr;
    return llvm::ConstantStruct::get(structType, {real, imag});
  }
  // For integer types, we allow a mismatch in sizes as the index type in
  // MLIR might have a different size than the index type in the LLVM module.
  if (auto intAttr = attr.dyn_cast<IntegerAttr>())
    return llvm::ConstantInt::get(
        llvmType,
        intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
  if (auto floatAttr = attr.dyn_cast<FloatAttr>()) {
    if (llvmType !=
        llvm::Type::getFloatingPointTy(llvmType->getContext(),
                                       floatAttr.getValue().getSemantics())) {
      emitError(loc, "FloatAttr does not match expected type of the constant");
      return nullptr;
    }
    return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
  }
  if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
    return llvm::ConstantExpr::getBitCast(
        moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
  if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
    llvm::Type *elementType;
    uint64_t numElements;
    bool isScalable = false;
    if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
      elementType = arrayTy->getElementType();
      numElements = arrayTy->getNumElements();
    } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
      elementType = fVectorTy->getElementType();
      numElements = fVectorTy->getNumElements();
    } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
      elementType = sVectorTy->getElementType();
      numElements = sVectorTy->getMinNumElements();
      isScalable = true;
    } else {
      llvm_unreachable("unrecognized constant vector type");
    }
    // Splat value is a scalar. Extract it only if the element type is not
    // another sequence type. The recursion terminates because each step removes
    // one outer sequential type.
    bool elementTypeSequential =
        isa<llvm::ArrayType, llvm::VectorType>(elementType);
    llvm::Constant *child = getLLVMConstant(
        elementType,
        elementTypeSequential ? splatAttr
                              : splatAttr.getSplatValue<Attribute>(),
        loc, moduleTranslation);
    if (!child)
      return nullptr;
    if (llvmType->isVectorTy())
      return llvm::ConstantVector::getSplat(
          llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
    if (llvmType->isArrayTy()) {
      auto *arrayType = llvm::ArrayType::get(elementType, numElements);
      SmallVector<llvm::Constant *, 8> constants(numElements, child);
      return llvm::ConstantArray::get(arrayType, constants);
    }
  }

  // Try using raw elements data if possible.
  if (llvm::Constant *result =
          convertDenseElementsAttr(loc, attr.dyn_cast<DenseElementsAttr>(),
                                   llvmType, moduleTranslation)) {
    return result;
  }

  // Fall back to element-by-element construction otherwise.
  if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
    assert(elementsAttr.getType().hasStaticShape());
    assert(!elementsAttr.getType().getShape().empty() &&
           "unexpected empty elements attribute shape");

    SmallVector<llvm::Constant *, 8> constants;
    constants.reserve(elementsAttr.getNumElements());
    llvm::Type *innermostType = getInnermostElementType(llvmType);
    for (auto n : elementsAttr.getValues<Attribute>()) {
      constants.push_back(
          getLLVMConstant(innermostType, n, loc, moduleTranslation));
      if (!constants.back())
        return nullptr;
    }
    ArrayRef<llvm::Constant *> constantsRef = constants;
    llvm::Constant *result = buildSequentialConstant(
        constantsRef, elementsAttr.getType().getShape(), llvmType, loc);
    assert(constantsRef.empty() && "did not consume all elemental constants");
    return result;
  }

  if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
    return llvm::ConstantDataArray::get(
        moduleTranslation.getLLVMContext(),
        ArrayRef<char>{stringAttr.getValue().data(),
                       stringAttr.getValue().size()});
  }
  emitError(loc, "unsupported constant value");
  return nullptr;
}

ModuleTranslation::ModuleTranslation(Operation *module,
                                     std::unique_ptr<llvm::Module> llvmModule)
    : mlirModule(module), llvmModule(std::move(llvmModule)),
      debugTranslation(
          std::make_unique<DebugTranslation>(module, *this->llvmModule)),
      typeTranslator(this->llvmModule->getContext()),
      iface(module->getContext()) {
  assert(satisfiesLLVMModule(mlirModule) &&
         "mlirModule should honor LLVM's module semantics.");
}
ModuleTranslation::~ModuleTranslation() {
  if (ompBuilder)
    ompBuilder->finalize();
}

void ModuleTranslation::forgetMapping(Region &region) {
  SmallVector<Region *> toProcess;
  toProcess.push_back(&region);
  while (!toProcess.empty()) {
    Region *current = toProcess.pop_back_val();
    for (Block &block : *current) {
      blockMapping.erase(&block);
      for (Value arg : block.getArguments())
        valueMapping.erase(arg);
      for (Operation &op : block) {
        for (Value value : op.getResults())
          valueMapping.erase(value);
        if (op.hasSuccessors())
          branchMapping.erase(&op);
        if (isa<LLVM::GlobalOp>(op))
          globalsMapping.erase(&op);
        accessGroupMetadataMapping.erase(&op);
        llvm::append_range(
            toProcess,
            llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
      }
    }
  }
}

/// Get the SSA value passed to the current block from the terminator operation
/// of its predecessor.
static Value getPHISourceValue(Block *current, Block *pred,
                               unsigned numArguments, unsigned index) {
  Operation &terminator = *pred->getTerminator();
  if (isa<LLVM::BrOp>(terminator))
    return terminator.getOperand(index);

#ifndef NDEBUG
  llvm::SmallPtrSet<Block *, 4> seenSuccessors;
  for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
    Block *successor = terminator.getSuccessor(i);
    auto branch = cast<BranchOpInterface>(terminator);
    SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
    assert(
        (!seenSuccessors.contains(successor) || successorOperands.empty()) &&
        "successors with arguments in LLVM branches must be different blocks");
    seenSuccessors.insert(successor);
  }
#endif

  // For instructions that branch based on a condition value, we need to take
  // the operands for the branch that was taken.
  if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
    // For conditional branches, we take the operands from either the "true" or
    // the "false" branch.
    return condBranchOp.getSuccessor(0) == current
               ? condBranchOp.getTrueDestOperands()[index]
               : condBranchOp.getFalseDestOperands()[index];
  }

  if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
    // For switches, we take the operands from either the default case, or from
    // the case branch that was taken.
    if (switchOp.getDefaultDestination() == current)
      return switchOp.getDefaultOperands()[index];
    for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
      if (i.value() == current)
        return switchOp.getCaseOperands(i.index())[index];
  }

  if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
    return invokeOp.getNormalDest() == current
               ? invokeOp.getNormalDestOperands()[index]
               : invokeOp.getUnwindDestOperands()[index];
  }

  llvm_unreachable(
      "only branch, switch or invoke operations can be terminators "
      "of a block that has successors");
}

/// Connect the PHI nodes to the results of preceding blocks.
void mlir::LLVM::detail::connectPHINodes(Region &region,
                                         const ModuleTranslation &state) {
  // Skip the first block, it cannot be branched to and its arguments correspond
  // to the arguments of the LLVM function.
  for (Block &bb : llvm::drop_begin(region)) {
    llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
    auto phis = llvmBB->phis();
    auto numArguments = bb.getNumArguments();
    assert(numArguments == std::distance(phis.begin(), phis.end()));
    for (auto &numberedPhiNode : llvm::enumerate(phis)) {
      auto &phiNode = numberedPhiNode.value();
      unsigned index = numberedPhiNode.index();
      for (auto *pred : bb.getPredecessors()) {
        // Find the LLVM IR block that contains the converted terminator
        // instruction and use it in the PHI node. Note that this block is not
        // necessarily the same as state.lookupBlock(pred), some operations
        // (in particular, OpenMP operations using OpenMPIRBuilder) may have
        // split the blocks.
        llvm::Instruction *terminator =
            state.lookupBranch(pred->getTerminator());
        assert(terminator && "missing the mapping for a terminator");
        phiNode.addIncoming(state.lookupValue(getPHISourceValue(
                                &bb, pred, numArguments, index)),
                            terminator->getParent());
      }
    }
  }
}

/// Sort function blocks topologically.
SetVector<Block *>
mlir::LLVM::detail::getTopologicallySortedBlocks(Region &region) {
  // For each block that has not been visited yet (i.e. that has no
  // predecessors), add it to the list as well as its successors.
  SetVector<Block *> blocks;
  for (Block &b : region) {
    if (blocks.count(&b) == 0) {
      llvm::ReversePostOrderTraversal<Block *> traversal(&b);
      blocks.insert(traversal.begin(), traversal.end());
    }
  }
  assert(blocks.size() == region.getBlocks().size() &&
         "some blocks are not sorted");

  return blocks;
}

llvm::Value *mlir::LLVM::detail::createIntrinsicCall(
    llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
    ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
  llvm::Module *module = builder.GetInsertBlock()->getModule();
  llvm::Function *fn = llvm::Intrinsic::getDeclaration(module, intrinsic, tys);
  return builder.CreateCall(fn, args);
}

/// Given a single MLIR operation, create the corresponding LLVM IR operation
/// using the `builder`.
LogicalResult
ModuleTranslation::convertOperation(Operation &op,
                                    llvm::IRBuilderBase &builder) {
  const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
  if (!opIface)
    return op.emitError("cannot be converted to LLVM IR: missing "
                        "`LLVMTranslationDialectInterface` registration for "
                        "dialect for op: ")
           << op.getName();

  if (failed(opIface->convertOperation(&op, builder, *this)))
    return op.emitError("LLVM Translation failed for operation: ")
           << op.getName();

  return convertDialectAttributes(&op);
}

/// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
/// to define values corresponding to the MLIR block arguments.  These nodes
/// are not connected to the source basic blocks, which may not exist yet.  Uses
/// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
/// been created for `bb` and included in the block mapping.  Inserts new
/// instructions at the end of the block and leaves `builder` in a state
/// suitable for further insertion into the end of the block.
LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments,
                                              llvm::IRBuilderBase &builder) {
  builder.SetInsertPoint(lookupBlock(&bb));
  auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();

  // Before traversing operations, make block arguments available through
  // value remapping and PHI nodes, but do not add incoming edges for the PHI
  // nodes just yet: those values may be defined by this or following blocks.
  // This step is omitted if "ignoreArguments" is set.  The arguments of the
  // first block have been already made available through the remapping of
  // LLVM function arguments.
  if (!ignoreArguments) {
    auto predecessors = bb.getPredecessors();
    unsigned numPredecessors =
        std::distance(predecessors.begin(), predecessors.end());
    for (auto arg : bb.getArguments()) {
      auto wrappedType = arg.getType();
      if (!isCompatibleType(wrappedType))
        return emitError(bb.front().getLoc(),
                         "block argument does not have an LLVM type");
      llvm::Type *type = convertType(wrappedType);
      llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
      mapValue(arg, phi);
    }
  }

  // Traverse operations.
  for (auto &op : bb) {
    // Set the current debug location within the builder.
    builder.SetCurrentDebugLocation(
        debugTranslation->translateLoc(op.getLoc(), subprogram));

    if (failed(convertOperation(op, builder)))
      return failure();
  }

  return success();
}

/// A helper method to get the single Block in an operation honoring LLVM's
/// module requirements.
static Block &getModuleBody(Operation *module) {
  return module->getRegion(0).front();
}

/// A helper method to decide if a constant must not be set as a global variable
/// initializer. For an external linkage variable, the variable with an
/// initializer is considered externally visible and defined in this module, the
/// variable without an initializer is externally available and is defined
/// elsewhere.
static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
                                        llvm::Constant *cst) {
  return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
         linkage == llvm::GlobalVariable::ExternalWeakLinkage;
}

/// Sets the runtime preemption specifier of `gv` to dso_local if
/// `dsoLocalRequested` is true, otherwise it is left unchanged.
static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
                                          llvm::GlobalValue *gv) {
  if (dsoLocalRequested)
    gv->setDSOLocal(true);
}

/// Create named global variables that correspond to llvm.mlir.global
/// definitions. Convert llvm.global_ctors and global_dtors ops.
LogicalResult ModuleTranslation::convertGlobals() {
  for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
    llvm::Type *type = convertType(op.getType());
    llvm::Constant *cst = nullptr;
    if (op.getValueOrNull()) {
      // String attributes are treated separately because they cannot appear as
      // in-function constants and are thus not supported by getLLVMConstant.
      if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
        cst = llvm::ConstantDataArray::getString(
            llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
        type = cst->getType();
      } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
                                         *this))) {
        return failure();
      }
    }

    auto linkage = convertLinkageToLLVM(op.getLinkage());
    auto addrSpace = op.getAddrSpace();

    // LLVM IR requires constant with linkage other than external or weak
    // external to have initializers. If MLIR does not provide an initializer,
    // default to undef.
    bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
    if (!dropInitializer && !cst)
      cst = llvm::UndefValue::get(type);
    else if (dropInitializer && cst)
      cst = nullptr;

    auto *var = new llvm::GlobalVariable(
        *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
        /*InsertBefore=*/nullptr,
        op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
                             : llvm::GlobalValue::NotThreadLocal,
        addrSpace);

    if (op.getUnnamedAddr().has_value())
      var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));

    if (op.getSection().has_value())
      var->setSection(*op.getSection());

    addRuntimePreemptionSpecifier(op.getDsoLocal(), var);

    std::optional<uint64_t> alignment = op.getAlignment();
    if (alignment.has_value())
      var->setAlignment(llvm::MaybeAlign(alignment.value()));

    globalsMapping.try_emplace(op, var);
  }

  // Convert global variable bodies. This is done after all global variables
  // have been created in LLVM IR because a global body may refer to another
  // global or itself. So all global variables need to be mapped first.
  for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
    if (Block *initializer = op.getInitializerBlock()) {
      llvm::IRBuilder<> builder(llvmModule->getContext());
      for (auto &op : initializer->without_terminator()) {
        if (failed(convertOperation(op, builder)) ||
            !isa<llvm::Constant>(lookupValue(op.getResult(0))))
          return emitError(op.getLoc(), "unemittable constant value");
      }
      ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
      llvm::Constant *cst =
          cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
      auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
      if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
        global->setInitializer(cst);
    }
  }

  // Convert llvm.mlir.global_ctors and dtors.
  for (Operation &op : getModuleBody(mlirModule)) {
    auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
    auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
    if (!ctorOp && !dtorOp)
      continue;
    auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
                        : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
    auto appendGlobalFn =
        ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
    for (auto symbolAndPriority : range) {
      llvm::Function *f = lookupFunction(
          std::get<0>(symbolAndPriority).cast<FlatSymbolRefAttr>().getValue());
      appendGlobalFn(
          *llvmModule, f,
          std::get<1>(symbolAndPriority).cast<IntegerAttr>().getInt(),
          /*Data=*/nullptr);
    }
  }

  return success();
}

/// Attempts to add an attribute identified by `key`, optionally with the given
/// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
/// attribute has a kind known to LLVM IR, create the attribute of this kind,
/// otherwise keep it as a string attribute. Performs additional checks for
/// attributes known to have or not have a value in order to avoid assertions
/// inside LLVM upon construction.
static LogicalResult checkedAddLLVMFnAttribute(Location loc,
                                               llvm::Function *llvmFunc,
                                               StringRef key,
                                               StringRef value = StringRef()) {
  auto kind = llvm::Attribute::getAttrKindFromName(key);
  if (kind == llvm::Attribute::None) {
    llvmFunc->addFnAttr(key, value);
    return success();
  }

  if (llvm::Attribute::isIntAttrKind(kind)) {
    if (value.empty())
      return emitError(loc) << "LLVM attribute '" << key << "' expects a value";

    int result;
    if (!value.getAsInteger(/*Radix=*/0, result))
      llvmFunc->addFnAttr(
          llvm::Attribute::get(llvmFunc->getContext(), kind, result));
    else
      llvmFunc->addFnAttr(key, value);
    return success();
  }

  if (!value.empty())
    return emitError(loc) << "LLVM attribute '" << key
                          << "' does not expect a value, found '" << value
                          << "'";

  llvmFunc->addFnAttr(kind);
  return success();
}

/// Attaches the attributes listed in the given array attribute to `llvmFunc`.
/// Reports error to `loc` if any and returns immediately. Expects `attributes`
/// to be an array attribute containing either string attributes, treated as
/// value-less LLVM attributes, or array attributes containing two string
/// attributes, with the first string being the name of the corresponding LLVM
/// attribute and the second string beings its value. Note that even integer
/// attributes are expected to have their values expressed as strings.
static LogicalResult
forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
                             llvm::Function *llvmFunc) {
  if (!attributes)
    return success();

  for (Attribute attr : *attributes) {
    if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
      if (failed(
              checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
        return failure();
      continue;
    }

    auto arrayAttr = attr.dyn_cast<ArrayAttr>();
    if (!arrayAttr || arrayAttr.size() != 2)
      return emitError(loc)
             << "expected 'passthrough' to contain string or array attributes";

    auto keyAttr = arrayAttr[0].dyn_cast<StringAttr>();
    auto valueAttr = arrayAttr[1].dyn_cast<StringAttr>();
    if (!keyAttr || !valueAttr)
      return emitError(loc)
             << "expected arrays within 'passthrough' to contain two strings";

    if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
                                         valueAttr.getValue())))
      return failure();
  }
  return success();
}

LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
  // Clear the block, branch value mappings, they are only relevant within one
  // function.
  blockMapping.clear();
  valueMapping.clear();
  branchMapping.clear();
  llvm::Function *llvmFunc = lookupFunction(func.getName());

  // Translate the debug information for this function.
  debugTranslation->translate(func, *llvmFunc);

  // Add function arguments to the value remapping table.
  for (auto [mlirArg, llvmArg] :
       llvm::zip(func.getArguments(), llvmFunc->args()))
    mapValue(mlirArg, &llvmArg);

  // Check the personality and set it.
  if (func.getPersonality()) {
    llvm::Type *ty = llvm::Type::getInt8PtrTy(llvmFunc->getContext());
    if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
                                                func.getLoc(), *this))
      llvmFunc->setPersonalityFn(pfunc);
  }

  if (auto gc = func.getGarbageCollector())
    llvmFunc->setGC(gc->str());

  // First, create all blocks so we can jump to them.
  llvm::LLVMContext &llvmContext = llvmFunc->getContext();
  for (auto &bb : func) {
    auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
    llvmBB->insertInto(llvmFunc);
    mapBlock(&bb, llvmBB);
  }

  // Then, convert blocks one by one in topological order to ensure defs are
  // converted before uses.
  auto blocks = detail::getTopologicallySortedBlocks(func.getBody());
  for (Block *bb : blocks) {
    llvm::IRBuilder<> builder(llvmContext);
    if (failed(convertBlock(*bb, bb->isEntryBlock(), builder)))
      return failure();
  }

  // After all blocks have been traversed and values mapped, connect the PHI
  // nodes to the results of preceding blocks.
  detail::connectPHINodes(func.getBody(), *this);

  // Finally, convert dialect attributes attached to the function.
  return convertDialectAttributes(func);
}

LogicalResult ModuleTranslation::convertDialectAttributes(Operation *op) {
  for (NamedAttribute attribute : op->getDialectAttrs())
    if (failed(iface.amendOperation(op, attribute, *this)))
      return failure();
  return success();
}

LogicalResult ModuleTranslation::convertFunctionSignatures() {
  // Declare all functions first because there may be function calls that form a
  // call graph with cycles, or global initializers that reference functions.
  for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
    llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
        function.getName(),
        cast<llvm::FunctionType>(convertType(function.getFunctionType())));
    llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
    llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
    mapFunction(function.getName(), llvmFunc);
    addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);

    // Convert function attributes.
    if (function->getAttrOfType<UnitAttr>(LLVMDialect::getReadnoneAttrName()))
      llvmFunc->setDoesNotAccessMemory();

    // Convert function_entry_count attribute to metadata.
    if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
      llvmFunc->setEntryCount(entryCount.value());

    // Convert result attributes.
    if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
      llvm::AttrBuilder retAttrs(llvmFunc->getContext());
      DictionaryAttr resultAttrs = allResultAttrs[0].cast<DictionaryAttr>();
      for (const NamedAttribute &attr : resultAttrs) {
        StringAttr name = attr.getName();
        if (name == LLVMDialect::getAlignAttrName()) {
          auto alignAmount = attr.getValue().cast<IntegerAttr>();
          retAttrs.addAlignmentAttr(llvm::Align(alignAmount.getInt()));
        } else if (name == LLVMDialect::getNoAliasAttrName()) {
          retAttrs.addAttribute(llvm::Attribute::NoAlias);
        } else if (name == LLVMDialect::getNoUndefAttrName()) {
          retAttrs.addAttribute(llvm::Attribute::NoUndef);
        } else if (name == LLVMDialect::getSExtAttrName()) {
          retAttrs.addAttribute(llvm::Attribute::SExt);
        } else if (name == LLVMDialect::getZExtAttrName()) {
          retAttrs.addAttribute(llvm::Attribute::ZExt);
        }
      }
      llvmFunc->addRetAttrs(retAttrs);
    }

    // Convert argument attributes.
    unsigned int argIdx = 0;
    for (auto [mlirArgTy, llvmArg] :
         llvm::zip(function.getArgumentTypes(), llvmFunc->args())) {
      if (auto attr = function.getArgAttrOfType<UnitAttr>(
              argIdx, LLVMDialect::getNoAliasAttrName())) {
        // NB: Attribute already verified to be boolean, so check if we can
        // indeed attach the attribute to this argument, based on its type.
        if (!mlirArgTy.isa<LLVM::LLVMPointerType>())
          return function.emitError(
              "llvm.noalias attribute attached to LLVM non-pointer argument");
        llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
      }
      if (auto attr = function.getArgAttrOfType<UnitAttr>(
              argIdx, LLVMDialect::getReadonlyAttrName())) {
        if (!mlirArgTy.isa<LLVM::LLVMPointerType>())
          return function.emitError(
              "llvm.readonly attribute attached to LLVM non-pointer argument");
        llvmArg.addAttr(llvm::Attribute::AttrKind::ReadOnly);
      }

      if (auto attr = function.getArgAttrOfType<IntegerAttr>(
              argIdx, LLVMDialect::getAlignAttrName())) {
        // NB: Attribute already verified to be int, so check if we can indeed
        // attach the attribute to this argument, based on its type.
        if (!mlirArgTy.isa<LLVM::LLVMPointerType>())
          return function.emitError(
              "llvm.align attribute attached to LLVM non-pointer argument");
        llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
                             .addAlignmentAttr(llvm::Align(attr.getInt())));
      }

      if (auto attr = function.getArgAttrOfType<TypeAttr>(
              argIdx, LLVMDialect::getStructRetAttrName())) {
        auto argTy = mlirArgTy.dyn_cast<LLVM::LLVMPointerType>();
        if (!argTy)
          return function.emitError(
              "llvm.sret attribute attached to LLVM non-pointer argument");
        if (!argTy.isOpaque() && argTy.getElementType() != attr.getValue())
          return function.emitError(
              "llvm.sret attribute attached to LLVM pointer "
              "argument of a different type");
        llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
                             .addStructRetAttr(convertType(attr.getValue())));
      }

      if (auto attr = function.getArgAttrOfType<TypeAttr>(
              argIdx, LLVMDialect::getByValAttrName())) {
        auto argTy = mlirArgTy.dyn_cast<LLVM::LLVMPointerType>();
        if (!argTy)
          return function.emitError(
              "llvm.byval attribute attached to LLVM non-pointer argument");
        if (!argTy.isOpaque() && argTy.getElementType() != attr.getValue())
          return function.emitError(
              "llvm.byval attribute attached to LLVM pointer "
              "argument of a different type");
        llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
                             .addByValAttr(convertType(attr.getValue())));
      }

      if (auto attr = function.getArgAttrOfType<TypeAttr>(
              argIdx, LLVMDialect::getByRefAttrName())) {
        auto argTy = mlirArgTy.dyn_cast<LLVM::LLVMPointerType>();
        if (!argTy)
          return function.emitError(
              "llvm.byref attribute attached to LLVM non-pointer argument");
        if (!argTy.isOpaque() && argTy.getElementType() != attr.getValue())
          return function.emitError(
              "llvm.byref attribute attached to LLVM pointer "
              "argument of a different type");
        llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
                             .addByRefAttr(convertType(attr.getValue())));
      }

      if (auto attr = function.getArgAttrOfType<TypeAttr>(
              argIdx, LLVMDialect::getInAllocaAttrName())) {
        auto argTy = mlirArgTy.dyn_cast<LLVM::LLVMPointerType>();
        if (!argTy)
          return function.emitError(
              "llvm.inalloca attribute attached to LLVM non-pointer argument");
        if (!argTy.isOpaque() && argTy.getElementType() != attr.getValue())
          return function.emitError(
              "llvm.inalloca attribute attached to LLVM pointer "
              "argument of a different type");
        llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
                             .addInAllocaAttr(convertType(attr.getValue())));
      }

      if (auto attr =
              function.getArgAttrOfType<UnitAttr>(argIdx, "llvm.nest")) {
        if (!mlirArgTy.isa<LLVM::LLVMPointerType>())
          return function.emitError(
              "llvm.nest attribute attached to LLVM non-pointer argument");
        llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
                             .addAttribute(llvm::Attribute::Nest));
      }

      if (auto attr = function.getArgAttrOfType<UnitAttr>(
              argIdx, LLVMDialect::getNoUndefAttrName())) {
        // llvm.noundef can be added to any argument type.
        llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
                             .addAttribute(llvm::Attribute::NoUndef));
      }
      if (auto attr = function.getArgAttrOfType<UnitAttr>(
              argIdx, LLVMDialect::getSExtAttrName())) {
        // llvm.signext can be added to any integer argument type.
        if (!mlirArgTy.isa<mlir::IntegerType>())
          return function.emitError(
              "llvm.signext attribute attached to LLVM non-integer argument");
        llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
                             .addAttribute(llvm::Attribute::SExt));
      }
      if (auto attr = function.getArgAttrOfType<UnitAttr>(
              argIdx, LLVMDialect::getZExtAttrName())) {
        // llvm.zeroext can be added to any integer argument type.
        if (!mlirArgTy.isa<mlir::IntegerType>())
          return function.emitError(
              "llvm.zeroext attribute attached to LLVM non-integer argument");
        llvmArg.addAttrs(llvm::AttrBuilder(llvmArg.getContext())
                             .addAttribute(llvm::Attribute::ZExt));
      }

      ++argIdx;
    }

    // Forward the pass-through attributes to LLVM.
    if (failed(forwardPassthroughAttributes(
            function.getLoc(), function.getPassthrough(), llvmFunc)))
      return failure();
  }

  return success();
}

LogicalResult ModuleTranslation::convertFunctions() {
  // Convert functions.
  for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
    // Ignore external functions.
    if (function.isExternal())
      continue;

    if (failed(convertOneFunction(function)))
      return failure();
  }

  return success();
}

llvm::MDNode *
ModuleTranslation::getAccessGroup(Operation &opInst,
                                  SymbolRefAttr accessGroupRef) const {
  auto metadataName = accessGroupRef.getRootReference();
  auto accessGroupName = accessGroupRef.getLeafReference();
  auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
      opInst.getParentOp(), metadataName);
  auto *accessGroupOp =
      SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
  return accessGroupMetadataMapping.lookup(accessGroupOp);
}

LogicalResult ModuleTranslation::createAccessGroupMetadata() {
  mlirModule->walk([&](LLVM::MetadataOp metadatas) {
    metadatas.walk([&](LLVM::AccessGroupMetadataOp op) {
      llvm::LLVMContext &ctx = llvmModule->getContext();
      llvm::MDNode *accessGroup = llvm::MDNode::getDistinct(ctx, {});
      accessGroupMetadataMapping.insert({op, accessGroup});
    });
  });
  return success();
}

void ModuleTranslation::setAccessGroupsMetadata(Operation *op,
                                                llvm::Instruction *inst) {
  auto accessGroups =
      op->getAttrOfType<ArrayAttr>(LLVMDialect::getAccessGroupsAttrName());
  if (accessGroups && !accessGroups.empty()) {
    llvm::Module *module = inst->getModule();
    SmallVector<llvm::Metadata *> metadatas;
    for (SymbolRefAttr accessGroupRef :
         accessGroups.getAsRange<SymbolRefAttr>())
      metadatas.push_back(getAccessGroup(*op, accessGroupRef));

    llvm::MDNode *unionMD = nullptr;
    if (metadatas.size() == 1)
      unionMD = llvm::cast<llvm::MDNode>(metadatas.front());
    else if (metadatas.size() >= 2)
      unionMD = llvm::MDNode::get(module->getContext(), metadatas);

    inst->setMetadata(module->getMDKindID("llvm.access.group"), unionMD);
  }
}

LogicalResult ModuleTranslation::createAliasScopeMetadata() {
  mlirModule->walk([&](LLVM::MetadataOp metadatas) {
    // Create the domains first, so they can be reference below in the scopes.
    DenseMap<Operation *, llvm::MDNode *> aliasScopeDomainMetadataMapping;
    metadatas.walk([&](LLVM::AliasScopeDomainMetadataOp op) {
      llvm::LLVMContext &ctx = llvmModule->getContext();
      llvm::SmallVector<llvm::Metadata *, 2> operands;
      operands.push_back({}); // Placeholder for self-reference
      if (std::optional<StringRef> description = op.getDescription())
        operands.push_back(llvm::MDString::get(ctx, *description));
      llvm::MDNode *domain = llvm::MDNode::get(ctx, operands);
      domain->replaceOperandWith(0, domain); // Self-reference for uniqueness
      aliasScopeDomainMetadataMapping.insert({op, domain});
    });

    // Now create the scopes, referencing the domains created above.
    metadatas.walk([&](LLVM::AliasScopeMetadataOp op) {
      llvm::LLVMContext &ctx = llvmModule->getContext();
      assert(isa<LLVM::MetadataOp>(op->getParentOp()));
      auto metadataOp = dyn_cast<LLVM::MetadataOp>(op->getParentOp());
      Operation *domainOp =
          SymbolTable::lookupNearestSymbolFrom(metadataOp, op.getDomainAttr());
      llvm::MDNode *domain = aliasScopeDomainMetadataMapping.lookup(domainOp);
      assert(domain && "Scope's domain should already be valid");
      llvm::SmallVector<llvm::Metadata *, 3> operands;
      operands.push_back({}); // Placeholder for self-reference
      operands.push_back(domain);
      if (std::optional<StringRef> description = op.getDescription())
        operands.push_back(llvm::MDString::get(ctx, *description));
      llvm::MDNode *scope = llvm::MDNode::get(ctx, operands);
      scope->replaceOperandWith(0, scope); // Self-reference for uniqueness
      aliasScopeMetadataMapping.insert({op, scope});
    });
  });
  return success();
}

llvm::MDNode *
ModuleTranslation::getAliasScope(Operation &opInst,
                                 SymbolRefAttr aliasScopeRef) const {
  StringAttr metadataName = aliasScopeRef.getRootReference();
  StringAttr scopeName = aliasScopeRef.getLeafReference();
  auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
      opInst.getParentOp(), metadataName);
  Operation *aliasScopeOp =
      SymbolTable::lookupNearestSymbolFrom(metadataOp, scopeName);
  return aliasScopeMetadataMapping.lookup(aliasScopeOp);
}

void ModuleTranslation::setAliasScopeMetadata(Operation *op,
                                              llvm::Instruction *inst) {
  auto populateScopeMetadata = [this, op, inst](StringRef attrName,
                                                StringRef llvmMetadataName) {
    auto scopes = op->getAttrOfType<ArrayAttr>(attrName);
    if (!scopes || scopes.empty())
      return;
    llvm::Module *module = inst->getModule();
    SmallVector<llvm::Metadata *> scopeMDs;
    for (SymbolRefAttr scopeRef : scopes.getAsRange<SymbolRefAttr>())
      scopeMDs.push_back(getAliasScope(*op, scopeRef));
    llvm::MDNode *unionMD = llvm::MDNode::get(module->getContext(), scopeMDs);
    inst->setMetadata(module->getMDKindID(llvmMetadataName), unionMD);
  };

  populateScopeMetadata(LLVMDialect::getAliasScopesAttrName(), "alias.scope");
  populateScopeMetadata(LLVMDialect::getNoAliasScopesAttrName(), "noalias");
}

llvm::MDNode *ModuleTranslation::getTBAANode(Operation &memOp,
                                             SymbolRefAttr tagRef) const {
  StringAttr metadataName = tagRef.getRootReference();
  StringAttr tagName = tagRef.getLeafReference();
  auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
      memOp.getParentOp(), metadataName);
  Operation *tagOp = SymbolTable::lookupNearestSymbolFrom(metadataOp, tagName);
  return tbaaMetadataMapping.lookup(tagOp);
}

void ModuleTranslation::setTBAAMetadata(Operation *op,
                                        llvm::Instruction *inst) {
  auto tbaa = op->getAttrOfType<ArrayAttr>(LLVMDialect::getTBAAAttrName());
  if (!tbaa || tbaa.empty())
    return;
  // LLVM IR currently does not support attaching more than one
  // TBAA access tag to a memory accessing instruction.
  // It may be useful to support this in future, but for the time being
  // just ignore the metadata if MLIR operation has multiple access tags.
  if (tbaa.size() > 1) {
    op->emitWarning() << "TBAA access tags were not translated, because LLVM "
                         "IR only supports a single tag per instruction";
    return;
  }
  SymbolRefAttr tagRef = tbaa[0].cast<SymbolRefAttr>();
  llvm::MDNode *tagNode = getTBAANode(*op, tagRef);
  inst->setMetadata(llvm::LLVMContext::MD_tbaa, tagNode);
}

LogicalResult ModuleTranslation::createTBAAMetadata() {
  llvm::LLVMContext &ctx = llvmModule->getContext();
  llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);

  // Walk TBAA metadata and create MDNode's with placeholder
  // operands for the references of other TBAA nodes.
  for (auto metadata : getModuleBody(mlirModule).getOps<LLVM::MetadataOp>()) {
    for (auto &op : metadata.getBody().getOps()) {
      SmallVector<llvm::Metadata *> operands;
      if (auto rootOp = dyn_cast<LLVM::TBAARootMetadataOp>(op)) {
        operands.push_back(llvm::MDString::get(ctx, rootOp.getIdentity()));
      } else if (auto tdOp = dyn_cast<LLVM::TBAATypeDescriptorOp>(op)) {
        operands.push_back(llvm::MDString::get(
            ctx, tdOp.getIdentity().value_or(llvm::StringRef{})));
        for (int64_t offset : tdOp.getOffsets()) {
          operands.push_back(nullptr); // Placeholder for the member type.
          operands.push_back(llvm::ConstantAsMetadata::get(
              llvm::ConstantInt::get(offsetTy, offset)));
        }
      } else if (auto tagOp = dyn_cast<LLVM::TBAATagOp>(op)) {
        operands.push_back(nullptr); // Placeholder for the base type.
        operands.push_back(nullptr); // Placeholder for the access type.
        operands.push_back(llvm::ConstantAsMetadata::get(
            llvm::ConstantInt::get(offsetTy, tagOp.getOffset())));
        if (tagOp.getConstant())
          operands.push_back(llvm::ConstantAsMetadata::get(
              llvm::ConstantInt::get(offsetTy, 1)));
      }

      if (operands.empty())
        continue;

      tbaaMetadataMapping.insert({&op, llvm::MDNode::get(ctx, operands)});
    }
  }

  // Walk TBAA metadata second time and update the placeholder
  // references.
  for (auto metadata : getModuleBody(mlirModule).getOps<LLVM::MetadataOp>()) {
    for (auto &op : metadata.getBody().getOps()) {
      SmallVector<StringRef> refNames;
      SmallVector<int64_t> operandIndices;
      if (auto tdOp = dyn_cast<LLVM::TBAATypeDescriptorOp>(op)) {
        // The type references are in 1, 3, 5, etc. positions.
        unsigned opNum = 1;
        for (Attribute typeAttr : tdOp.getMembers()) {
          refNames.push_back(typeAttr.cast<FlatSymbolRefAttr>().getValue());
          operandIndices.push_back(opNum);
          opNum += 2;
        }
      } else if (auto tagOp = dyn_cast<LLVM::TBAATagOp>(op)) {
        refNames.push_back(tagOp.getBaseType());
        operandIndices.push_back(0);
        refNames.push_back(tagOp.getAccessType());
        operandIndices.push_back(1);
      }

      if (refNames.empty())
        continue;

      llvm::MDNode *descNode = tbaaMetadataMapping.lookup(&op);
      for (auto [refName, opNum] : llvm::zip(refNames, operandIndices)) {
        // refDef availability in the parent MetadataOp
        // is checked by module verifier.
        Operation *refDef = SymbolTable::lookupSymbolIn(metadata, refName);
        llvm::MDNode *refNode = tbaaMetadataMapping.lookup(refDef);
        if (!refNode) {
          op.emitOpError() << "llvm::MDNode missing for the member '@"
                           << refName << "'";
          return failure();
        }
        descNode->replaceOperandWith(opNum, refNode);
      }
    }
  }

  return success();
}

llvm::Type *ModuleTranslation::convertType(Type type) {
  return typeTranslator.translateType(type);
}

/// A helper to look up remapped operands in the value remapping table.
SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
  SmallVector<llvm::Value *> remapped;
  remapped.reserve(values.size());
  for (Value v : values)
    remapped.push_back(lookupValue(v));
  return remapped;
}

const llvm::DILocation *
ModuleTranslation::translateLoc(Location loc, llvm::DILocalScope *scope) {
  return debugTranslation->translateLoc(loc, scope);
}

llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
  return debugTranslation->translate(attr);
}

llvm::NamedMDNode *
ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
  return llvmModule->getOrInsertNamedMetadata(name);
}

void ModuleTranslation::StackFrame::anchor() {}

static std::unique_ptr<llvm::Module>
prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
                  StringRef name) {
  m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
  auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
  if (auto dataLayoutAttr =
          m->getAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
    llvmModule->setDataLayout(dataLayoutAttr.cast<StringAttr>().getValue());
  } else {
    FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
    if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
      if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
        llvmDataLayout =
            translateDataLayout(spec, DataLayout(iface), m->getLoc());
      }
    } else if (auto mod = dyn_cast<ModuleOp>(m)) {
      if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
        llvmDataLayout =
            translateDataLayout(spec, DataLayout(mod), m->getLoc());
      }
    }
    if (failed(llvmDataLayout))
      return nullptr;
    llvmModule->setDataLayout(*llvmDataLayout);
  }
  if (auto targetTripleAttr =
          m->getAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
    llvmModule->setTargetTriple(targetTripleAttr.cast<StringAttr>().getValue());

  // Inject declarations for `malloc` and `free` functions that can be used in
  // memref allocation/deallocation coming from standard ops lowering.
  llvm::IRBuilder<> builder(llvmContext);
  llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
                                  builder.getInt64Ty());
  llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
                                  builder.getInt8PtrTy());

  return llvmModule;
}

std::unique_ptr<llvm::Module>
mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
                              StringRef name) {
  if (!satisfiesLLVMModule(module)) {
    module->emitOpError("can not be translated to an LLVMIR module");
    return nullptr;
  }

  std::unique_ptr<llvm::Module> llvmModule =
      prepareLLVMModule(module, llvmContext, name);
  if (!llvmModule)
    return nullptr;

  LLVM::ensureDistinctSuccessors(module);

  ModuleTranslation translator(module, std::move(llvmModule));
  if (failed(translator.convertFunctionSignatures()))
    return nullptr;
  if (failed(translator.convertGlobals()))
    return nullptr;
  if (failed(translator.createAccessGroupMetadata()))
    return nullptr;
  if (failed(translator.createAliasScopeMetadata()))
    return nullptr;
  if (failed(translator.createTBAAMetadata()))
    return nullptr;
  if (failed(translator.convertFunctions()))
    return nullptr;

  // Convert other top-level operations if possible.
  llvm::IRBuilder<> llvmBuilder(llvmContext);
  for (Operation &o : getModuleBody(module).getOperations()) {
    if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
             LLVM::GlobalDtorsOp, LLVM::MetadataOp>(&o) &&
        !o.hasTrait<OpTrait::IsTerminator>() &&
        failed(translator.convertOperation(o, llvmBuilder))) {
      return nullptr;
    }
  }

  if (llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
    return nullptr;

  return std::move(translator.llvmModule);
}