summaryrefslogtreecommitdiff
path: root/polly/lib/CodeGen/IslNodeBuilder.cpp
blob: 121d68ff5e268142319d5c50426f240d669372a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
//===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the IslNodeBuilder, a class to translate an isl AST into
// a LLVM-IR AST.
//
//===----------------------------------------------------------------------===//

#include "polly/CodeGen/IslNodeBuilder.h"
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/CodeGen/IslAst.h"
#include "polly/CodeGen/IslExprBuilder.h"
#include "polly/CodeGen/LoopGeneratorsGOMP.h"
#include "polly/CodeGen/LoopGeneratorsKMP.h"
#include "polly/CodeGen/RuntimeDebugBuilder.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "polly/Support/VirtualInstruction.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "isl/aff.h"
#include "isl/aff_type.h"
#include "isl/ast.h"
#include "isl/ast_build.h"
#include "isl/isl-noexceptions.h"
#include "isl/map.h"
#include "isl/set.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
#include "isl/val.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-codegen"

STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");

STATISTIC(SequentialLoops, "Number of generated sequential for-loops");
STATISTIC(ParallelLoops, "Number of generated parallel for-loops");
STATISTIC(VectorLoops, "Number of generated vector for-loops");
STATISTIC(IfConditions, "Number of generated if-conditions");

/// OpenMP backend options
enum class OpenMPBackend { GNU, LLVM };

static cl::opt<bool> PollyGenerateRTCPrint(
    "polly-codegen-emit-rtc-print",
    cl::desc("Emit code that prints the runtime check result dynamically."),
    cl::Hidden, cl::cat(PollyCategory));

// If this option is set we always use the isl AST generator to regenerate
// memory accesses. Without this option set we regenerate expressions using the
// original SCEV expressions and only generate new expressions in case the
// access relation has been changed and consequently must be regenerated.
static cl::opt<bool> PollyGenerateExpressions(
    "polly-codegen-generate-expressions",
    cl::desc("Generate AST expressions for unmodified and modified accesses"),
    cl::Hidden, cl::cat(PollyCategory));

static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
    "polly-target-first-level-cache-line-size",
    cl::desc("The size of the first level cache line size specified in bytes."),
    cl::Hidden, cl::init(64), cl::cat(PollyCategory));

static cl::opt<OpenMPBackend> PollyOmpBackend(
    "polly-omp-backend", cl::desc("Choose the OpenMP library to use:"),
    cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"),
               clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")),
    cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory));

isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node_for For,
                                            ICmpInst::Predicate &Predicate) {
  isl::ast_expr Cond = For.cond();
  isl::ast_expr Iterator = For.iterator();
  assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op &&
         "conditional expression is not an atomic upper bound");

  isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get());

  switch (OpType) {
  case isl_ast_op_le:
    Predicate = ICmpInst::ICMP_SLE;
    break;
  case isl_ast_op_lt:
    Predicate = ICmpInst::ICMP_SLT;
    break;
  default:
    llvm_unreachable("Unexpected comparison type in loop condition");
  }

  isl::ast_expr Arg0 = Cond.get_op_arg(0);

  assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id &&
         "conditional expression is not an atomic upper bound");

  isl::id UBID = Arg0.get_id();

  assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id &&
         "Could not get the iterator");

  isl::id IteratorID = Iterator.get_id();

  assert(UBID.get() == IteratorID.get() &&
         "conditional expression is not an atomic upper bound");

  return Cond.get_op_arg(1);
}

int IslNodeBuilder::getNumberOfIterations(isl::ast_node_for For) {
  assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for);
  isl::ast_node Body = For.body();

  // First, check if we can actually handle this code.
  switch (isl_ast_node_get_type(Body.get())) {
  case isl_ast_node_user:
    break;
  case isl_ast_node_block: {
    isl::ast_node_block BodyBlock = Body.as<isl::ast_node_block>();
    isl::ast_node_list List = BodyBlock.children();
    for (isl::ast_node Node : List) {
      isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get());
      if (NodeType != isl_ast_node_user)
        return -1;
    }
    break;
  }
  default:
    return -1;
  }

  isl::ast_expr Init = For.init();
  if (!Init.isa<isl::ast_expr_int>() || !Init.val().is_zero())
    return -1;
  isl::ast_expr Inc = For.inc();
  if (!Inc.isa<isl::ast_expr_int>() || !Inc.val().is_one())
    return -1;
  CmpInst::Predicate Predicate;
  isl::ast_expr UB = getUpperBound(For, Predicate);
  if (!UB.isa<isl::ast_expr_int>())
    return -1;
  isl::val UpVal = UB.get_val();
  int NumberIterations = UpVal.get_num_si();
  if (NumberIterations < 0)
    return -1;
  if (Predicate == CmpInst::ICMP_SLT)
    return NumberIterations;
  else
    return NumberIterations + 1;
}

static void findReferencesByUse(Value *SrcVal, ScopStmt *UserStmt,
                                Loop *UserScope, const ValueMapT &GlobalMap,
                                SetVector<Value *> &Values,
                                SetVector<const SCEV *> &SCEVs) {
  VirtualUse VUse = VirtualUse::create(UserStmt, UserScope, SrcVal, true);
  switch (VUse.getKind()) {
  case VirtualUse::Constant:
    // When accelerator-offloading, GlobalValue is a host address whose content
    // must still be transferred to the GPU.
    if (isa<GlobalValue>(SrcVal))
      Values.insert(SrcVal);
    break;

  case VirtualUse::Synthesizable:
    SCEVs.insert(VUse.getScevExpr());
    return;

  case VirtualUse::Block:
  case VirtualUse::ReadOnly:
  case VirtualUse::Hoisted:
  case VirtualUse::Intra:
  case VirtualUse::Inter:
    break;
  }

  if (Value *NewVal = GlobalMap.lookup(SrcVal))
    Values.insert(NewVal);
}

static void findReferencesInInst(Instruction *Inst, ScopStmt *UserStmt,
                                 Loop *UserScope, const ValueMapT &GlobalMap,
                                 SetVector<Value *> &Values,
                                 SetVector<const SCEV *> &SCEVs) {
  for (Use &U : Inst->operands())
    findReferencesByUse(U.get(), UserStmt, UserScope, GlobalMap, Values, SCEVs);
}

static void findReferencesInStmt(ScopStmt *Stmt, SetVector<Value *> &Values,
                                 ValueMapT &GlobalMap,
                                 SetVector<const SCEV *> &SCEVs) {
  LoopInfo *LI = Stmt->getParent()->getLI();

  BasicBlock *BB = Stmt->getBasicBlock();
  Loop *Scope = LI->getLoopFor(BB);
  for (Instruction *Inst : Stmt->getInstructions())
    findReferencesInInst(Inst, Stmt, Scope, GlobalMap, Values, SCEVs);

  if (Stmt->isRegionStmt()) {
    for (BasicBlock *BB : Stmt->getRegion()->blocks()) {
      Loop *Scope = LI->getLoopFor(BB);
      for (Instruction &Inst : *BB)
        findReferencesInInst(&Inst, Stmt, Scope, GlobalMap, Values, SCEVs);
    }
  }
}

void polly::addReferencesFromStmt(ScopStmt *Stmt, void *UserPtr,
                                  bool CreateScalarRefs) {
  auto &References = *static_cast<SubtreeReferences *>(UserPtr);

  findReferencesInStmt(Stmt, References.Values, References.GlobalMap,
                       References.SCEVs);

  for (auto &Access : *Stmt) {
    if (References.ParamSpace) {
      isl::space ParamSpace = Access->getLatestAccessRelation().get_space();
      (*References.ParamSpace) =
          References.ParamSpace->align_params(ParamSpace);
    }

    if (Access->isLatestArrayKind()) {
      auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr();
      if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
        if (Stmt->getParent()->contains(OpInst))
          continue;

      References.Values.insert(BasePtr);
      continue;
    }

    if (CreateScalarRefs)
      References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
  }
}

/// Extract the out-of-scop values and SCEVs referenced from a set describing
/// a ScopStmt.
///
/// This includes the SCEVUnknowns referenced by the SCEVs used in the
/// statement and the base pointers of the memory accesses. For scalar
/// statements we force the generation of alloca memory locations and list
/// these locations in the set of out-of-scop values as well.
///
/// @param Set     A set which references the ScopStmt we are interested in.
/// @param UserPtr A void pointer that can be casted to a SubtreeReferences
///                structure.
static void addReferencesFromStmtSet(isl::set Set, SubtreeReferences *UserPtr) {
  isl::id Id = Set.get_tuple_id();
  auto *Stmt = static_cast<ScopStmt *>(Id.get_user());
  addReferencesFromStmt(Stmt, UserPtr);
}

/// Extract the out-of-scop values and SCEVs referenced from a union set
/// referencing multiple ScopStmts.
///
/// This includes the SCEVUnknowns referenced by the SCEVs used in the
/// statement and the base pointers of the memory accesses. For scalar
/// statements we force the generation of alloca memory locations and list
/// these locations in the set of out-of-scop values as well.
///
/// @param USet       A union set referencing the ScopStmts we are interested
///                   in.
/// @param References The SubtreeReferences data structure through which
///                   results are returned and further information is
///                   provided.
static void addReferencesFromStmtUnionSet(isl::union_set USet,
                                          SubtreeReferences &References) {

  for (isl::set Set : USet.get_set_list())
    addReferencesFromStmtSet(Set, &References);
}

isl::union_map
IslNodeBuilder::getScheduleForAstNode(const isl::ast_node &Node) {
  return IslAstInfo::getSchedule(Node);
}

void IslNodeBuilder::getReferencesInSubtree(const isl::ast_node &For,
                                            SetVector<Value *> &Values,
                                            SetVector<const Loop *> &Loops) {
  SetVector<const SCEV *> SCEVs;
  SubtreeReferences References = {
      LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr};

  for (const auto &I : IDToValue)
    Values.insert(I.second);

  // NOTE: this is populated in IslNodeBuilder::addParameters
  for (const auto &I : OutsideLoopIterations)
    Values.insert(cast<SCEVUnknown>(I.second)->getValue());

  isl::union_set Schedule = getScheduleForAstNode(For).domain();
  addReferencesFromStmtUnionSet(Schedule, References);

  for (const SCEV *Expr : SCEVs) {
    findValues(Expr, SE, Values);
    findLoops(Expr, Loops);
  }

  Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });

  /// Note: Code generation of induction variables of loops outside Scops
  ///
  /// Remove loops that contain the scop or that are part of the scop, as they
  /// are considered local. This leaves only loops that are before the scop, but
  /// do not contain the scop itself.
  /// We ignore loops perfectly contained in the Scop because these are already
  /// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops
  /// whose induction variables are referred to by the Scop, but the Scop is not
  /// fully contained in these Loops. Since there can be many of these,
  /// we choose to codegen these on-demand.
  /// @see IslNodeBuilder::materializeNonScopLoopInductionVariable.
  Loops.remove_if([this](const Loop *L) {
    return S.contains(L) || L->contains(S.getEntry());
  });

  // Contains Values that may need to be replaced with other values
  // due to replacements from the ValueMap. We should make sure
  // that we return correctly remapped values.
  // NOTE: this code path is tested by:
  //     1.  test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
  //     2.  test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
  SetVector<Value *> ReplacedValues;
  for (Value *V : Values) {
    ReplacedValues.insert(getLatestValue(V));
  }
  Values = ReplacedValues;
}

void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
  SmallPtrSet<Value *, 5> Inserted;

  for (const auto &I : IDToValue) {
    IDToValue[I.first] = NewValues[I.second];
    Inserted.insert(I.second);
  }

  for (const auto &I : NewValues) {
    if (Inserted.count(I.first))
      continue;

    ValueMap[I.first] = I.second;
  }
}

Value *IslNodeBuilder::getLatestValue(Value *Original) const {
  auto It = ValueMap.find(Original);
  if (It == ValueMap.end())
    return Original;
  return It->second;
}

void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
  auto *Id = isl_ast_node_mark_get_id(Node);
  auto Child = isl_ast_node_mark_get_node(Node);
  isl_ast_node_free(Node);
  // If a child node of a 'SIMD mark' is a loop that has a single iteration,
  // it will be optimized away and we should skip it.
  if (strcmp(isl_id_get_name(Id), "SIMD") == 0 &&
      isl_ast_node_get_type(Child) == isl_ast_node_for) {
    createForSequential(isl::manage(Child).as<isl::ast_node_for>(), true);
    isl_id_free(Id);
    return;
  }

  BandAttr *ChildLoopAttr = getLoopAttr(isl::manage_copy(Id));
  BandAttr *AncestorLoopAttr;
  if (ChildLoopAttr) {
    // Save current LoopAttr environment to restore again when leaving this
    // subtree. This means there was no loop between the ancestor LoopAttr and
    // this mark, i.e. the ancestor LoopAttr did not directly mark a loop. This
    // can happen e.g. if the AST build peeled or unrolled the loop.
    AncestorLoopAttr = Annotator.getStagingAttrEnv();

    Annotator.getStagingAttrEnv() = ChildLoopAttr;
  }

  create(Child);

  if (ChildLoopAttr) {
    assert(Annotator.getStagingAttrEnv() == ChildLoopAttr &&
           "Nest must not overwrite loop attr environment");
    Annotator.getStagingAttrEnv() = AncestorLoopAttr;
  }

  isl_id_free(Id);
}

/// Restore the initial ordering of dimensions of the band node
///
/// In case the band node represents all the dimensions of the iteration
/// domain, recreate the band node to restore the initial ordering of the
/// dimensions.
///
/// @param Node The band node to be modified.
/// @return The modified schedule node.
static bool IsLoopVectorizerDisabled(isl::ast_node_for Node) {
  assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for);
  isl::ast_node Body = Node.body();
  if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark)
    return false;

  isl::ast_node_mark BodyMark = Body.as<isl::ast_node_mark>();
  auto Id = BodyMark.id();
  if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0)
    return true;
  return false;
}

void IslNodeBuilder::createForSequential(isl::ast_node_for For,
                                         bool MarkParallel) {
  Value *ValueLB, *ValueUB, *ValueInc;
  Type *MaxType;
  BasicBlock *ExitBlock;
  Value *IV;
  CmpInst::Predicate Predicate;

  bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For);

  isl::ast_node Body = For.body();

  // isl_ast_node_for_is_degenerate(For)
  //
  // TODO: For degenerated loops we could generate a plain assignment.
  //       However, for now we just reuse the logic for normal loops, which will
  //       create a loop with a single iteration.

  isl::ast_expr Init = For.init();
  isl::ast_expr Inc = For.inc();
  isl::ast_expr Iterator = For.iterator();
  isl::id IteratorID = Iterator.get_id();
  isl::ast_expr UB = getUpperBound(For, Predicate);

  ValueLB = ExprBuilder.create(Init.release());
  ValueUB = ExprBuilder.create(UB.release());
  ValueInc = ExprBuilder.create(Inc.release());

  MaxType = ExprBuilder.getType(Iterator.get());
  MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
  MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
  MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());

  if (MaxType != ValueLB->getType())
    ValueLB = Builder.CreateSExt(ValueLB, MaxType);
  if (MaxType != ValueUB->getType())
    ValueUB = Builder.CreateSExt(ValueUB, MaxType);
  if (MaxType != ValueInc->getType())
    ValueInc = Builder.CreateSExt(ValueInc, MaxType);

  // If we can show that LB <Predicate> UB holds at least once, we can
  // omit the GuardBB in front of the loop.
  bool UseGuardBB =
      !SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
  IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock,
                  Predicate, &Annotator, MarkParallel, UseGuardBB,
                  LoopVectorizerDisabled);
  IDToValue[IteratorID.get()] = IV;

  create(Body.release());

  Annotator.popLoop(MarkParallel);

  IDToValue.erase(IDToValue.find(IteratorID.get()));

  Builder.SetInsertPoint(&ExitBlock->front());

  SequentialLoops++;
}

/// Remove the BBs contained in a (sub)function from the dominator tree.
///
/// This function removes the basic blocks that are part of a subfunction from
/// the dominator tree. Specifically, when generating code it may happen that at
/// some point the code generation continues in a new sub-function (e.g., when
/// generating OpenMP code). The basic blocks that are created in this
/// sub-function are then still part of the dominator tree of the original
/// function, such that the dominator tree reaches over function boundaries.
/// This is not only incorrect, but also causes crashes. This function now
/// removes from the dominator tree all basic blocks that are dominated (and
/// consequently reachable) from the entry block of this (sub)function.
///
/// FIXME: A LLVM (function or region) pass should not touch anything outside of
/// the function/region it runs on. Hence, the pure need for this function shows
/// that we do not comply to this rule. At the moment, this does not cause any
/// issues, but we should be aware that such issues may appear. Unfortunately
/// the current LLVM pass infrastructure does not allow to make Polly a module
/// or call-graph pass to solve this issue, as such a pass would not have access
/// to the per-function analyses passes needed by Polly. A future pass manager
/// infrastructure is supposed to enable such kind of access possibly allowing
/// us to create a cleaner solution here.
///
/// FIXME: Instead of adding the dominance information and then dropping it
/// later on, we should try to just not add it in the first place. This requires
/// some careful testing to make sure this does not break in interaction with
/// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
/// which may try to update it.
///
/// @param F The function which contains the BBs to removed.
/// @param DT The dominator tree from which to remove the BBs.
static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
  DomTreeNode *N = DT.getNode(&F->getEntryBlock());
  std::vector<BasicBlock *> Nodes;

  // We can only remove an element from the dominator tree, if all its children
  // have been removed. To ensure this we obtain the list of nodes to remove
  // using a post-order tree traversal.
  for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
    Nodes.push_back(I->getBlock());

  for (BasicBlock *BB : Nodes)
    DT.eraseNode(BB);
}

void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
  isl_ast_node *Body;
  isl_ast_expr *Init, *Inc, *Iterator, *UB;
  isl_id *IteratorID;
  Value *ValueLB, *ValueUB, *ValueInc;
  Type *MaxType;
  Value *IV;
  CmpInst::Predicate Predicate;

  // The preamble of parallel code interacts different than normal code with
  // e.g., scalar initialization. Therefore, we ensure the parallel code is
  // separated from the last basic block.
  BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
                                 &*Builder.GetInsertPoint(), &DT, &LI);
  ParBB->setName("polly.parallel.for");
  Builder.SetInsertPoint(&ParBB->front());

  Body = isl_ast_node_for_get_body(For);
  Init = isl_ast_node_for_get_init(For);
  Inc = isl_ast_node_for_get_inc(For);
  Iterator = isl_ast_node_for_get_iterator(For);
  IteratorID = isl_ast_expr_get_id(Iterator);
  UB = getUpperBound(isl::manage_copy(For).as<isl::ast_node_for>(), Predicate)
           .release();

  ValueLB = ExprBuilder.create(Init);
  ValueUB = ExprBuilder.create(UB);
  ValueInc = ExprBuilder.create(Inc);

  // OpenMP always uses SLE. In case the isl generated AST uses a SLT
  // expression, we need to adjust the loop bound by one.
  if (Predicate == CmpInst::ICMP_SLT)
    ValueUB = Builder.CreateAdd(
        ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));

  MaxType = ExprBuilder.getType(Iterator);
  MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
  MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
  MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());

  if (MaxType != ValueLB->getType())
    ValueLB = Builder.CreateSExt(ValueLB, MaxType);
  if (MaxType != ValueUB->getType())
    ValueUB = Builder.CreateSExt(ValueUB, MaxType);
  if (MaxType != ValueInc->getType())
    ValueInc = Builder.CreateSExt(ValueInc, MaxType);

  BasicBlock::iterator LoopBody;

  SetVector<Value *> SubtreeValues;
  SetVector<const Loop *> Loops;

  getReferencesInSubtree(isl::manage_copy(For), SubtreeValues, Loops);

  // Create for all loops we depend on values that contain the current loop
  // iteration. These values are necessary to generate code for SCEVs that
  // depend on such loops. As a result we need to pass them to the subfunction.
  // See [Code generation of induction variables of loops outside Scops]
  for (const Loop *L : Loops) {
    Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L);
    SubtreeValues.insert(LoopInductionVar);
  }

  ValueMapT NewValues;

  std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr;

  switch (PollyOmpBackend) {
  case OpenMPBackend::GNU:
    ParallelLoopGenPtr.reset(
        new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL));
    break;
  case OpenMPBackend::LLVM:
    ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL));
    break;
  }

  IV = ParallelLoopGenPtr->createParallelLoop(
      ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody);
  BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
  Builder.SetInsertPoint(&*LoopBody);

  // Remember the parallel subfunction
  ParallelSubfunctions.push_back(LoopBody->getFunction());

  // Save the current values.
  auto ValueMapCopy = ValueMap;
  IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;

  updateValues(NewValues);
  IDToValue[IteratorID] = IV;

  ValueMapT NewValuesReverse;

  for (auto P : NewValues)
    NewValuesReverse[P.second] = P.first;

  Annotator.addAlternativeAliasBases(NewValuesReverse);

  create(Body);

  Annotator.resetAlternativeAliasBases();
  // Restore the original values.
  ValueMap = ValueMapCopy;
  IDToValue = IDToValueCopy;

  Builder.SetInsertPoint(&*AfterLoop);
  removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);

  for (const Loop *L : Loops)
    OutsideLoopIterations.erase(L);

  isl_ast_node_free(For);
  isl_ast_expr_free(Iterator);
  isl_id_free(IteratorID);

  ParallelLoops++;
}

void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
  if (IslAstInfo::isExecutedInParallel(isl::manage_copy(For))) {
    createForParallel(For);
    return;
  }
  bool Parallel = (IslAstInfo::isParallel(isl::manage_copy(For)) &&
                   !IslAstInfo::isReductionParallel(isl::manage_copy(For)));
  createForSequential(isl::manage(For).as<isl::ast_node_for>(), Parallel);
}

void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
  isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);

  Function *F = Builder.GetInsertBlock()->getParent();
  LLVMContext &Context = F->getContext();

  BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
                                  &*Builder.GetInsertPoint(), &DT, &LI);
  CondBB->setName("polly.cond");
  BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
  MergeBB->setName("polly.merge");
  BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
  BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);

  DT.addNewBlock(ThenBB, CondBB);
  DT.addNewBlock(ElseBB, CondBB);
  DT.changeImmediateDominator(MergeBB, CondBB);

  Loop *L = LI.getLoopFor(CondBB);
  if (L) {
    L->addBasicBlockToLoop(ThenBB, LI);
    L->addBasicBlockToLoop(ElseBB, LI);
  }

  CondBB->getTerminator()->eraseFromParent();

  Builder.SetInsertPoint(CondBB);
  Value *Predicate = ExprBuilder.create(Cond);
  Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
  Builder.SetInsertPoint(ThenBB);
  Builder.CreateBr(MergeBB);
  Builder.SetInsertPoint(ElseBB);
  Builder.CreateBr(MergeBB);
  Builder.SetInsertPoint(&ThenBB->front());

  create(isl_ast_node_if_get_then(If));

  Builder.SetInsertPoint(&ElseBB->front());

  if (isl_ast_node_if_has_else(If))
    create(isl_ast_node_if_get_else(If));

  Builder.SetInsertPoint(&MergeBB->front());

  isl_ast_node_free(If);

  IfConditions++;
}

__isl_give isl_id_to_ast_expr *
IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
                                  __isl_keep isl_ast_node *Node) {
  isl::id_to_ast_expr NewAccesses =
      isl::id_to_ast_expr::alloc(Stmt->getParent()->getIslCtx(), 0);

  isl::ast_build Build = IslAstInfo::getBuild(isl::manage_copy(Node));
  assert(!Build.is_null() && "Could not obtain isl_ast_build from user node");
  Stmt->setAstBuild(Build);

  for (auto *MA : *Stmt) {
    if (!MA->hasNewAccessRelation()) {
      if (PollyGenerateExpressions) {
        if (!MA->isAffine())
          continue;
        if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
          continue;

        auto *BasePtr =
            dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
        if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
          continue;
      } else {
        continue;
      }
    }
    assert(MA->isAffine() &&
           "Only affine memory accesses can be code generated");

    isl::union_map Schedule = Build.get_schedule();

#ifndef NDEBUG
    if (MA->isRead()) {
      auto Dom = Stmt->getDomain().release();
      auto SchedDom = isl_set_from_union_set(Schedule.domain().release());
      auto AccDom = isl_map_domain(MA->getAccessRelation().release());
      Dom = isl_set_intersect_params(Dom,
                                     Stmt->getParent()->getContext().release());
      SchedDom = isl_set_intersect_params(
          SchedDom, Stmt->getParent()->getContext().release());
      assert(isl_set_is_subset(SchedDom, AccDom) &&
             "Access relation not defined on full schedule domain");
      assert(isl_set_is_subset(Dom, AccDom) &&
             "Access relation not defined on full domain");
      isl_set_free(AccDom);
      isl_set_free(SchedDom);
      isl_set_free(Dom);
    }
#endif

    isl::pw_multi_aff PWAccRel = MA->applyScheduleToAccessRelation(Schedule);

    // isl cannot generate an index expression for access-nothing accesses.
    isl::set AccDomain = PWAccRel.domain();
    isl::set Context = S.getContext();
    AccDomain = AccDomain.intersect_params(Context);
    if (AccDomain.is_empty())
      continue;

    isl::ast_expr AccessExpr = Build.access_from(PWAccRel);
    NewAccesses = NewAccesses.set(MA->getId(), AccessExpr);
  }

  return NewAccesses.release();
}

void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
                                         ScopStmt *Stmt, LoopToScevMapT &LTS) {
  assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
         "Expression of type 'op' expected");
  assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
         "Operation of type 'call' expected");
  for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
    isl_ast_expr *SubExpr;
    Value *V;

    SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
    V = ExprBuilder.create(SubExpr);
    ScalarEvolution *SE = Stmt->getParent()->getSE();
    LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
  }

  isl_ast_expr_free(Expr);
}

void IslNodeBuilder::createSubstitutionsVector(
    __isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
    std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
    __isl_take isl_id *IteratorID) {
  int i = 0;

  Value *OldValue = IDToValue[IteratorID];
  for (Value *IV : IVS) {
    IDToValue[IteratorID] = IV;
    createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
    i++;
  }

  IDToValue[IteratorID] = OldValue;
  isl_id_free(IteratorID);
  isl_ast_expr_free(Expr);
}

void IslNodeBuilder::generateCopyStmt(
    ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
  assert(Stmt->size() == 2);
  auto ReadAccess = Stmt->begin();
  auto WriteAccess = ReadAccess++;
  assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
  assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
         "Accesses use the same data type");
  assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
  auto *AccessExpr =
      isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release());
  auto *LoadValue = ExprBuilder.create(AccessExpr);
  AccessExpr =
      isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release());
  auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr).first;
  Builder.CreateStore(LoadValue, StoreAddr);
}

Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) {
  assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() &&
         "trying to materialize loop induction variable twice");
  const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
                                          SE.getUnknown(Builder.getInt64(1)), L,
                                          SCEV::FlagAnyWrap);
  Value *V = generateSCEV(OuterLIV);
  OutsideLoopIterations[L] = SE.getUnknown(V);
  return V;
}

void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
  LoopToScevMapT LTS;
  isl_id *Id;
  ScopStmt *Stmt;

  isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
  isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
  Id = isl_ast_expr_get_id(StmtExpr);
  isl_ast_expr_free(StmtExpr);

  LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());

  Stmt = (ScopStmt *)isl_id_get_user(Id);
  auto *NewAccesses = createNewAccesses(Stmt, User);
  if (Stmt->isCopyStmt()) {
    generateCopyStmt(Stmt, NewAccesses);
    isl_ast_expr_free(Expr);
  } else {
    createSubstitutions(Expr, Stmt, LTS);

    if (Stmt->isBlockStmt())
      BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
    else
      RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
  }

  isl_id_to_ast_expr_free(NewAccesses);
  isl_ast_node_free(User);
  isl_id_free(Id);
}

void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
  isl_ast_node_list *List = isl_ast_node_block_get_children(Block);

  for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
    create(isl_ast_node_list_get_ast_node(List, i));

  isl_ast_node_free(Block);
  isl_ast_node_list_free(List);
}

void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
  switch (isl_ast_node_get_type(Node)) {
  case isl_ast_node_error:
    llvm_unreachable("code generation error");
  case isl_ast_node_mark:
    createMark(Node);
    return;
  case isl_ast_node_for:
    createFor(Node);
    return;
  case isl_ast_node_if:
    createIf(Node);
    return;
  case isl_ast_node_user:
    createUser(Node);
    return;
  case isl_ast_node_block:
    createBlock(Node);
    return;
  }

  llvm_unreachable("Unknown isl_ast_node type");
}

bool IslNodeBuilder::materializeValue(__isl_take isl_id *Id) {
  // If the Id is already mapped, skip it.
  if (!IDToValue.count(Id)) {
    auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
    Value *V = nullptr;

    // Parameters could refer to invariant loads that need to be
    // preloaded before we can generate code for the parameter. Thus,
    // check if any value referred to in ParamSCEV is an invariant load
    // and if so make sure its equivalence class is preloaded.
    SetVector<Value *> Values;
    findValues(ParamSCEV, SE, Values);
    for (auto *Val : Values) {
      // Check if the value is an instruction in a dead block within the SCoP
      // and if so do not code generate it.
      if (auto *Inst = dyn_cast<Instruction>(Val)) {
        if (S.contains(Inst)) {
          bool IsDead = true;

          // Check for "undef" loads first, then if there is a statement for
          // the parent of Inst and lastly if the parent of Inst has an empty
          // domain. In the first and last case the instruction is dead but if
          // there is a statement or the domain is not empty Inst is not dead.
          auto MemInst = MemAccInst::dyn_cast(Inst);
          auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
          if (Address && SE.getUnknown(UndefValue::get(Address->getType())) ==
                             SE.getPointerBase(SE.getSCEV(Address))) {
          } else if (S.getStmtFor(Inst)) {
            IsDead = false;
          } else {
            auto *Domain = S.getDomainConditions(Inst->getParent()).release();
            IsDead = isl_set_is_empty(Domain);
            isl_set_free(Domain);
          }

          if (IsDead) {
            V = UndefValue::get(ParamSCEV->getType());
            break;
          }
        }
      }

      if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
        // Check if this invariant access class is empty, hence if we never
        // actually added a loads instruction to it. In that case it has no
        // (meaningful) users and we should not try to code generate it.
        if (IAClass->InvariantAccesses.empty())
          V = UndefValue::get(ParamSCEV->getType());

        if (!preloadInvariantEquivClass(*IAClass)) {
          isl_id_free(Id);
          return false;
        }
      }
    }

    V = V ? V : generateSCEV(ParamSCEV);
    IDToValue[Id] = V;
  }

  isl_id_free(Id);
  return true;
}

bool IslNodeBuilder::materializeParameters(__isl_take isl_set *Set) {
  for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
    if (!isl_set_involves_dims(Set, isl_dim_param, i, 1))
      continue;
    isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
    if (!materializeValue(Id))
      return false;
  }
  return true;
}

bool IslNodeBuilder::materializeParameters() {
  for (const SCEV *Param : S.parameters()) {
    isl_id *Id = S.getIdForParam(Param).release();
    if (!materializeValue(Id))
      return false;
  }
  return true;
}

Value *IslNodeBuilder::preloadUnconditionally(__isl_take isl_set *AccessRange,
                                              isl_ast_build *Build,
                                              Instruction *AccInst) {
  isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
  isl_ast_expr *Access =
      isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
  auto *Address = isl_ast_expr_address_of(Access);
  auto *AddressValue = ExprBuilder.create(Address);
  Value *PreloadVal;

  // Correct the type as the SAI might have a different type than the user
  // expects, especially if the base pointer is a struct.
  Type *Ty = AccInst->getType();

  auto *Ptr = AddressValue;
  auto Name = Ptr->getName();
  auto AS = Ptr->getType()->getPointerAddressSpace();
  Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast");
  PreloadVal = Builder.CreateLoad(Ty, Ptr, Name + ".load");
  if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
    PreloadInst->setAlignment(cast<LoadInst>(AccInst)->getAlign());

  // TODO: This is only a hot fix for SCoP sequences that use the same load
  //       instruction contained and hoisted by one of the SCoPs.
  if (SE.isSCEVable(Ty))
    SE.forgetValue(AccInst);

  return PreloadVal;
}

Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
                                            __isl_take isl_set *Domain) {
  isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release());
  AccessRange = isl_set_gist_params(AccessRange, S.getContext().release());

  if (!materializeParameters(AccessRange)) {
    isl_set_free(AccessRange);
    isl_set_free(Domain);
    return nullptr;
  }

  auto *Build =
      isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release()));
  isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
  bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
  isl_set_free(Universe);

  Instruction *AccInst = MA.getAccessInstruction();
  Type *AccInstTy = AccInst->getType();

  Value *PreloadVal = nullptr;
  if (AlwaysExecuted) {
    PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
    isl_ast_build_free(Build);
    isl_set_free(Domain);
    return PreloadVal;
  }

  if (!materializeParameters(Domain)) {
    isl_ast_build_free(Build);
    isl_set_free(AccessRange);
    isl_set_free(Domain);
    return nullptr;
  }

  isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
  Domain = nullptr;

  ExprBuilder.setTrackOverflow(true);
  Value *Cond = ExprBuilder.create(DomainCond);
  Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
                                              "polly.preload.cond.overflown");
  Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
  ExprBuilder.setTrackOverflow(false);

  if (!Cond->getType()->isIntegerTy(1))
    Cond = Builder.CreateIsNotNull(Cond);

  BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
                                  &*Builder.GetInsertPoint(), &DT, &LI);
  CondBB->setName("polly.preload.cond");

  BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
  MergeBB->setName("polly.preload.merge");

  Function *F = Builder.GetInsertBlock()->getParent();
  LLVMContext &Context = F->getContext();
  BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);

  DT.addNewBlock(ExecBB, CondBB);
  if (Loop *L = LI.getLoopFor(CondBB))
    L->addBasicBlockToLoop(ExecBB, LI);

  auto *CondBBTerminator = CondBB->getTerminator();
  Builder.SetInsertPoint(CondBBTerminator);
  Builder.CreateCondBr(Cond, ExecBB, MergeBB);
  CondBBTerminator->eraseFromParent();

  Builder.SetInsertPoint(ExecBB);
  Builder.CreateBr(MergeBB);

  Builder.SetInsertPoint(ExecBB->getTerminator());
  Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
  Builder.SetInsertPoint(MergeBB->getTerminator());
  auto *MergePHI = Builder.CreatePHI(
      AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
  PreloadVal = MergePHI;

  if (!PreAccInst) {
    PreloadVal = nullptr;
    PreAccInst = UndefValue::get(AccInstTy);
  }

  MergePHI->addIncoming(PreAccInst, ExecBB);
  MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);

  isl_ast_build_free(Build);
  return PreloadVal;
}

bool IslNodeBuilder::preloadInvariantEquivClass(
    InvariantEquivClassTy &IAClass) {
  // For an equivalence class of invariant loads we pre-load the representing
  // element with the unified execution context. However, we have to map all
  // elements of the class to the one preloaded load as they are referenced
  // during the code generation and therefor need to be mapped.
  const MemoryAccessList &MAs = IAClass.InvariantAccesses;
  if (MAs.empty())
    return true;

  MemoryAccess *MA = MAs.front();
  assert(MA->isArrayKind() && MA->isRead());

  // If the access function was already mapped, the preload of this equivalence
  // class was triggered earlier already and doesn't need to be done again.
  if (ValueMap.count(MA->getAccessInstruction()))
    return true;

  // Check for recursion which can be caused by additional constraints, e.g.,
  // non-finite loop constraints. In such a case we have to bail out and insert
  // a "false" runtime check that will cause the original code to be executed.
  auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
  if (!PreloadedPtrs.insert(PtrId).second)
    return false;

  // The execution context of the IAClass.
  isl::set &ExecutionCtx = IAClass.ExecutionContext;

  // If the base pointer of this class is dependent on another one we have to
  // make sure it was preloaded already.
  auto *SAI = MA->getScopArrayInfo();
  if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
    if (!preloadInvariantEquivClass(*BaseIAClass))
      return false;

    // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
    // we need to refine the ExecutionCtx.
    isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
    ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
  }

  // If the size of a dimension is dependent on another class, make sure it is
  // preloaded.
  for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
    const SCEV *Dim = SAI->getDimensionSize(i);
    SetVector<Value *> Values;
    findValues(Dim, SE, Values);
    for (auto *Val : Values) {
      if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
        if (!preloadInvariantEquivClass(*BaseIAClass))
          return false;

        // After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
        // and we need to refine the ExecutionCtx.
        isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
        ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
      }
    }
  }

  Instruction *AccInst = MA->getAccessInstruction();
  Type *AccInstTy = AccInst->getType();

  Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy());
  if (!PreloadVal)
    return false;

  for (const MemoryAccess *MA : MAs) {
    Instruction *MAAccInst = MA->getAccessInstruction();
    assert(PreloadVal->getType() == MAAccInst->getType());
    ValueMap[MAAccInst] = PreloadVal;
  }

  if (SE.isSCEVable(AccInstTy)) {
    isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release();
    if (ParamId)
      IDToValue[ParamId] = PreloadVal;
    isl_id_free(ParamId);
  }

  BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
  auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(),
                                AccInst->getName() + ".preload.s2a",
                                &*EntryBB->getFirstInsertionPt());
  Builder.CreateStore(PreloadVal, Alloca);
  ValueMapT PreloadedPointer;
  PreloadedPointer[PreloadVal] = AccInst;
  Annotator.addAlternativeAliasBases(PreloadedPointer);

  for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
    Value *BasePtr = DerivedSAI->getBasePtr();

    for (const MemoryAccess *MA : MAs) {
      // As the derived SAI information is quite coarse, any load from the
      // current SAI could be the base pointer of the derived SAI, however we
      // should only change the base pointer of the derived SAI if we actually
      // preloaded it.
      if (BasePtr == MA->getOriginalBaseAddr()) {
        assert(BasePtr->getType() == PreloadVal->getType());
        DerivedSAI->setBasePtr(PreloadVal);
      }

      // For scalar derived SAIs we remap the alloca used for the derived value.
      if (BasePtr == MA->getAccessInstruction())
        ScalarMap[DerivedSAI] = Alloca;
    }
  }

  for (const MemoryAccess *MA : MAs) {
    Instruction *MAAccInst = MA->getAccessInstruction();
    // Use the escape system to get the correct value to users outside the SCoP.
    BlockGenerator::EscapeUserVectorTy EscapeUsers;
    for (auto *U : MAAccInst->users())
      if (Instruction *UI = dyn_cast<Instruction>(U))
        if (!S.contains(UI))
          EscapeUsers.push_back(UI);

    if (EscapeUsers.empty())
      continue;

    EscapeMap[MA->getAccessInstruction()] =
        std::make_pair(Alloca, std::move(EscapeUsers));
  }

  return true;
}

void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) {
  for (auto &SAI : S.arrays()) {
    if (SAI->getBasePtr())
      continue;

    assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
           "The size of the outermost dimension is used to declare newly "
           "created arrays that require memory allocation.");

    Type *NewArrayType = nullptr;

    // Get the size of the array = size(dim_1)*...*size(dim_n)
    uint64_t ArraySizeInt = 1;
    for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
      auto *DimSize = SAI->getDimensionSize(i);
      unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
                                     ->getAPInt()
                                     .getLimitedValue();

      if (!NewArrayType)
        NewArrayType = SAI->getElementType();

      NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
      ArraySizeInt *= UnsignedDimSize;
    }

    if (SAI->isOnHeap()) {
      LLVMContext &Ctx = NewArrayType->getContext();

      // Get the IntPtrTy from the Datalayout
      auto IntPtrTy = DL.getIntPtrType(Ctx);

      // Get the size of the element type in bits
      unsigned Size = SAI->getElemSizeInBytes();

      // Insert the malloc call at polly.start
      auto InstIt = std::get<0>(StartExitBlocks)->getTerminator();
      auto *CreatedArray = CallInst::CreateMalloc(
          &*InstIt, IntPtrTy, SAI->getElementType(),
          ConstantInt::get(Type::getInt64Ty(Ctx), Size),
          ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr,
          SAI->getName());

      SAI->setBasePtr(CreatedArray);

      // Insert the free call at polly.exiting
      CallInst::CreateFree(CreatedArray,
                           std::get<1>(StartExitBlocks)->getTerminator());
    } else {
      auto InstIt = Builder.GetInsertBlock()
                        ->getParent()
                        ->getEntryBlock()
                        .getTerminator();

      auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(),
                                          SAI->getName(), &*InstIt);
      if (PollyTargetFirstLevelCacheLineSize)
        CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize));
      SAI->setBasePtr(CreatedArray);
    }
  }
}

bool IslNodeBuilder::preloadInvariantLoads() {
  auto &InvariantEquivClasses = S.getInvariantAccesses();
  if (InvariantEquivClasses.empty())
    return true;

  BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
                                     &*Builder.GetInsertPoint(), &DT, &LI);
  PreLoadBB->setName("polly.preload.begin");
  Builder.SetInsertPoint(&PreLoadBB->front());

  for (auto &IAClass : InvariantEquivClasses)
    if (!preloadInvariantEquivClass(IAClass))
      return false;

  return true;
}

void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
  // Materialize values for the parameters of the SCoP.
  materializeParameters();

  // Generate values for the current loop iteration for all surrounding loops.
  //
  // We may also reference loops outside of the scop which do not contain the
  // scop itself, but as the number of such scops may be arbitrarily large we do
  // not generate code for them here, but only at the point of code generation
  // where these values are needed.
  Loop *L = LI.getLoopFor(S.getEntry());

  while (L != nullptr && S.contains(L))
    L = L->getParentLoop();

  while (L != nullptr) {
    materializeNonScopLoopInductionVariable(L);
    L = L->getParentLoop();
  }

  isl_set_free(Context);
}

Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
  /// We pass the insert location of our Builder, as Polly ensures during IR
  /// generation that there is always a valid CFG into which instructions are
  /// inserted. As a result, the insertpoint is known to be always followed by a
  /// terminator instruction. This means the insert point may be specified by a
  /// terminator instruction, but it can never point to an ->end() iterator
  /// which does not have a corresponding instruction. Hence, dereferencing
  /// the insertpoint to obtain an instruction is known to be save.
  ///
  /// We also do not need to update the Builder here, as new instructions are
  /// always inserted _before_ the given InsertLocation. As a result, the
  /// insert location remains valid.
  assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
         "Insert location points after last valid instruction");
  Instruction *InsertLocation = &*Builder.GetInsertPoint();
  return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
                       InsertLocation, &ValueMap,
                       StartBlock->getSinglePredecessor());
}

/// The AST expression we generate to perform the run-time check assumes
/// computations on integer types of infinite size. As we only use 64-bit
/// arithmetic we check for overflows, in case of which we set the result
/// of this run-time check to false to be conservatively correct,
Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
  auto ExprBuilder = getExprBuilder();

  // In case the AST expression has integers larger than 64 bit, bail out. The
  // resulting LLVM-IR will contain operations on types that use more than 64
  // bits. These are -- in case wrapping intrinsics are used -- translated to
  // runtime library calls that are not available on all systems (e.g., Android)
  // and consequently will result in linker errors.
  if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) {
    isl_ast_expr_free(Condition);
    return Builder.getFalse();
  }

  ExprBuilder.setTrackOverflow(true);
  Value *RTC = ExprBuilder.create(Condition);
  if (!RTC->getType()->isIntegerTy(1))
    RTC = Builder.CreateIsNotNull(RTC);
  Value *OverflowHappened =
      Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");

  if (PollyGenerateRTCPrint) {
    auto *F = Builder.GetInsertBlock()->getParent();
    RuntimeDebugBuilder::createCPUPrinter(
        Builder,
        "F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
            "RTC: ",
        RTC, " Overflow: ", OverflowHappened,
        "\n"
        "  (0 failed, -1 succeeded)\n"
        "  (if one or both are 0 falling back to original code, if both are -1 "
        "executing Polly code)\n");
  }

  RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
  ExprBuilder.setTrackOverflow(false);

  if (!isa<ConstantInt>(RTC))
    VersionedScops++;

  return RTC;
}