summaryrefslogtreecommitdiff
path: root/mlir/unittests/IR/AttributeTest.cpp
blob: 13c7762563b161e1fde7758b53bbb7a3eaf1eac8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
//===- AttributeTest.cpp - Attribute unit tests ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/AsmState.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "gtest/gtest.h"
#include <optional>

using namespace mlir;
using namespace mlir::detail;

//===----------------------------------------------------------------------===//
// DenseElementsAttr
//===----------------------------------------------------------------------===//

template <typename EltTy>
static void testSplat(Type eltType, const EltTy &splatElt) {
  RankedTensorType shape = RankedTensorType::get({2, 1}, eltType);

  // Check that the generated splat is the same for 1 element and N elements.
  DenseElementsAttr splat = DenseElementsAttr::get(shape, splatElt);
  EXPECT_TRUE(splat.isSplat());

  auto detectedSplat =
      DenseElementsAttr::get(shape, llvm::ArrayRef({splatElt, splatElt}));
  EXPECT_EQ(detectedSplat, splat);

  for (auto newValue : detectedSplat.template getValues<EltTy>())
    EXPECT_TRUE(newValue == splatElt);
}

namespace {
TEST(DenseSplatTest, BoolSplat) {
  MLIRContext context;
  IntegerType boolTy = IntegerType::get(&context, 1);
  RankedTensorType shape = RankedTensorType::get({2, 2}, boolTy);

  // Check that splat is automatically detected for boolean values.
  /// True.
  DenseElementsAttr trueSplat = DenseElementsAttr::get(shape, true);
  EXPECT_TRUE(trueSplat.isSplat());
  /// False.
  DenseElementsAttr falseSplat = DenseElementsAttr::get(shape, false);
  EXPECT_TRUE(falseSplat.isSplat());
  EXPECT_NE(falseSplat, trueSplat);

  /// Detect and handle splat within 8 elements (bool values are bit-packed).
  /// True.
  auto detectedSplat = DenseElementsAttr::get(shape, {true, true, true, true});
  EXPECT_EQ(detectedSplat, trueSplat);
  /// False.
  detectedSplat = DenseElementsAttr::get(shape, {false, false, false, false});
  EXPECT_EQ(detectedSplat, falseSplat);
}
TEST(DenseSplatTest, BoolSplatRawRoundtrip) {
  MLIRContext context;
  IntegerType boolTy = IntegerType::get(&context, 1);
  RankedTensorType shape = RankedTensorType::get({2, 2}, boolTy);

  // Check that splat booleans properly round trip via the raw API.
  DenseElementsAttr trueSplat = DenseElementsAttr::get(shape, true);
  EXPECT_TRUE(trueSplat.isSplat());
  DenseElementsAttr trueSplatFromRaw =
      DenseElementsAttr::getFromRawBuffer(shape, trueSplat.getRawData());
  EXPECT_TRUE(trueSplatFromRaw.isSplat());

  EXPECT_EQ(trueSplat, trueSplatFromRaw);
}

TEST(DenseSplatTest, LargeBoolSplat) {
  constexpr int64_t boolCount = 56;

  MLIRContext context;
  IntegerType boolTy = IntegerType::get(&context, 1);
  RankedTensorType shape = RankedTensorType::get({boolCount}, boolTy);

  // Check that splat is automatically detected for boolean values.
  /// True.
  DenseElementsAttr trueSplat = DenseElementsAttr::get(shape, true);
  DenseElementsAttr falseSplat = DenseElementsAttr::get(shape, false);
  EXPECT_TRUE(trueSplat.isSplat());
  EXPECT_TRUE(falseSplat.isSplat());

  /// Detect that the large boolean arrays are properly splatted.
  /// True.
  SmallVector<bool, 64> trueValues(boolCount, true);
  auto detectedSplat = DenseElementsAttr::get(shape, trueValues);
  EXPECT_EQ(detectedSplat, trueSplat);
  /// False.
  SmallVector<bool, 64> falseValues(boolCount, false);
  detectedSplat = DenseElementsAttr::get(shape, falseValues);
  EXPECT_EQ(detectedSplat, falseSplat);
}

TEST(DenseSplatTest, BoolNonSplat) {
  MLIRContext context;
  IntegerType boolTy = IntegerType::get(&context, 1);
  RankedTensorType shape = RankedTensorType::get({6}, boolTy);

  // Check that we properly handle non-splat values.
  DenseElementsAttr nonSplat =
      DenseElementsAttr::get(shape, {false, false, true, false, false, true});
  EXPECT_FALSE(nonSplat.isSplat());
}

TEST(DenseSplatTest, OddIntSplat) {
  // Test detecting a splat with an odd(non 8-bit) integer bitwidth.
  MLIRContext context;
  constexpr size_t intWidth = 19;
  IntegerType intTy = IntegerType::get(&context, intWidth);
  APInt value(intWidth, 10);

  testSplat(intTy, value);
}

TEST(DenseSplatTest, Int32Splat) {
  MLIRContext context;
  IntegerType intTy = IntegerType::get(&context, 32);
  int value = 64;

  testSplat(intTy, value);
}

TEST(DenseSplatTest, IntAttrSplat) {
  MLIRContext context;
  IntegerType intTy = IntegerType::get(&context, 85);
  Attribute value = IntegerAttr::get(intTy, 109);

  testSplat(intTy, value);
}

TEST(DenseSplatTest, F32Splat) {
  MLIRContext context;
  FloatType floatTy = FloatType::getF32(&context);
  float value = 10.0;

  testSplat(floatTy, value);
}

TEST(DenseSplatTest, F64Splat) {
  MLIRContext context;
  FloatType floatTy = FloatType::getF64(&context);
  double value = 10.0;

  testSplat(floatTy, APFloat(value));
}

TEST(DenseSplatTest, FloatAttrSplat) {
  MLIRContext context;
  FloatType floatTy = FloatType::getF32(&context);
  Attribute value = FloatAttr::get(floatTy, 10.0);

  testSplat(floatTy, value);
}

TEST(DenseSplatTest, BF16Splat) {
  MLIRContext context;
  FloatType floatTy = FloatType::getBF16(&context);
  Attribute value = FloatAttr::get(floatTy, 10.0);

  testSplat(floatTy, value);
}

TEST(DenseSplatTest, StringSplat) {
  MLIRContext context;
  context.allowUnregisteredDialects();
  Type stringType =
      OpaqueType::get(StringAttr::get(&context, "test"), "string");
  StringRef value = "test-string";
  testSplat(stringType, value);
}

TEST(DenseSplatTest, StringAttrSplat) {
  MLIRContext context;
  context.allowUnregisteredDialects();
  Type stringType =
      OpaqueType::get(StringAttr::get(&context, "test"), "string");
  Attribute stringAttr = StringAttr::get("test-string", stringType);
  testSplat(stringType, stringAttr);
}

TEST(DenseComplexTest, ComplexFloatSplat) {
  MLIRContext context;
  ComplexType complexType = ComplexType::get(FloatType::getF32(&context));
  std::complex<float> value(10.0, 15.0);
  testSplat(complexType, value);
}

TEST(DenseComplexTest, ComplexIntSplat) {
  MLIRContext context;
  ComplexType complexType = ComplexType::get(IntegerType::get(&context, 64));
  std::complex<int64_t> value(10, 15);
  testSplat(complexType, value);
}

TEST(DenseComplexTest, ComplexAPFloatSplat) {
  MLIRContext context;
  ComplexType complexType = ComplexType::get(FloatType::getF32(&context));
  std::complex<APFloat> value(APFloat(10.0f), APFloat(15.0f));
  testSplat(complexType, value);
}

TEST(DenseComplexTest, ComplexAPIntSplat) {
  MLIRContext context;
  ComplexType complexType = ComplexType::get(IntegerType::get(&context, 64));
  std::complex<APInt> value(APInt(64, 10), APInt(64, 15));
  testSplat(complexType, value);
}

TEST(DenseScalarTest, ExtractZeroRankElement) {
  MLIRContext context;
  const int elementValue = 12;
  IntegerType intTy = IntegerType::get(&context, 32);
  Attribute value = IntegerAttr::get(intTy, elementValue);
  RankedTensorType shape = RankedTensorType::get({}, intTy);

  auto attr = DenseElementsAttr::get(shape, llvm::ArrayRef({elementValue}));
  EXPECT_TRUE(attr.getValues<Attribute>()[0] == value);
}

TEST(DenseSplatMapValuesTest, I32ToTrue) {
  MLIRContext context;
  const int elementValue = 12;
  IntegerType boolTy = IntegerType::get(&context, 1);
  IntegerType intTy = IntegerType::get(&context, 32);
  RankedTensorType shape = RankedTensorType::get({4}, intTy);

  auto attr =
      DenseElementsAttr::get(shape, llvm::ArrayRef({elementValue}))
          .mapValues(boolTy, [](const APInt &x) {
            return x.isZero() ? APInt::getZero(1) : APInt::getAllOnes(1);
          });
  EXPECT_EQ(attr.getNumElements(), 4);
  EXPECT_TRUE(attr.isSplat());
  EXPECT_TRUE(attr.getSplatValue<BoolAttr>().getValue());
}

TEST(DenseSplatMapValuesTest, I32ToFalse) {
  MLIRContext context;
  const int elementValue = 0;
  IntegerType boolTy = IntegerType::get(&context, 1);
  IntegerType intTy = IntegerType::get(&context, 32);
  RankedTensorType shape = RankedTensorType::get({4}, intTy);

  auto attr =
      DenseElementsAttr::get(shape, llvm::ArrayRef({elementValue}))
          .mapValues(boolTy, [](const APInt &x) {
            return x.isZero() ? APInt::getZero(1) : APInt::getAllOnes(1);
          });
  EXPECT_EQ(attr.getNumElements(), 4);
  EXPECT_TRUE(attr.isSplat());
  EXPECT_FALSE(attr.getSplatValue<BoolAttr>().getValue());
}
} // namespace

//===----------------------------------------------------------------------===//
// DenseResourceElementsAttr
//===----------------------------------------------------------------------===//

template <typename AttrT, typename T>
static void checkNativeAccess(MLIRContext *ctx, ArrayRef<T> data,
                              Type elementType) {
  auto type = RankedTensorType::get(data.size(), elementType);
  auto attr = AttrT::get(type, "resource",
                         UnmanagedAsmResourceBlob::allocateInferAlign(data));

  // Check that we can access and iterate the data properly.
  std::optional<ArrayRef<T>> attrData = attr.tryGetAsArrayRef();
  EXPECT_TRUE(attrData.has_value());
  EXPECT_EQ(*attrData, data);

  // Check that we cast to this attribute when possible.
  Attribute genericAttr = attr;
  EXPECT_TRUE(genericAttr.template isa<AttrT>());
}
template <typename AttrT, typename T>
static void checkNativeIntAccess(Builder &builder, size_t intWidth) {
  T data[] = {0, 1, 2};
  checkNativeAccess<AttrT, T>(builder.getContext(), llvm::ArrayRef(data),
                              builder.getIntegerType(intWidth));
}

namespace {
TEST(DenseResourceElementsAttrTest, CheckNativeAccess) {
  MLIRContext context;
  Builder builder(&context);

  // Bool
  bool boolData[] = {true, false, true};
  checkNativeAccess<DenseBoolResourceElementsAttr>(
      &context, llvm::ArrayRef(boolData), builder.getI1Type());

  // Unsigned integers
  checkNativeIntAccess<DenseUI8ResourceElementsAttr, uint8_t>(builder, 8);
  checkNativeIntAccess<DenseUI16ResourceElementsAttr, uint16_t>(builder, 16);
  checkNativeIntAccess<DenseUI32ResourceElementsAttr, uint32_t>(builder, 32);
  checkNativeIntAccess<DenseUI64ResourceElementsAttr, uint64_t>(builder, 64);

  // Signed integers
  checkNativeIntAccess<DenseI8ResourceElementsAttr, int8_t>(builder, 8);
  checkNativeIntAccess<DenseI16ResourceElementsAttr, int16_t>(builder, 16);
  checkNativeIntAccess<DenseI32ResourceElementsAttr, int32_t>(builder, 32);
  checkNativeIntAccess<DenseI64ResourceElementsAttr, int64_t>(builder, 64);

  // Float
  float floatData[] = {0, 1, 2};
  checkNativeAccess<DenseF32ResourceElementsAttr>(
      &context, llvm::ArrayRef(floatData), builder.getF32Type());

  // Double
  double doubleData[] = {0, 1, 2};
  checkNativeAccess<DenseF64ResourceElementsAttr>(
      &context, llvm::ArrayRef(doubleData), builder.getF64Type());
}

TEST(DenseResourceElementsAttrTest, CheckNoCast) {
  MLIRContext context;
  Builder builder(&context);

  // Create a i32 attribute.
  ArrayRef<uint32_t> data;
  auto type = RankedTensorType::get(data.size(), builder.getI32Type());
  Attribute i32ResourceAttr = DenseI32ResourceElementsAttr::get(
      type, "resource", UnmanagedAsmResourceBlob::allocateInferAlign(data));

  EXPECT_TRUE(i32ResourceAttr.isa<DenseI32ResourceElementsAttr>());
  EXPECT_FALSE(i32ResourceAttr.isa<DenseF32ResourceElementsAttr>());
  EXPECT_FALSE(i32ResourceAttr.isa<DenseBoolResourceElementsAttr>());
}

TEST(DenseResourceElementsAttrTest, CheckInvalidData) {
  MLIRContext context;
  Builder builder(&context);

  // Create a bool attribute with data of the incorrect type.
  ArrayRef<uint32_t> data;
  auto type = RankedTensorType::get(data.size(), builder.getI32Type());
  EXPECT_DEBUG_DEATH(
      {
        DenseBoolResourceElementsAttr::get(
            type, "resource",
            UnmanagedAsmResourceBlob::allocateInferAlign(data));
      },
      "alignment mismatch between expected alignment and blob alignment");
}

TEST(DenseResourceElementsAttrTest, CheckInvalidType) {
  MLIRContext context;
  Builder builder(&context);

  // Create a bool attribute with incorrect type.
  ArrayRef<bool> data;
  auto type = RankedTensorType::get(data.size(), builder.getI32Type());
  EXPECT_DEBUG_DEATH(
      {
        DenseBoolResourceElementsAttr::get(
            type, "resource",
            UnmanagedAsmResourceBlob::allocateInferAlign(data));
      },
      "invalid shape element type for provided type `T`");
}
} // namespace

//===----------------------------------------------------------------------===//
// SparseElementsAttr
//===----------------------------------------------------------------------===//

namespace {
TEST(SparseElementsAttrTest, GetZero) {
  MLIRContext context;
  context.allowUnregisteredDialects();

  IntegerType intTy = IntegerType::get(&context, 32);
  FloatType floatTy = FloatType::getF32(&context);
  Type stringTy = OpaqueType::get(StringAttr::get(&context, "test"), "string");

  ShapedType tensorI32 = RankedTensorType::get({2, 2}, intTy);
  ShapedType tensorF32 = RankedTensorType::get({2, 2}, floatTy);
  ShapedType tensorString = RankedTensorType::get({2, 2}, stringTy);

  auto indicesType =
      RankedTensorType::get({1, 2}, IntegerType::get(&context, 64));
  auto indices =
      DenseIntElementsAttr::get(indicesType, {APInt(64, 0), APInt(64, 0)});

  RankedTensorType intValueTy = RankedTensorType::get({1}, intTy);
  auto intValue = DenseIntElementsAttr::get(intValueTy, {1});

  RankedTensorType floatValueTy = RankedTensorType::get({1}, floatTy);
  auto floatValue = DenseFPElementsAttr::get(floatValueTy, {1.0f});

  RankedTensorType stringValueTy = RankedTensorType::get({1}, stringTy);
  auto stringValue = DenseElementsAttr::get(stringValueTy, {StringRef("foo")});

  auto sparseInt = SparseElementsAttr::get(tensorI32, indices, intValue);
  auto sparseFloat = SparseElementsAttr::get(tensorF32, indices, floatValue);
  auto sparseString =
      SparseElementsAttr::get(tensorString, indices, stringValue);

  // Only index (0, 0) contains an element, others are supposed to return
  // the zero/empty value.
  auto zeroIntValue =
      sparseInt.getValues<Attribute>()[{1, 1}].cast<IntegerAttr>();
  EXPECT_EQ(zeroIntValue.getInt(), 0);
  EXPECT_TRUE(zeroIntValue.getType() == intTy);

  auto zeroFloatValue =
      sparseFloat.getValues<Attribute>()[{1, 1}].cast<FloatAttr>();
  EXPECT_EQ(zeroFloatValue.getValueAsDouble(), 0.0f);
  EXPECT_TRUE(zeroFloatValue.getType() == floatTy);

  auto zeroStringValue =
      sparseString.getValues<Attribute>()[{1, 1}].cast<StringAttr>();
  EXPECT_TRUE(zeroStringValue.getValue().empty());
  EXPECT_TRUE(zeroStringValue.getType() == stringTy);
}

} // namespace