summaryrefslogtreecommitdiff
path: root/polly/lib/External/isl/interface/template_cpp.cc
blob: 2beca82550b259710fbb41f8845f24ff288bfdaa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
/*
 * Copyright 2020 Cerebras Systems. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 *    1. Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *
 *    2. Redistributions in binary form must reproduce the above
 *       copyright notice, this list of conditions and the following
 *       disclaimer in the documentation and/or other materials provided
 *       with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY CEREBRAS SYSTEMS ''AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CEREBRAS SYSTEMS OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * The views and conclusions contained in the software and documentation
 * are those of the authors and should not be interpreted as
 * representing official policies, either expressed or implied, of
 * Cerebras Systems.
 */

#include <ctype.h>

#include <algorithm>
#include <iostream>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>

#include "template_cpp.h"
#include "isl_config.h"

/* The textual representation of this tuple kind.
 *
 * By default, the textual representation is just the name.
 */
std::string TupleKind::to_string() const
{
	return name;
}

/* Return the parameters of this tuple kind.
 *
 * By default, there are no parameters.
 */
std::vector<std::string> TupleKind::params() const
{
	return { };
}

/* Apply the substitution "subs" to this tuple kind and return the result.
 * "self" is a shared pointer to this.
 *
 * If the name of this tuple kind appears in the substitution,
 * then return the corresponding tuple kind pointer.
 * Otherwise, return "self".
 */
TupleKindPtr TupleKind::apply(const Substitution &subs,
	const TupleKindPtr &self) const
{
	if (subs.count(name) != 0)
		return subs.at(name);
	return self;
}

/* Apply the substitution "subs" to "tuple" and return the result.
 */
static TupleKindPtr apply(const TupleKindPtr tuple, const Substitution &subs)
{
	return tuple->apply(subs, tuple);
}

/* Return the left child of this tuple kind.
 *
 * Since this is not a pair, there is no left child.
 */
TupleKindPtr TupleKind::left() const
{
	return TupleKindPtr();
}

/* Return the right child of this tuple kind.
 *
 * Since this is not a pair, there is no right child.
 */
TupleKindPtr TupleKind::right() const
{
	return TupleKindPtr();
}

/* Helper class used to construct a pointer to a tuple kind
 * that refers to a non-template type.
 */
struct Fixed {
};

/* Construct a pointer to a tuple kind that refers to a non-template type.
 *
 * Use an empty string as name.  Since this is a non-template type,
 * the kind name will never appear in the generated code.
 */
TupleKindPtr::TupleKindPtr(Fixed) : Base(std::make_shared<TupleKind>(""))
{
}

/* Tuple pointers for non-template types.
 */
static TupleKindPtr Ctx{Fixed()};
static TupleKindPtr Integer{Fixed()};
static TupleKindPtr Str{Fixed()};
static TupleKindPtr Res{Fixed()};

/* Special tuple pointers.
 * Anonymous appears in the generated code but cannot be unified
 * with anything else since it is a predefined template argument.
 * Leaf can only be unified with something that is not a pair and
 * does not appear in the generated code.
 */
static TupleKindPtr Anonymous("Anonymous");
static TupleKindPtr Leaf("Leaf");

/* Placeholder tuple pointers that refer to (part of) the domain or range.
 */
static TupleKindPtr Domain("Domain");
static TupleKindPtr Domain2("Domain2");
static TupleKindPtr Domain3("Domain3");
static TupleKindPtr Range("Range");
static TupleKindPtr Range2("Range2");
static TupleKindPtr Range3("Range3");

/* A representation of a proper tuple kind that is used as a template
 * parameter or a template argument.
 */
struct ProperTupleKind : public TupleKind {
	ProperTupleKind(const std::string &name) : TupleKind(name) {}

	virtual std::vector<std::string> params() const override;
};

/* Return the parameters of this tuple kind.
 *
 * Return the name of this tuple kind, unless it is the special Anonymous
 * predefined template argument.
 */
std::vector<std::string> ProperTupleKind::params() const
{
	if (Anonymous.get() == this)
		return { };
	return { name };
}

/* Construct a pointer to a tuple kind that refers
 * to a proper tuple kind with the given name.
 */
TupleKindPtr::TupleKindPtr(const std::string &name) :
	Base(std::make_shared<ProperTupleKind>(name))
{
}

/* A tuple kind that represents an anonymous pair of nested tuple kinds.
 */
struct Pair : public TupleKind {
	Pair(const TupleKindPtr &tuple1, const TupleKindPtr &tuple2) :
		TupleKind(""), tuple1(tuple1), tuple2(tuple2) {}

	virtual std::string to_string() const override;
	virtual std::vector<std::string> params() const override;
	virtual TupleKindPtr apply(const Substitution &match,
		const TupleKindPtr &self) const override;
	virtual TupleKindPtr left() const override;
	virtual TupleKindPtr right() const override;

	const TupleKindPtr tuple1;
	const TupleKindPtr tuple2;
};

/* The textual representation of this tuple kind.
 *
 * The textual representation of a pair is of the form "pair<tuple1, tuple2>".
 */
std::string Pair::to_string() const
{
	return std::string("pair<") + tuple1->to_string() + ", " +
					tuple2->to_string() + ">";
}

/* Add the elements of "vec2" that do not already appear in "vec1"
 * at the end of "vec1".
 *
 * The two vectors are assumed not to have any repeated elements.
 * The updated vector will then also not have repeated elements.
 */
static void combine(std::vector<std::string> &vec1,
	const std::vector<std::string> &vec2)
{
	for (const auto &s : vec2)
		if (std::find(vec1.begin(), vec1.end(), s) == vec1.end())
			vec1.emplace_back(s);
}

/* Return the parameters of this tuple kind.
 *
 * Combine the parameters of the two nested tuple kinds.
 */
std::vector<std::string> Pair::params() const
{
	auto names1 = tuple1->params();
	auto names2 = tuple2->params();

	combine(names1, names2);

	return names1;
}

/* Apply the substitution "subs" to this tuple kind and return the result.
 * "self" is a shared pointer to this.
 *
 * Construct a new tuple kind consisting of the result of applying
 * the substitution to the two nested tuple kinds.
 */
TupleKindPtr Pair::apply(const Substitution &subs, const TupleKindPtr &self)
	const
{
	return TupleKindPtr(::apply(tuple1, subs), ::apply(tuple2, subs));
}

/* Return the left child of this tuple kind.
 */
TupleKindPtr Pair::left() const
{
	return tuple1;
}

/* Return the right child of this tuple kind.
 */
TupleKindPtr Pair::right() const
{
	return tuple2;
}

/* Construct a pointer to a tuple kind that refers
 * to the given pair of nested tuple kinds.
 */
TupleKindPtr::TupleKindPtr(const TupleKindPtr &left, const TupleKindPtr &right)
	: Base(std::make_shared<Pair>(left, right))
{
}

/* Is this a kind of object representing an anonymous function?
 */
bool Kind::is_anon() const
{
	return size() != 0 && back() == Anonymous;
}

/* Is this a kind of object with a single tuple?
 */
bool Kind::is_set() const
{
	return size() == 1;
}

/* Is this a kind of object with a single, anonymous tuple?
 */
bool Kind::is_anon_set() const
{
	return is_set() && is_anon();
}

/* Return the parameters of this kind.
 *
 * Collect the parameters of the tuple kinds in the sequence.
 */
std::vector<std::string> Kind::params() const
{
	std::vector<std::string> params;

	for (const auto &tuple : *this)
		combine(params, tuple->params());

	return params;
}

/* Apply the substitution "subs" to this kind and return the result.
 *
 * Apply the substitution to each of the tuple kinds in the sequence.
 */
Kind Kind::apply(const Substitution &subs) const
{
	Kind applied;

	for (const auto &tuple : *this)
		applied.emplace_back(::apply(tuple, subs));

	return applied;
}

/* A signature of a method in terms of kinds,
 * consisting of a return kind and a sequence of argument kinds.
 */
struct Signature {
	Kind ret;
	std::vector<Kind> args;

	std::vector<std::string> params() const;
	Signature apply(const Substitution &match) const;
};

/* Return the parameters of this signature.
 *
 * Collect the parameters of the argument kinds and the return kind.
 */
std::vector<std::string> Signature::params() const
{
	std::vector<std::string> params;

	for (const auto &arg : args)
		combine(params, arg.params());
	combine(params, ret.params());

	return params;
}

/* Apply the substitution "subs" to this kind and return the result.
 *
 * Apply the substitution to the argument kinds and the return kind.
 */
Signature Signature::apply(const Substitution &subs) const
{
	std::vector<Kind> applied_args;

	for (const auto &arg : args)
		applied_args.emplace_back(arg.apply(subs));

	return { ret.apply(subs), applied_args };
}

/* Return a renaming substitution that renames the elements of "params"
 * using names starting with "prefix".
 */
static Substitution param_renamer(const std::vector<std::string> &params,
	const std::string &prefix)
{
	Substitution renamer;
	int n = 0;

	for (const auto &name : params) {
		auto suffix = std::to_string(++n);
		auto arg_name = prefix + suffix;
		auto arg = TupleKindPtr(arg_name);

		if (name == Leaf->name)
			generator::die("Leaf cannot be renamed");

		renamer.emplace(name, arg);
	}

	return renamer;
}

/* Does the vector "v" contain the element "el"?
 */
static bool contains(const std::vector<std::string> &v, const std::string &el)
{
	 return find(v.begin(), v.end(), el) != v.end();
 }


/* Return the shared elements of "v1" and "v2", preserving the order
 * of those elements in "v1".
 */
static std::vector<std::string> intersect(const std::vector<std::string> &v1,
	const std::vector<std::string> &v2)
{
	std::vector<std::string> intersection;

	for (const auto &el : v1)
		if (contains(v2, el))
			intersection.push_back(el);

	return intersection;
}

/* Return a renaming substitution that renames
 * any parameters that appears in both "sig" and "kind".
 */
static Substitution shared_param_renamer(const Signature &sig, const Kind &kind)
{
	return param_renamer(intersect(sig.params(), kind.params()), "Arg");
}

/* Signatures for unary operations.
 * Functions have at least one tuple.
 */
static Signature un_params = { { }, { { } } };
static Signature un_set = { { Domain }, { { Domain } } };
static Signature un_map = { { Domain, Range }, { { Domain, Range } } };
static std::vector<Signature> un_op = { un_params, un_set, un_map };
static std::vector<Signature> fn_un_op = { un_set, un_map };

/* Signatures for binary operations, with the second argument
 * possibly referring to part of the first argument.
 * Functions have at least one tuple.
 */
static Signature bin_params = { { }, { { }, { } } };
static Signature bin_set = { { Domain }, { { Domain }, { Domain } } };
static Signature bin_map =
	{ { Domain, Range }, { { Domain, Range }, { Domain, Range } } };
static std::vector<Signature> bin_op = { bin_params, bin_set, bin_map };
static std::vector<Signature> fn_bin_op = { bin_set, bin_map };
static Signature bin_set_params = { { Domain }, { { Domain }, { } } };
static Signature bin_map_params =
	{ { Domain, Range }, { { Domain, Range }, { } } };
static Signature bin_map_domain =
	{ { Domain, Range }, { { Domain, Range }, { Domain } } };
static Signature bin_map_range =
	{ { Domain, Range }, { { Domain, Range }, { Range } } };
static Signature bin_map_domain_wrapped_domain =
	{ { { Domain, Domain2 }, Range },
	  { { { Domain, Domain2 }, Range }, { Domain } } };
static Signature bin_map_range_wrapped_domain =
	{ { Domain, { Range, Range2 } },
	  { { Domain, { Range, Range2 } }, { Range } } };

/* Signatures for binary operations, where the second argument
 * is an identifier (with an anonymous tuple).
 */
static Signature bin_params_anon = { { }, { { }, { Anonymous } } };
static Signature bin_set_anon = { { Domain }, { { Domain }, { Anonymous } } };
static Signature bin_map_anon =
	{ { Domain, Range }, { { Domain, Range }, { Anonymous } } };
static std::vector<Signature> bin_op_anon =
	{ bin_params_anon, bin_set_anon, bin_map_anon };

/* Signatures for ternary operations, where the last two arguments are integers.
 */
static Signature ter_params_int_int =
	{ { }, { { }, { Integer }, { Integer } } };
static Signature ter_set_int_int =
	{ { Domain }, { { Domain }, { Integer }, { Integer } } };
static Signature ter_map_int_int =
	{ { Domain, Range }, { { Domain, Range }, { Integer }, { Integer } } };
static std::vector<Signature> ter_int_int =
	{ ter_params_int_int, ter_set_int_int, ter_map_int_int };

/* Signatures for ternary operations.
 * Functions have at least one tuple.
 */
static Signature ter_set =
	{ { Domain }, { { Domain }, { Domain }, { Domain } } };
static Signature ter_map =
	{ { Domain, Range },
	  { { Domain, Range }, { Domain, Range }, { Domain, Range } } };
static std::vector<Signature> fn_ter_op = { ter_set, ter_map };

/* Signatures for naming a leaf tuple using an identifier (with an anonymous
 * tuple).
 */
static Signature update_set = { { Domain2 }, { { Leaf }, { Anonymous } } };
static Signature update_domain =
	{ { Domain2, Range }, { { Leaf, Range }, { Anonymous } } };
static Signature update_range =
	{ { Domain, Range2 }, { { Domain, Leaf }, { Anonymous } } };

/* Signatures for the functions "min" and "max", which can be either
 * unary or binary operations.
 */
static std::vector<Signature> min_max = { un_set, bin_set, un_map, bin_map };

/* Signatures for adding an unnamed tuple to an object with zero or one tuple.
 */
static Signature to_set = { { Domain }, { { }, { Integer } } };
static Signature add_range = { { Domain, Range }, { { Domain }, { Integer } } };
/* Signatures for adding a named tuple to an object with zero or one tuple.
 */
static Signature to_set_named =
	{ { Domain }, { { }, { Anonymous }, { Integer } } };
static Signature add_range_named =
	{ { Domain, Range }, { { Domain }, { Anonymous }, { Integer } } };

/* Signatures for methods applying a map to a set, a function or
 * part of a map.
 */
static Signature set_forward = { { Range }, { { Domain }, { Domain, Range } } };
static Signature domain_forward =
	{ { Domain2, Range }, { { Domain, Range }, { Domain, Domain2 } } };
static Signature range_forward =
	{ { Domain, Range2 }, { { Domain, Range }, { Range, Range2 } } };

/* Signatures for methods plugging in a function into a set, a function or
 * part of a map.
 */
static Signature set_backward =
	{ { Domain2 }, { { Domain }, { Domain2, Domain } } };
static Signature domain_backward =
	{ { Domain2, Range }, { { Domain, Range }, { Domain2, Domain } } };
static Signature range_backward =
	{ { Domain, Range2 }, { { Domain, Range }, { Range2, Range } } };
static Signature domain_wrapped_domain_backward =
	{ { { Domain3, Domain2 }, Range },
	  { { { Domain, Domain2 }, Range }, { Domain3, Domain } } };

/* Signatures for methods binding a set, a function,
 * or (part of) a map to parameters or an object of the same kind.
 */
static Signature bind_set = { { }, { { Domain }, { Domain } } };
static Signature bind_domain = { { Range }, { { Domain, Range }, { Domain } } };
static Signature bind_range = { { Domain }, { { Domain, Range }, { Range } } };
static Signature bind_domain_wrapped_domain =
	{ { Range2, Range }, { { { Domain2, Range2 }, Range }, { Domain2 } } };

/* Signatures for functions that take a callback accepting
 * objects of the same kind (but a different type).
 *
 * The return and argument kinds of the callback appear
 * at the position of the callback.
 */
static Signature each_params = { { Res }, { { }, { Res }, { } } };
static Signature each_set = { { Res }, { { Domain }, { Res }, { Domain } } };
static Signature each_map =
	{ { Res }, { { Domain, Range }, { Res }, { Domain, Range } } };
static std::vector<Signature> each = { each_params, each_set, each_map };

/* Signatures for isl_*_list_foreach_scc.
 *
 * The first callback takes two elements with the same tuple kinds.
 * The second callback takes a list with the same tuple kinds.
 */
static Signature each_scc_params =
	{ { Res }, { { }, { Res }, { }, { }, { Res }, { } } };
static Signature each_scc_set =
	{ { Res }, { { Domain },
		     { Res }, { Domain }, { Domain },
		     { Res }, { Domain } } };
static Signature each_scc_map =
	{ { Res }, { { Domain, Range },
		     { Res }, { Domain, Range }, { Domain, Range },
		     { Res }, { Domain, Range } } };
static std::vector<Signature> each_scc =
	{ each_scc_params, each_scc_set, each_scc_map };

/* Signature for creating a map from a range,
 * where the domain is given by an extra argument.
 */
static Signature map_from_range_and_domain =
	{ { Domain, Range }, { { Range }, { Domain } } };

/* Signature for creating a map from a domain,
 * where the range is given by an extra argument.
 */
static Signature map_from_domain_and_range =
	{ { Domain, Range }, { { Domain }, { Range } } };

/* Signatures for creating an anonymous set from a parameter set
 * or a map from a domain, where the range is anonymous.
 */
static Signature anonymous_set_from_params = { { Anonymous }, { { } } };
static Signature anonymous_map_from_domain =
	{ { Domain, Anonymous }, { { Domain } } };
static std::vector<Signature> anonymous_from_domain =
	{ anonymous_set_from_params, anonymous_map_from_domain };

/* Signature for creating a set from a parameter set,
 * where the domain is given by an extra argument.
 */
static Signature set_from_params = { { Domain }, { { }, { Domain } } };

/* Signatures for creating an anonymous function from a domain,
 * where the second argument is an identifier (with an anonymous tuple).
 */
static Signature anonymous_set_from_params_bin_anon =
	{ { Anonymous }, { { }, { Anonymous } } };
static Signature anonymous_map_from_domain_bin_anon =
	{ { Domain, Anonymous }, { { Domain }, { Anonymous } } };
static std::vector<Signature> anonymous_from_domain_bin_anon = {
	  anonymous_set_from_params_bin_anon,
	  anonymous_map_from_domain_bin_anon
	};

/* Signature for creating a map from a domain,
 * where the range tuple is equal to the domain tuple.
 */
static Signature set_to_map = { { Domain, Domain }, { { Domain } } };

/* Signatures for obtaining the range or the domain of a map.
 * In case of a transformation, the domain and range are the same.
 */
static Signature domain = { { Domain }, { { Domain, Range } } };
static Signature range = { { Range }, { { Domain, Range } } };
static Signature transformation_domain = { { Domain }, { { Domain, Domain } } };

/* Signatures for obtaining the parameter domain of a set or map.
 */
static Signature set_params = { { }, { { Domain } } };
static Signature map_params = { { }, { { Domain, Range } } };

/* Signatures for obtaining the domain of a function.
 */
static std::vector<Signature> fn_domain = { domain, set_params };

/* Signatures for interchanging (wrapped) domain and range.
 */
static Signature map_reverse = { { Range, Domain }, { { Domain, Range } } };
static Signature map_range_reverse =
	{ { Domain, { Range2, Range } }, { { Domain, { Range, Range2 } } } };

/* Signatures for constructing products.
 */
static Signature set_product =
	{ { { Domain, Range } }, { { Domain }, { Range } } };
static Signature map_product =
	{ { { Domain, Domain2 }, { Range, Range2 } },
	  { { Domain, Range }, { Domain2, Range2 } } };
static Signature domain_product =
	{ { { Domain, Domain2 }, Range },
	  { { Domain, Range }, { Domain2, Range } } };
static Signature range_product =
	{ { Domain, { Range, Range2 } },
	  { { Domain, Range }, { Domain, Range2 } } };

/* Signatures for obtaining factors from a product.
 */
static Signature domain_factor_domain =
	{ { Domain, Range }, { { { Domain, Domain2 }, Range } } };
static Signature domain_factor_range =
	{ { Domain2, Range }, { { { Domain, Domain2 }, Range } } };
static Signature range_factor_domain =
	{ { Domain, Range }, { { Domain, { Range, Range2 } } } };
static Signature range_factor_range =
	{ { Domain, Range2 }, { { Domain, { Range, Range2 } } } };

/* Signatures for (un)currying.
 */
static Signature curry =
	{ { Domain, { Range, Range2 } },
	  { { { Domain, Range }, Range2 } } };
static Signature uncurry =
	{ { { Domain, Range }, Range2 },
	  { { Domain, { Range, Range2 } } } };

/* Signatures for (un)wrapping.
 */
static Signature wrap = { { { Domain, Range } }, { { Domain, Range } } };
static Signature unwrap = { { Domain, Range }, { { { Domain, Range } } } };

/* Signatures for constructing objects that map to the domain or range
 * of a map.
 */
static Signature domain_map =
	{ { { Domain, Range }, Domain }, { { Domain, Range } } };
static Signature range_map =
	{ { { Domain, Range }, Range }, { { Domain, Range } } };

/* Signature for applying a comparison between the domain and the range
 * of a map.
 */
static Signature map_cmp =
	{ { Domain, Domain }, { { Domain, Domain }, { Domain, Range } } };

/* Signature for creating a set corresponding to the domains
 * of two functions.
 */
static Signature set_join =
	{ { Domain }, { { Domain, Range }, { Domain, Range } } };

/* Signatures for flattening the domain or range of a map,
 * replacing it with either an anonymous tuple or a tuple with a given name.
 */
static Signature anonymize_nested_domain =
	{ { Anonymous, Range2 }, { { { Domain, Range }, Range2 } } };
static Signature anonymize_nested_range =
	{ { Domain, Anonymous }, { { Domain, { Range, Range2 } } } };
static Signature replace_nested_domain =
	{ { Domain2, Range2 },
	  { { { Domain, Range }, Range2 }, { Anonymous} } };
static Signature replace_nested_range =
	{ { Domain, Range3 }, { { Domain, { Range, Range2 } }, { Anonymous} } };
static std::vector<Signature> flatten_domain =
	{ anonymize_nested_domain, replace_nested_domain };
static std::vector<Signature> flatten_range =
	{ anonymize_nested_range, replace_nested_range };

/* Signatures for "set_at" methods.
 */
static Signature set_at_set =
	{ { Domain }, { { Domain }, { Integer }, { Anonymous } } };
static Signature set_at_map =
	{ { Domain, Range },
	  { { Domain, Range }, { Integer }, { Domain, Anonymous } } };
static std::vector<Signature> set_at = { set_at_set, set_at_map };

/* Signatures for "list" methods, extracting a list
 * from a multi-expression.
 */
static Signature to_list_set = { { Anonymous }, { { Domain } } };
static Signature to_list_map = { { Domain, Anonymous }, { { Domain, Range } } };

/* Signatures for functions constructing an object from only an isl::ctx.
 */
static Signature ctx_params = { { }, { { Ctx } } };
static Signature ctx_set = { { Domain }, { { Ctx } } };
static Signature ctx_map = { { Domain, Range }, { { Ctx } } };

/* Helper structure for sorting the keys of static_methods and
 * special_member_methods such that the larger keys appear first.
 * In particular, a key should appear before any key that appears
 * as a substring in the key.
 * Note that this sorting is currently only important
 * for special_member_methods.
 */
struct larger_infix {
	bool operator()(const std::string &x, const std::string &y) const {
		if (x.length() > y. length())
			return true;
		return x < y;
	}
};

/* A map from part of a type name to a sequence of signatures.
 */
typedef std::map<std::string, std::vector<Signature>, larger_infix> infix_map;

/* A map from a method name to a map from part of a type name
 * to a sequence of signatures.
 */
typedef std::map<std::string, infix_map> infix_map_map;

/* Signatures for static methods.
 *
 * The "unit" static method is only available in a 0-tuple space.
 *
 * The "empty" static method creates union objects with the relevant
 * number of tuples.
 *
 * The "universe" static methods create objects from the corresponding spaces.
 */
static const infix_map_map static_methods {
	{ "unit",
	  { { "space",			{ ctx_params } } }
	},
	{ "empty",
	  {
	    { "union_set",		{ ctx_params, ctx_set } },
	    { "union_map",		{ ctx_map } },
	    { "union_pw_multi_aff",	{ ctx_set, ctx_map } },
	  }
	},
	{ "universe",
	  {
	    { "set",			{ un_params, un_set } },
	    { "map",			{ un_map } },
	  }
	},
};

/* Signatures for unary operations that either take something in a set space
 * and return something in the same space or take something in a map space
 * and return something in the range of that space.
 */
static std::vector<Signature> range_op = { un_set, range };

/* Signatures for binary operations where the second argument
 * is a (multi-)value.
 */
static std::vector<Signature> bin_val = { bin_set, bin_map_range };

/* The (default) signatures for methods with a given name.
 * Some of these are overridden by special_member_methods.
 */
static const std::unordered_map<std::string, std::vector<Signature>>
member_methods {
	{ "add",		bin_op },
	{ "add_constant",	bin_val },
	{ "add_named_tuple",	{ to_set_named, add_range_named } },
	{ "add_param",		bin_op_anon },
	{ "add_unnamed_tuple",	{ to_set, add_range } },
	{ "apply",		{ set_forward, range_forward } },
	{ "apply_domain",	{ domain_forward } },
	{ "apply_range",	{ range_forward } },
	{ "as",			un_op },
	{ "as_map",		{ un_map } },
	{ "as_union_map",	{ un_map } },
	{ "as_set",		{ un_set } },
	{ "bind",		{ bind_set, bind_range } },
	{ "bind_domain",	{ bind_domain } },
	{ "bind_range",		{ bind_range } },
	{ "bind_domain_wrapped_domain",
				{ bind_domain_wrapped_domain } },
	{ "ceil",		fn_un_op },
	{ "coalesce",		un_op },
	{ "cond",		fn_ter_op },
	{ "constant",		range_op },
	{ "curry",		{ curry } },
	{ "deltas",		{ transformation_domain } },
	{ "detect_equalities",	un_op },
	{ "domain",		fn_domain },
	{ "domain_factor_domain",
				{ domain_factor_domain } },
	{ "domain_factor_range",
				{ domain_factor_range } },
	{ "domain_map",		{ domain_map } },
	{ "domain_product",	{ domain_product } },
	{ "drop",		ter_int_int },
	{ "eq_at",		{ map_cmp } },
	{ "every",		each },
	{ "extract",		bin_op },
	{ "flatten_domain",	flatten_domain },
	{ "flatten_range",	flatten_range },
	{ "floor",		fn_un_op },
	{ "foreach",		each },
	{ "foreach_scc",	each_scc },
	{ "ge_set",		{ set_join } },
	{ "gt_set",		{ set_join } },
	{ "gist",		bin_op },
	{ "gist_domain",	{ bin_map_domain } },
	{ "gist_params",	{ bin_set_params, bin_map_params } },
	{ "identity",		{ un_map, set_to_map } },
	{ "identity_on_domain",	{ set_to_map } },
	{ "indicator_function",	anonymous_from_domain },
	{ "insert_domain",	{ map_from_range_and_domain } },
	{ "intersect",		bin_op },
	{ "intersect_params",	{ bin_set_params, bin_map_params } },
	{ "intersect_domain",	{ bin_map_domain } },
	{ "intersect_domain_wrapped_domain",
				{ bin_map_domain_wrapped_domain } },
	{ "intersect_range",	{ bin_map_range } },
	{ "intersect_range_wrapped_domain",
				{ bin_map_range_wrapped_domain } },
	{ "lattice_tile",	{ un_set } },
	{ "le_set",		{ set_join } },
	{ "lt_set",		{ set_join } },
	{ "lex_le_at",		{ map_cmp } },
	{ "lex_lt_at",		{ map_cmp } },
	{ "lex_ge_at",		{ map_cmp } },
	{ "lex_gt_at",		{ map_cmp } },
	{ "lexmin",		fn_un_op },
	{ "lexmax",		fn_un_op },
	{ "list",		{ to_list_set, to_list_map } },
	{ "lower_bound",	fn_bin_op },
	{ "map_from_set",	{ set_to_map } },
	{ "max",		min_max },
	{ "max_val",		range_op },
	{ "max_multi_val",	range_op },
	{ "min",		min_max },
	{ "min_val",		range_op },
	{ "min_multi_val",	range_op },
	{ "mod",		bin_val },
	{ "on_domain",		{ map_from_domain_and_range } },
	{ "neg",		fn_un_op },
	{ "offset",		fn_un_op },
	{ "param_on_domain",	anonymous_from_domain_bin_anon },
	{ "params",		{ set_params, map_params } },
	{ "plain_multi_val_if_fixed",
				{ un_set } },
	{ "preimage",		{ set_backward } },
	{ "preimage_domain",	{ domain_backward } },
	{ "preimage_domain_wrapped_domain",
				{ domain_wrapped_domain_backward } },
	{ "preimage_range",	{ range_backward } },
	{ "product",		{ set_product, map_product } },
	{ "project_out_param",	bin_op_anon },
	{ "project_out_all_params",
				un_op },
	{ "pullback",		{ domain_backward, bind_domain } },
	{ "range",		{ range } },
	{ "range_factor_domain",
				{ range_factor_domain } },
	{ "range_factor_range",	{ range_factor_range } },
	{ "range_lattice_tile",	{ un_map } },
	{ "range_map",		{ range_map } },
	{ "range_product",	{ range_product } },
	{ "range_reverse",	{ map_range_reverse } },
	{ "range_simple_fixed_box_hull",
				{ un_map } },
	{ "reverse",		{ map_reverse } },
	{ "scale",		bin_val },
	{ "scale_down",		bin_val },
	{ "set_at",		set_at },
	{ "set_domain_tuple",	{ update_domain } },
	{ "set_range_tuple",	{ update_set, update_range } },
	{ "simple_fixed_box_hull",
				{ un_set } },
	{ "sub",		fn_bin_op },
	{ "subtract",		bin_op },
	{ "subtract_domain",	{ bin_map_domain } },
	{ "subtract_range",	{ bin_map_range } },
	{ "translation",	{ set_to_map } },
	{ "to",			un_op },
	{ "unbind_params",	{ set_from_params } },
	{ "unbind_params_insert_domain",
				{ map_from_range_and_domain } },
	{ "uncurry",		{ uncurry } },
	{ "union_add",		fn_bin_op },
	{ "unite",		bin_op },
	{ "universe",		un_op },
	{ "unwrap",		{ unwrap } },
	{ "upper_bound",	fn_bin_op },
	{ "wrap",		{ wrap } },
	{ "zero",		fn_un_op },
	{ "zero_on_domain",	{ anonymous_map_from_domain } },
};

/* Signatures for methods of types containing a given substring
 * that override the default signatures, where larger substrings
 * appear first.
 *
 * In particular, "gist" is usually a regular binary operation,
 * but for any type derived from "aff", the argument refers
 * to the domain of the function.
 *
 * The "size" method can usually simply be inherited from
 * the corresponding plain C++ type, but for a "fixed_box",
 * the size lives in the space of the box or its range.
 *
 * The "space" method is usually a regular unary operation
 * that returns the single space of the elements in the object,
 * with the same number of tuples.
 * However, a "union" object may contain elements from many spaces and
 * therefore its space only refers to the symbolic constants and
 * has zero tuples, except if it is also a "multi_union" object,
 * in which case it has a fixed range space and the space of the object
 * has a single tuple.
 * Note that since "space' is also the name of a template class,
 * the default space method is handled by print_type_named_member_method.
 */
static const infix_map_map special_member_methods {
	{ "gist",
	  { { "aff",		{ bin_set_params, bin_map_domain } } }
	},
	{ "size",
	  { { "fixed_box",	range_op } },
	},
	{ "space",
	  {
	    { "multi_union",	range_op },
	    { "union",		{ un_params, set_params, map_params } },
	  }
	},
};

/* Generic kinds for objects with zero, one or two tuples,
 * the last of which may be anonymous.
 */
static Kind params{};
static Kind set_type{ Domain };
static Kind set_anon{ Anonymous };
static Kind map_type{ Domain, Range };
static Kind map_anon{ Domain, Anonymous };

/* The initial sequence of specialization kinds for base types.
 * The specialization kinds for other types are derived
 * from the corresponding base types.
 *
 * In particular, this sequence specifies how many tuples
 * a given type can have and whether it is anonymous.
 *
 * "space" can have any number of tuples.
 * "set" and "point" can have zero or one tuple.
 * "map" can only have two tuples.
 * "aff" can have one or two tuples, the last of which is anonymous.
 * "fixed_box" can represent a (proper) set) or a map.
 * "val" and "id" are treated as anonymous sets so that
 * they can form the basis of "multi_val" and "multi_id".
 */
static const std::unordered_map<std::string, std::vector<Kind>> base_kinds {
	{ "space",	{ params, set_type, map_type } },
	{ "set",	{ params, set_type } },
	{ "point",	{ params, set_type } },
	{ "map",	{ map_type } },
	{ "aff",	{ set_anon, map_anon } },
	{ "fixed_box",	{ set_type, map_type } },
	{ "val",	{ set_anon } },
	{ "id",		{ set_anon } },
};

/* Prefixes introduced by type constructors.
 */
static const std::unordered_set<std::string> type_prefixes {
	"basic",
	"multi",
	"pw",
	"union",
};

/* If "type" has a "_list" suffix, then return "type" with this suffix removed.
 * Otherwise, simply return "type".
 */
static std::string drop_list(const std::string &type)
{
	size_t pos = type.rfind('_');

	if (pos == std::string::npos)
		return type;
	if (type.substr(pos + 1) == "list")
		return type.substr(0, pos);
	return type;
}

/* Given the name of a plain C++ type, return the base type
 * from which it was derived using type constructors.
 *
 * In particular, drop any "list" suffix and
 * drop any prefixes from type_prefixes, stopping
 * as soon as a base type is found for which kinds have been registered
 * in base_kinds.
 */
static std::string base_type(const std::string &type)
{
	auto base = type;
	size_t pos;

	base = drop_list(base);
	while (base_kinds.count(base) == 0 &&
			(pos = base.find('_')) != std::string::npos &&
			type_prefixes.count(base.substr(0, pos)) != 0) {
		base = base.substr(pos + 1);
	}

	return base;
}

/* A mapping from anonymous kinds to named kinds.
 */
static std::map<Kind, Kind> anon_to_named {
	{ set_anon, set_type },
	{ map_anon, map_type },
};

/* Given a sequence of anonymous kinds, replace them
 * by the corresponding named kinds.
 */
static std::vector<Kind> add_name(const std::vector<Kind> &tuples)
{
	std::vector<Kind> named;

	for (const auto &tuple : tuples)
		named.emplace_back(anon_to_named.at(tuple));

	return named;
}

/* Look up the (initial) specializations of the class called "name".
 * If no specializations have been defined, then return an empty vector.
 *
 * Start from the initial specializations of the corresponding base type.
 * If this template class is a multi-expression, then it was derived
 * from an anonymous function type.  Replace the final Anonymous
 * tuple kind by a placeholder in this case.
 */
static std::vector<Kind> lookup_class_tuples(const std::string &name)
{
	std::string base = base_type(name);

	if (base_kinds.count(base) == 0)
		return { };
	if (name.find("multi_") != std::string::npos)
		return add_name(base_kinds.at(base));
	return base_kinds.at(base);
}

/* Add a template class called "name", of which the methods are described
 * by "clazz" and the initial specializations by "class_tuples".
 */
void template_cpp_generator::add_template_class(const isl_class &clazz,
	const std::string &name, const std::vector<Kind> &class_tuples)
{
	auto isl_namespace = cpp_type_printer().isl_namespace();
	auto super = isl_namespace + name;

	template_classes.emplace(name,
		template_class{name, super, clazz, class_tuples});
}

/* Construct a templated C++ bindings generator from
 * the exported types and functions and the set of all declared functions.
 *
 * On top of the initialization of the shared parts
 * of C++ bindings generators, add a template class
 * for each plain C++ class for which template kinds
 * have been defined.
 * In particular, determine the base type from which the plain C++ class
 * was derived using type constructors and check if any template kinds
 * have been registered for this base type.
 */
template_cpp_generator::template_cpp_generator(clang::SourceManager &SM,
	std::set<clang::RecordDecl *> &exported_types,
	std::set<clang::FunctionDecl *> exported_functions,
	std::set<clang::FunctionDecl *> functions) :
		cpp_generator(SM, exported_types, exported_functions,
			functions)
{
	for (const auto &kvp : classes) {
		const auto &clazz = kvp.second;
		std::string name = type2cpp(clazz);
		const auto &class_tuples = lookup_class_tuples(name);

		if (class_tuples.empty())
			continue;
		add_template_class(clazz, name, class_tuples);
	}
}

/* Call "fn" on each template class.
 */
void template_cpp_generator::foreach_template_class(
	const std::function<void(const template_class &)> &fn) const
{
	for (const auto &kvp : template_classes)
		fn(kvp.second);
}

/* Print forward declarations for all template classes to "os".
 *
 * For template classes that represent an anonymous function
 * that can also have a domain tuple, provide an <name>_on alias
 * that adds the fixed Anonymous tuple kind.
 */
void template_cpp_generator::print_forward_declarations(std::ostream &os)
{
	foreach_template_class([&os] (const template_class &template_class) {
		auto name = template_class.class_name;

		os << "\n";
		os << "template <typename...>\n";
		os << "struct " << name << ";\n";

		if (!template_class.is_anon())
			return;
		if (template_class.is_anon_set())
			return;

		os << "\n";
		os << "template <typename...Ts>\n";
		os << "using " << name << "_on = "
		   << name << "<Ts..., Anonymous>;\n";
	});
}

/* Print friend declarations for all template classes to "os".
 */
void template_cpp_generator::print_friends(std::ostream &os)
{
	foreach_template_class([&os] (const template_class &template_class) {
		os << "  template <typename...>\n";
		os << "  friend struct " << template_class.class_name << ";\n";
	});
}

/* Print a template parameter or argument.
 * In case of a std::string, it's a template parameter
 * that needs to be declared.
 */
static void print_template_arg(std::ostream &os, const std::string &arg)
{
	os << "typename " << arg;
}

/* Print a template parameter or argument.
 * In case of a TupleKindPtr, it's a template argument.
 */
static void print_template_arg(std::ostream &os, const TupleKindPtr &kind)
{
	os << kind->to_string();
}

/* Print a sequence of template parameters (std::string) or
 * arguments (TupleKindPtr) "args", without the enclosing angle brackets.
 */
template <typename List>
static void print_pure_template_args(std::ostream &os, const List &args)
{
	for (size_t i = 0; i < args.size(); ++i) {
		if (i != 0)
			os << ", ";
		print_template_arg(os, args[i]);
	}
}

/* Print a sequence of template parameters (std::string) or
 * arguments (TupleKindPtr) "args".
 */
template <typename List>
static void print_template_args(std::ostream &os, const List &args)
{
	os << "<";
	print_pure_template_args(os, args);
	os << ">";
}

/* Print a declaration of the template parameters "params".
 */
static void print_template(std::ostream &os,
	const std::vector<std::string> &params)
{
	os << "template ";
	print_template_args(os, params);
	os << "\n";
}

/* Print a declaration of the template parameters "params",
 * if there are any.
 */
static void print_non_empty_template(std::ostream &os,
	const std::vector<std::string> &params)
{
	if (params.size() > 0)
		print_template(os, params);
}

/* Print a bare template type, i.e., without namespace,
 * consisting of the type "type" and the kind "kind" to "os".
 *
 * In particular, print "type" followed by the template arguments
 * as specified by "kind".
 */
static void print_bare_template_type(std::ostream &os, const std::string &type,
	const Kind &kind)
{
	os << type;
	print_template_args(os, kind);
}

/* A specific instance of "template_class", with tuple kinds given by "kind".
 */
struct specialization {
	struct template_class &template_class;
	Kind kind;

	const std::string &base_name() const;
	const std::string &class_name() const;
};

/* The name of the plain C++ interface class
 * from which this template class (instance) derives.
 */
const std::string &specialization::base_name() const
{
	return template_class.super_name;
}

/* The name of the template class.
 */
const std::string &specialization::class_name() const
{
	return template_class.class_name;
}

/* Helper class for printing the specializations of template classes
 * that is used to print both the class declarations and the class definitions.
 *
 * "os" is the stream onto which the classes should be printed.
 * "generator" is the templated C++ interface generator printing the classes.
 */
struct specialization_printer {
	specialization_printer(std::ostream &os,
			template_cpp_generator &generator) :
		os(os), generator(generator) {}

	virtual void print_class(const specialization &instance) const = 0;
	void print_classes() const;

	std::ostream &os;
	template_cpp_generator &generator;
};

/* Print all specializations of all template classes.
 *
 * Each class has a predefined set of initial specializations,
 * but while such a specialization is being printed,
 * the need for other specializations may arise and
 * these are added at the end of the list of specializations.
 * That is, class_tuples.size() may change during the execution
 * of the loop.
 *
 * For each specialization of a template class, call
 * the print_class virtual method.
 */
void specialization_printer::print_classes() const
{
	for (auto &kvp : generator.template_classes) {
		auto &template_class = kvp.second;
		const auto &class_tuples = template_class.class_tuples;

		for (size_t i = 0; i < class_tuples.size(); ++i)
			print_class({ template_class, class_tuples[i] });
	}
}

/* A helper class for printing method declarations and definitions
 * of a template class specialization.
 *
 * "instance" is the template class specialization for which methods
 * are printed.
 * "generator" is the templated C++ interface generator printing the classes.
 */
struct template_cpp_generator::class_printer :
		public cpp_generator::class_printer {
	class_printer(const specialization &instance,
			const specialization_printer &instance_printer,
			bool is_declaration);

	void print_return_type(const Method &method, const Kind &kind)
		const;
	void print_method_template_arguments(const Signature &sig);
	void print_method_header(const Method &method, const Signature &sig);
	bool print_special_method(const Method &method,
		const infix_map_map &special_methods);
	void print_static_method(const Method &method);
	void print_constructor(const Method &method);
	bool is_return_kind(const Method &method, const Kind &return_kind);
	void add_specialization(const Kind &kind);
	bool print_matching_method(const Method &method, const Signature &sig,
		const Kind &match_arg);
	bool print_matching_method(const Method &method, const Signature &sig);
	void print_matching_method(const Method &method,
		const std::vector<Signature> &signatures);
	void print_at_method(const Method &method);
	bool print_special_member_method(const Method &method);
	bool print_type_named_member_method(const Method &method);
	bool print_member_method_with_name(const Method &method,
		const std::string &name);
	void print_member_method(const Method &method);
	void print_any_method(const Method &method);
	virtual void print_method(const Method &method) override;
	virtual void print_method(const ConversionMethod &method) override;
	virtual void print_method_sig(const Method &method,
		const Signature &sig, bool deleted) = 0;
	virtual bool want_descendent_overloads(const function_set &methods)
		override;
	void print_all_methods();

	const specialization &instance;
	template_cpp_generator &generator;
};

/* Construct a class_printer from the template class specialization
 * for which methods are printed and
 * the printer of the template class.
 *
 * The template class printer is only used to obtain the output stream and
 * the templated C++ interface generator printing the classes.
 */
template_cpp_generator::class_printer::class_printer(
		const specialization &instance,
		const specialization_printer &instance_printer,
		bool is_declaration) :
	cpp_generator::class_printer(instance_printer.os,
		instance.template_class.clazz, instance_printer.generator,
		is_declaration),
	instance(instance), generator(instance_printer.generator)
{
}

/* An abstract template type printer, where the way of obtaining
 * the argument kind is specified by the subclasses.
 */
struct template_cpp_type_printer : public cpp_type_printer {
	template_cpp_type_printer() {}

	std::string base(const std::string &type, const Kind &kind) const;
	virtual Kind kind(int arg) const = 0;
	virtual std::string qualified(int arg, const std::string &cpp_type)
		const override;
};

/* Print a template type consisting of the type "type" and the kind "kind",
 * including the "typed::" namespace specifier.
 */
std::string template_cpp_type_printer::base(const std::string &type,
	const Kind &kind) const
{
	std::ostringstream ss;

	ss << "typed::";
	print_bare_template_type(ss, type, kind);
	return ss.str();
}

/* Return the qualified form of the given C++ isl type name appearing
 * in argument position "arg" (-1 for return type).
 *
 * isl::ctx is not templated, so if "cpp_type" is "ctx",
 * then print a non-templated version.
 * Otherwise, look up the kind of the argument and print
 * the corresponding template type.
 */
std::string template_cpp_type_printer::qualified(int arg,
	const std::string &cpp_type) const
{
	if (cpp_type == "ctx")
		return cpp_type_printer::qualified(arg, cpp_type);

	return base(cpp_type, kind(arg));
}

/* A template type printer for printing types with a fixed kind.
 *
 * "fixed_kind" is the fixed kind.
 */
struct template_cpp_kind_type_printer : public template_cpp_type_printer {
	template_cpp_kind_type_printer(const Kind &kind) :
		template_cpp_type_printer(), fixed_kind(kind) {}

	virtual Kind kind(int arg) const override;

	const Kind &fixed_kind;
};

/* Return the kind of the argument at position "arg",
 * where position -1 refers to the return type.
 *
 * Always use the fixed kind.
 */
Kind template_cpp_kind_type_printer::kind(int arg) const
{
	return fixed_kind;
}

/* A template type printer for printing a method with a given signature.
 *
 * "sig" is the signature of the method being printed.
 */
struct template_cpp_arg_type_printer : public template_cpp_type_printer {
	template_cpp_arg_type_printer(const Signature &sig) :
		template_cpp_type_printer(), sig(sig) {}

	virtual Kind kind(int arg) const override;

	const Signature &sig;
};

/* Return the kind of the argument at position "arg",
 * where position -1 refers to the return type.
 *
 * Look up the kind in the signature.
 */
Kind template_cpp_arg_type_printer::kind(int arg) const
{
	int n_args = sig.args.size();

	if (arg < 0)
		return sig.ret;
	if (arg >= n_args)
		generator::die("argument out of bounds");
	return sig.args[arg];
}

/* A template type printer for printing a method with a given signature
 * as part of a template class specialization of a given kind.
 *
 * "class_kind" is the template class specialization kind.
 */
struct template_method_type_printer : public template_cpp_arg_type_printer {
	template_method_type_printer(const Signature &sig,
			const Kind &class_kind) :
		template_cpp_arg_type_printer(sig),
		class_kind(class_kind) {}

	virtual std::string class_type(const std::string &cpp_name)
		const override;

	const Kind &class_kind;
};

/* Print the class type "cpp_name".
 *
 * Print the templated version using the template class specialization kind.
 */
std::string template_method_type_printer::class_type(
	const std::string &cpp_name) const
{
	return base(cpp_name, class_kind);
}

/* Print the templated return type of "method" of the kind "return_kind".
 *
 * Construct a type printer with "return_kind" as fixed kind and
 * use it to print the return type.
 */
void template_cpp_generator::class_printer::print_return_type(
	const Method &method, const Kind &return_kind) const
{
	template_cpp_kind_type_printer printer(return_kind);

	os << printer.return_type(method);
}

/* Remove the initial "n" elements from "v".
 */
template <typename T>
static void drop_initial(std::vector<T> &v, size_t n)
{
	v.erase(v.begin(), v.begin() + n);
}

/* If a method with signature "sig" requires additional template parameters
 * compared to those of the class, then print a declaration for them.
 * If this->declarations is set, then this will be part of a method declaration,
 * requiring extra indentation.
 *
 * Construct the sequence of all required template parameters
 * with those of the template class appearing first.
 * If this sequence has any parameters not induced by the template class itself,
 * then print a declaration for these extra parameters.
 */
void template_cpp_generator::class_printer::print_method_template_arguments(
	const Signature &sig)
{
	std::vector<std::string> class_params, method_params;

	class_params = instance.kind.params();
	method_params = class_params;
	combine(method_params, sig.params());

	if (class_params.size() == method_params.size())
		return;

	drop_initial(method_params, class_params.size());

	if (declarations)
		os << "  ";
	print_template(os, method_params);
}

/* Print the header for "method" with signature "sig".
 *
 * First print any additional template parameters that may be required and
 * then print a regular method header, using a template type printer.
 */
void template_cpp_generator::class_printer::print_method_header(
	const Method &method, const Signature &sig)
{
	template_method_type_printer type_printer(sig, instance.kind);

	print_method_template_arguments(sig);
	cpp_generator::class_printer::print_method_header(method,
							type_printer);
}

/* Given a group of methods with the same name,
 * should extra methods be added that take as arguments
 * those types that can be converted to the original argument type
 * through a unary constructor?
 *
 * Since type deduction does not consider implicit conversions,
 * these extra methods should always be printed.
 */
bool template_cpp_generator::class_printer::want_descendent_overloads(
	const function_set &methods)
{
	return true;
}

/* Print all constructors and methods that forward
 * to the corresponding methods in the plain C++ interface class.
 */
void template_cpp_generator::class_printer::print_all_methods()
{
	print_constructors();
	print_methods();
}

/* A helper class for printing method declarations
 * of a template class specialization.
 */
struct template_cpp_generator::method_decl_printer :
		public template_cpp_generator::class_printer {
	method_decl_printer(const specialization &instance,
			const struct specialization_printer &instance_printer) :
		class_printer(instance, instance_printer, true) {}

	virtual void print_method_sig(const Method &method,
		const Signature &sig, bool deleted) override;
	virtual void print_get_method(FunctionDecl *fd) override;
};

/* Print a declaration of the method "method" with signature "sig".
 * Mark is "delete" if "deleted" is set.
 */
void template_cpp_generator::method_decl_printer::print_method_sig(
	const Method &method, const Signature &sig, bool deleted)
{
	print_method_header(method, sig);
	if (deleted)
		os << " = delete";
	os << ";\n";
}

/* Return the total number of arguments in the signature for "method",
 * taking into account any possible callback arguments.
 *
 * In particular, if the method has a callback argument,
 * then the return kind of the callback appears at the position
 * of the callback and the kinds of the arguments (except
 * the user pointer argument) appear in the following positions.
 * The user pointer argument that follows the callback argument
 * is also removed.
 */
static int total_params(const Method &method)
{
	int n = method.num_params();

	for (const auto &callback : method.callbacks) {
		auto callback_type = callback->getType();
		auto proto = generator::extract_prototype(callback_type);

		n += proto->getNumArgs() - 1;
		n -= 1;
	}

	return n;
}

/* Return a signature for "method" that matches "instance".
 */
static Signature instance_sig(const Method &method,
	const specialization &instance)
{
	std::vector<Kind> args(total_params(method));

	args[0] = instance.kind;
	return { instance.kind, args };
}

/* Print a declaration for the "get" method "fd",
 * using a name that includes the "get_" prefix.
 *
 * These methods are only included in the plain interface.
 * Explicitly delete them from the templated interface.
 */
void template_cpp_generator::method_decl_printer::print_get_method(
	FunctionDecl *fd)
{
	Method method(clazz, fd, clazz.base_method_name(fd));

	print_method_sig(method, instance_sig(method, instance), true);
}

/* A helper class for printing method definitions
 * of a template class specialization.
 */
struct template_cpp_generator::method_impl_printer :
		public template_cpp_generator::class_printer {
	method_impl_printer(const specialization &instance,
			const struct specialization_printer &instance_printer) :
		class_printer(instance, instance_printer, false) {}

	void print_callback_method_body(const Method &method,
		const Signature &sig);
	void print_method_body(const Method &method, const Signature &sig);
	void print_constructor_body(const Method &method, const Signature &sig);
	virtual void print_method_sig(const Method &method,
		const Signature &sig, bool deleted) override;
	virtual void print_get_method(FunctionDecl *fd) override;
};

/* Print a definition of the constructor "method" with signature "sig".
 *
 * Simply pass all arguments to the constructor of the corresponding
 * plain type.
 */
void template_cpp_generator::method_impl_printer::print_constructor_body(
	const Method &method, const Signature &sig)
{
	const auto &base_name = instance.base_name();

	os << "  : " << base_name;
	method.print_cpp_arg_list(os, [&] (int i, int arg) {
		os << method.fd->getParamDecl(i)->getName().str();
	});
	os << "\n";

	os << "{\n";
	os << "}\n";
}

/* Print the arguments of the callback function "callback" to "os",
 * calling "print_arg" with the type and the name of the arguments,
 * where the type is obtained from "type_printer" with argument positions
 * shifted by "shift".
 * None of the arguments should be skipped.
 */
static void print_callback_args(std::ostream &os,
	const FunctionProtoType *callback, const cpp_type_printer &type_printer,
	int shift,
	const std::function<void(const std::string &type,
		const std::string &name)> &print_arg)
{
	auto n_arg = callback->getNumArgs() - 1;

	Method::print_arg_list(os, 0, n_arg, [&] (int i) {
		auto type = callback->getArgType(i);
		auto name = "arg" + std::to_string(i);
		auto cpptype = type_printer.param(shift + i, type);

		print_arg(cpptype, name);

		return false;
	});
}

/* Print a lambda corresponding to "callback"
 * with signature "sig" and argument positions shifted by "shift".
 *
 * The lambda takes arguments with plain isl types and
 * calls the callback of "method" with templated arguments.
 */
static void print_callback_lambda(std::ostream &os, ParmVarDecl *callback,
	const Signature &sig, int shift)
{
	auto callback_type = callback->getType();
	auto callback_name = callback->getName().str();
	auto proto = generator::extract_prototype(callback_type);

	os << "  auto lambda_" << callback_name << " = [&] ";
	print_callback_args(os, proto, cpp_type_printer(), shift,
		[&] (const std::string &type, const std::string &name) {
			os << type << " " << name;
		});
	os << " {\n";

	os << "    return " << callback_name;
	print_callback_args(os, proto, template_cpp_arg_type_printer(sig),
		shift,
		[&] (const std::string &type, const std::string &name) {
			os << type << "(" << name << ")";
		});
	os << ";\n";

	os << "  };\n";
}

/* Print lambdas for passing to the plain method corresponding to "method"
 * with signature "sig".
 *
 * The method is assumed to have only callbacks as argument,
 * which means the arguments of the first callback are shifted by 2
 * with respect to the arguments of the signature
 * (one for the position of the callback argument plus
 * one for the return kind of the callback).
 * The arguments of a subsequent callback are shifted by
 * the number of arguments of the previous callback minus one
 * for the user pointer plus one for the return kind.
 */
static void print_callback_lambdas(std::ostream &os, const Method &method,
	const Signature &sig)
{
	int shift;

	if (method.num_params() != 1 + 2 * method.callbacks.size())
		generator::die("callbacks are assumed to be only arguments");

	shift = 2;
	for (const auto &callback : method.callbacks) {
		print_callback_lambda(os, callback, sig, shift);
		shift += generator::prototype_n_args(callback->getType());
	}
}

/* Print a definition of the member method "method", which is known
 * to have a callback argument, with signature "sig".
 *
 * First print lambdas for passing to the corresponding plain method and
 * calling the callback of "method" with templated arguments.
 * Then call the plain method, replacing the original callbacks
 * by the lambdas.
 *
 * The return value is assumed to be isl_bool or isl_stat
 * so that no conversion to a template type is required.
 */
void template_cpp_generator::method_impl_printer::print_callback_method_body(
	const Method &method, const Signature &sig)
{
	const auto &base_name = instance.base_name();
	auto return_type = method.fd->getReturnType();

	if (!is_isl_bool(return_type) && !is_isl_stat(return_type))
		die("only isl_bool and isl_stat return types are supported");

	os << "{\n";

	print_callback_lambdas(os, method, sig);

	os << "  return ";
	os << base_name << "::" << method.name;
	method.print_cpp_arg_list(os, [&] (int i, int arg) {
		auto param = method.fd->getParamDecl(i);

		if (generator::is_callback(param->getType()))
			os << "lambda_";
		os << param->getName().str();
	});
	os << ";\n";

	os << "}\n";
}

/* Print a definition of the member or static method "method"
 * with signature "sig".
 *
 * The body calls the corresponding method of the base class
 * in the plain interface and
 * then casts the result to the templated result type.
 */
void template_cpp_generator::method_impl_printer::print_method_body(
	const Method &method, const Signature &sig)
{
	const auto &base_name = instance.base_name();

	os << "{\n";
	os << "  auto res = ";
	os << base_name << "::" << method.name;
	method.print_cpp_arg_list(os, [&] (int i, int arg) {
		os << method.fd->getParamDecl(i)->getName().str();
	});
	os << ";\n";

	os << "  return ";
	print_return_type(method, sig.ret);
	os << "(res);\n";
	os << "}\n";
}

/* Print a definition of the method "method" with signature "sig",
 * if "deleted" is not set.
 *
 * If "deleted" is set, then the corresponding declaration
 * is marked "delete" and no definition needs to be printed.
 *
 * Otherwise print the method header, preceded by the template parameters,
 * if needed.
 * The body depends on whether the method is a constructor or
 * takes any callbacks.
 */
void template_cpp_generator::method_impl_printer::print_method_sig(
	const Method &method, const Signature &sig, bool deleted)
{
	if (deleted)
		return;

	os << "\n";
	print_non_empty_template(os, instance.kind.params());
	print_method_header(method, sig);
	os << "\n";
	if (method.kind == Method::Kind::constructor)
		print_constructor_body(method, sig);
	else if (method.callbacks.size() != 0)
		print_callback_method_body(method, sig);
	else
		print_method_body(method, sig);
}

/* Print a definition for the "get" method "fd" in class "clazz",
 * using a name that includes the "get_" prefix, to "os".
 *
 * The declarations of these methods are explicitly delete'd
 * so no definition needs to be printed.
 */
void template_cpp_generator::method_impl_printer::print_get_method(
	FunctionDecl *fd)
{
}

/* Print a declaration or definition of the static method "method",
 * if it has a signature specified by static_methods.
 */
void template_cpp_generator::class_printer::print_static_method(
	const Method &method)
{
	print_special_method(method, static_methods);
}

/* Signatures for constructors of multi-expressions
 * from a space and a list.
 */
static Signature from_list_set = { { Domain }, { { Domain }, { Anonymous } } };
static Signature from_list_map =
	{ { Domain, Range }, { { Domain, Range }, { Domain, Anonymous } } };

/* Signatures for constructors from a string.
 */
static Signature params_from_str = { { }, { { Ctx }, { Str } } };
static Signature set_from_str = { { Domain }, { { Ctx }, { Str } } };
static Signature map_from_str = { { Domain, Range }, { { Ctx }, { Str } } };
static std::vector<Signature> from_str =
	{ params_from_str, set_from_str, map_from_str };

/* Signature for a constructor from an integer.
 */
static Signature int_from_si = { { Anonymous }, { { Ctx }, { Integer } } };

/* Signatures for constructors of lists from the initial number
 * of elements.
 */
static Signature alloc_params = { { }, { { Ctx }, { Integer } } };
static Signature alloc_set = { { Domain }, { { Ctx }, { Integer } } };
static Signature alloc_map = { { Domain, Range }, { { Ctx }, { Integer } } };

/* Signatures for constructors and methods named after some other class.
 *
 * Two forms of constructors are handled
 * - conversion from another object
 * - construction of a multi-expression from a space and a list
 *
 * Methods named after some other class also come in two forms
 * - extraction of information such as the space or a list
 * - construction of a multi-expression from a space and a list
 *
 * In both cases, the first form is a unary operation and
 * the second has an extra argument with a kind that is equal
 * to that of the first argument, except that the final tuple is anonymous.
 */
static std::vector<Signature> constructor_sig = {
	un_params,
	un_set,
	un_map,
	from_list_set,
	from_list_map,
};

/* Signatures for constructors derived from methods
 * with the given names that override the default signatures.
 */
static const std::unordered_map<std::string, std::vector<Signature>>
special_constructors {
	{ "alloc",		{ alloc_params, alloc_set, alloc_map } },
	{ "int_from_si",	{ int_from_si } },
	{ "read_from_str",	from_str },
};

/* Print a declaration or definition of the constructor "method".
 */
void template_cpp_generator::class_printer::print_constructor(
	const Method &method)
{
	if (special_constructors.count(method.name) != 0) {
		const auto &sigs = special_constructors.at(method.name);
		return print_matching_method(method, sigs);
	}
	print_matching_method(method, constructor_sig);
}

/* Does this template class represent an anonymous function?
 *
 * If any specialization represents an anonymous function,
 * then every specialization does, so simply check
 * the first specialization.
 */
bool template_class::is_anon() const
{
	return class_tuples[0].is_anon();
}

/* Does this template class represent an anonymous value?
 *
 * That is, is there only a single specialization that moreover
 * has a single, anonymous tuple?
 */
bool template_class::is_anon_set() const
{
	return class_tuples.size() == 1 && class_tuples[0].is_anon_set();
}

/* Update the substitution "sub" to map "general" to "specific"
 * if "specific" is a special case of "general" consistent with "sub",
 * given that "general" is not a pair and can be assigned "specific".
 * Return true if successful.
 * Otherwise, return false.
 *
 * Check whether "general" is already assigned something in "sub".
 * If so, it must be assigned "specific".
 * Otherwise, there is a conflict.
 */
static bool update_sub_base(Substitution &sub, const TupleKindPtr &general,
	const TupleKindPtr &specific)
{
	auto name = general->name;

	if (sub.count(name) != 0 && sub.at(name) != specific)
		return false;
	sub.emplace(name, specific);
	return true;
}

/* Update the substitution "sub" to map "general" to "specific"
 * if "specific" is a special case of "general" consistent with "sub".
 * Return true if successful.
 * Otherwise, return false.
 *
 * If "general" is a pair and "specific" is not,
 * then "specific" cannot be a special case.
 * If both are pairs, then update the substitution based
 * on both sides.
 * If "general" is Anonymous, then "specific" must be Anonymous as well.
 * If "general" is Leaf, then "specific" cannot be a pair.
 *
 * Otherwise, assign "specific" to "general", if possible.
 */
static bool update_sub(Substitution &sub, const TupleKindPtr &general,
	const TupleKindPtr &specific)
{
	if (general->left() && !specific->left())
		return false;
	if (general->left())
		return update_sub(sub, general->left(), specific->left()) &&
		    update_sub(sub, general->right(), specific->right());
	if (general == Anonymous && specific != Anonymous)
		return false;
	if (general == Leaf && specific->left())
		return false;

	return update_sub_base(sub, general, specific);
}

/* Check if "specific" is a special case of "general" and,
 * if so, return true along with a substitution
 * that maps "general" to "specific".
 * Otherwise return false.
 *
 * This can only happen if the number of tuple kinds is the same.
 * If so, start with an empty substitution and update it
 * for each pair of tuple kinds, checking that each update succeeds.
 */
static std::pair<bool, Substitution> specializer(const Kind &general,
	const Kind &specific)
{
	Substitution specializer;

	if (general.size() != specific.size())
		return { false, Substitution() };

	for (size_t i = 0; i < general.size(); ++i) {
		auto general_tuple = general[i];

		if (!update_sub(specializer, general[i], specific[i]))
			return { false, Substitution() };
	}

	return { true, specializer };
}

/* Is "kind1" equivalent to "kind2"?
 * That is, is each a special case of the other?
 */
static bool equivalent(const Kind &kind1, const Kind &kind2)
{
	return specializer(kind1, kind2).first &&
	       specializer(kind2, kind1).first;
}

/* Add the specialization "kind" to the sequence of specializations,
 * provided there is no equivalent specialization already in there.
 */
void template_class::add_specialization(const Kind &kind)
{
	for (const auto &special : class_tuples)
		if (equivalent(special, kind))
			return;
	class_tuples.emplace_back(kind);
}

/* A type printer that prints the plain interface type,
 * without namespace.
 */
struct plain_cpp_type_printer : public cpp_type_printer {
	plain_cpp_type_printer() {}

	virtual std::string qualified(int arg, const std::string &cpp_type)
		const override;
};

/* Return the qualified form of the given C++ isl type name appearing
 * in argument position "arg" (-1 for return type).
 *
 * For printing the plain type without namespace, no modifications
 * are required.
 */
std::string plain_cpp_type_printer::qualified(int arg,
	const std::string &cpp_type) const
{
	return cpp_type;
}

/* Return a string representation of the plain type "type".
 *
 * For the plain printer, the argument position is irrelevant,
 * so simply pass in -1.
 */
static std::string plain_type(QualType type)
{
	return plain_cpp_type_printer().param(-1, type);
}

/* Return a string representation of the plain return type of "method".
 */
static std::string plain_return_type(const Method &method)
{
	return plain_type(method.fd->getReturnType());
}

/* Return that part of the signature "sig" that should match
 * the template class specialization for the given method.
 *
 * In particular, if the method is a regular member method,
 * then the instance should match the first argument.
 * Otherwise, it should match the return kind.
 */
static const Kind &matching_kind(const Method &method, const Signature &sig)
{
	if (method.kind == Method::Kind::member_method)
		return sig.args[0];
	else
		return sig.ret;
}

/* Is it possible for "template_class" to have the given kind?
 *
 * If the template class represents an anonymous function,
 * then so must the given kind.
 * There should also be specialization with the same number of tuple kinds.
 */
static bool has_kind(const template_class &template_class, const Kind &kind)
{
	if (template_class.is_anon() && !kind.is_anon())
		return false;
	for (const auto &class_tuple : template_class.class_tuples)
		if (class_tuple.size() == kind.size())
			return true;
	return false;
}

/* Is "return_kind" a possible kind for the return type of "method"?
 *
 * If the return type is not a template class,
 * then "return_kind" should not have any template parameters.
 * Otherwise, "return_kind" should be a valid kind for the template class.
 */
bool template_cpp_generator::class_printer::is_return_kind(
	const Method &method, const Kind &return_kind)
{
	const auto &template_classes = generator.template_classes;
	auto return_type = plain_return_type(method);

	if (template_classes.count(return_type) == 0)
		return return_kind.params().size() == 0;
	return has_kind(template_classes.at(return_type), return_kind);
}

/* Is "kind" a placeholder that can be assigned something else
 * in a substitution?
 *
 * Anonymous can only be mapped to itself.  This is taken care of
 * by assign().
 * Leaf can only be assigned a placeholder, but there is no need
 * to handle this specifically since Leaf can still be assigned
 * to the placeholder.
 */
static bool assignable(const TupleKindPtr &kind)
{
	return kind != Anonymous && kind != Leaf;
}

/* Return a substitution that maps "kind1" to "kind2", if possible.
 * Otherwise return an empty substitution.
 *
 * Check if "kind1" can be assigned anything or
 * if "kind1" and "kind2" are identical.
 * The latter case handles mapping Anonymous to itself.
 */
static Substitution assign(const TupleKindPtr &kind1, const TupleKindPtr &kind2)
{
	Substitution res;

	if (assignable(kind1) || kind1 == kind2)
		res.emplace(kind1->name, kind2);
	return res;
}

/* Return a substitution that first applies "first" and then "second".
 *
 * The result consists of "second" and of "second" applied to "first".
 */
static Substitution compose(const Substitution &first,
	const Substitution &second)
{
	Substitution res = second;

	for (const auto &kvp : first)
		res.emplace(kvp.first, apply(kvp.second, second));

	return res;
}

static Substitution compute_unifier(const TupleKindPtr &kind1,
	const TupleKindPtr &kind2);

/* Try and extend "unifier" with a unifier for "kind1" and "kind2".
 * Return the resulting unifier if successful.
 * Otherwise, return an empty substitution.
 *
 * First apply "unifier" to "kind1" and "kind2".
 * Then compute a unifier for the resulting tuple kinds and
 * combine it with "unifier".
 */
static Substitution combine_unifiers(const TupleKindPtr &kind1,
	const TupleKindPtr &kind2, const Substitution &unifier)
{
	auto k1 = apply(kind1, unifier);
	auto k2 = apply(kind2, unifier);
	auto u = compute_unifier(k1, k2);
	if (u.size() == 0)
		return Substitution();
	return compose(unifier, u);
}

/* Try and compute a unifier of "kind1" and "kind2",
 * i.e., a substitution that produces the same result when
 * applied to both "kind1" and "kind2",
 * for the case where both "kind1" and "kind2" are pairs.
 * Return this unifier if it was found.
 * Return an empty substitution if no unifier can be found.
 *
 * First compute a unifier for the left parts of the pairs and,
 * if successful, combine it with a unifier for the right parts.
 */
static Substitution compute_pair_unifier(const TupleKindPtr &kind1,
	const TupleKindPtr &kind2)
{
	auto unifier_left = compute_unifier(kind1->left(), kind2->left());
	if (unifier_left.size() == 0)
		return Substitution();
	return combine_unifiers(kind1->right(), kind2->right(), unifier_left);
}

/* Try and compute a unifier of "kind1" and "kind2",
 * i.e., a substitution that produces the same result when
 * applied to both "kind1" and "kind2".
 * Return this unifier if it was found.
 * Return an empty substitution if no unifier can be found.
 *
 * If one of the tuple kinds is a pair then assign it
 * to the other tuple kind, if possible.
 * If neither is a pair, then try and assign one to the other.
 * Otherwise, let compute_pair_unifier compute a unifier.
 *
 * Note that an assignment is added to the unifier even
 * if "kind1" and "kind2" are identical.
 * This ensures that a successful substitution is never empty.
 */
static Substitution compute_unifier(const TupleKindPtr &kind1,
	const TupleKindPtr &kind2)
{
	if (kind1->left() && !kind2->left())
		return assign(kind2, kind1);
	if (!kind1->left() && kind2->left())
		return assign(kind1, kind2);
	if (!kind1->left() && !kind2->left()) {
		if (assignable(kind1))
			return assign(kind1, kind2);
		else
			return assign(kind2, kind1);
	}

	return compute_pair_unifier(kind1, kind2);
}

/* Try and compute a unifier of "kind1" and "kind2",
 * i.e., a substitution that produces the same result when
 * applied to both "kind1" and "kind2".
 * Return this unifier if it was found.
 * Return an empty substitution if no unifier can be found.
 *
 * Start with an empty substitution and compute a unifier for
 * each pair of tuple kinds, combining the results.
 * If no combined unifier can be found or
 * if the numbers of tuple kinds are different, then return
 * an empty substitution.
 * This assumes that the number of tuples is greater than zero,
 * as otherwise an empty substitution would be returned as well.
 */
static Substitution compute_unifier(const Kind &kind1, const Kind &kind2)
{
	Substitution unifier;

	if (kind1.size() != kind2.size())
		return Substitution();

	for (size_t i = 0; i < kind1.size(); ++i)
		unifier = combine_unifiers(kind1[i], kind2[i], unifier);

	return unifier;
}

/* Try and construct a Kind that is a specialization of both "general" and
 * "specific", where "specific" is known _not_ to be a specialization
 * of "general" and not to contain any Leaf.
 *
 * First check whether "general" is a specialization of "specific".
 * If so, simply return "general".
 * Otherwise, rename the placeholders in the two kinds apart and
 * try and compute a unifier.
 * If this succeeds, then return the result of applying the unifier.
 */
static std::pair<bool, Kind> unify(const Kind &general, const Kind &specific)
{
	if (specializer(specific, general).first) {
		return { true, general };
	} else {
		auto rename = param_renamer(specific.params(), "T");
		auto renamed = specific.apply(rename);
		auto unifier = compute_unifier(general, renamed);

		if (unifier.size() == 0)
			return { false, { } };

		return { true, general.apply(unifier) };
	}
}

/* Try and add a template class specialization corresponding to "kind".
 * The new specialization needs to be a specialization of both
 * the current specialization and "kind".
 *
 * The current template class specialization is known not to be a special case
 * of "kind".
 *
 * Try and unify the two kinds and, if this succeeds, add the result
 * to this list of template class specializations.
 */
void template_cpp_generator::class_printer::add_specialization(
	const Kind &kind)
{
	auto maybe_unified = unify(kind, instance.kind);

	if (!maybe_unified.first)
		return;
	instance.template_class.add_specialization(maybe_unified.second);
}

/* Does the type of the parameter at position "i" of "method" necessarily
 * have a final Anonymous tuple?
 *
 * If the parameter is not of an isl type or if no specializations
 * have been defined for the type, then it can be considered anonymous.
 * Otherwise, if any specialization represents an anonymous function,
 * then every specialization does, so simply check
 * the first specialization.
 */
static bool param_is_anon(const Method &method, int i)
{
	ParmVarDecl *param = method.get_param(i);
	QualType type = param->getOriginalType();

	if (cpp_generator::is_isl_type(type)) {
		const auto &name = type->getPointeeType().getAsString();
		const auto &cpp = cpp_generator::type2cpp(name);
		const auto &tuples = lookup_class_tuples(cpp);

		if (tuples.empty())
			return true;
		return tuples[0].is_anon();
	}

	return true;
}

/* Replace the final tuple of "arg_kind" by Anonymous in "sig" and
 * return the update signature,
 * unless this would affect the class instance "instance_kind".
 *
 * If the original "instance_kind" is a special case
 * of the result of the substitution, then "instance_kind"
 * is not affected and the substitution can be applied
 * to the entire signature.
 */
static Signature specialize_anonymous_arg(const Signature &sig,
	const Kind &arg_kind, const Kind &instance_kind)
{
	const auto &subs = compute_unifier(arg_kind.back(), Anonymous);
	const auto &specialized_instance = instance_kind.apply(subs);

	if (!specializer(specialized_instance, instance_kind).first)
		return sig;

	return sig.apply(subs);
}

/* If any of the arguments of "method" is of a type that necessarily
 * has a final Anonymous tuple, but the corresponding entry
 * in the signature "sig" is not Anonymous, then replace
 * that entry by Anonymous and return the updated signature,
 * unless this would affect the class instance "instance_kind".
 */
static Signature specialize_anonymous_args(const Signature &sig,
	const Method &method, const Kind &instance_kind)
{
	auto specialized_sig = sig;

	method.on_cpp_arg_list([&] (int i, int arg) {
		const auto &arg_kind = sig.args[arg];

		if (arg_kind.is_anon())
			return;
		if (!param_is_anon(method, i))
			return;
		specialized_sig = specialize_anonymous_arg(specialized_sig,
					arg_kind, instance_kind);
	});

	return specialized_sig;
}

/* Print a declaration or definition of the method "method"
 * if the template class specialization matches "match_arg".
 * Return true if so.
 * "sig" is the complete signature, of which "match_arg" refers
 * to the first argument or the return type.
 *
 * Since "sig" may have parameters with the same names as
 * those in instance.kind, rename them apart first.
 *
 * If the template class specialization is a special case of
 * (the renamed) "match_arg"
 * then apply the specializer to the complete (renamed) signature,
 * specialize any anonymous arguments,
 * check that the return kind is allowed and, if so,
 * print the declaration or definition using the specialized signature.
 *
 * If the template class specialization is not a special case of "match_arg"
 * then add a further specialization to the list of specializations
 * of the template class.
 */
bool template_cpp_generator::class_printer::print_matching_method(
	const Method &method, const Signature &sig, const Kind &match_arg)
{
	auto rename = shared_param_renamer(sig, instance.kind);
	auto renamed_arg = match_arg.apply(rename);
	auto maybe_specializer = specializer(renamed_arg, instance.kind);
	if (maybe_specializer.first) {
		const auto &specializer = maybe_specializer.second;
		auto specialized_sig = sig.apply(rename).apply(specializer);
		specialized_sig = specialize_anonymous_args(specialized_sig,
							method, instance.kind);
		if (!is_return_kind(method, specialized_sig.ret))
			return false;

		print_method_sig(method, specialized_sig, false);
	} else {
		add_specialization(match_arg);
	}
	return maybe_specializer.first;
}

/* Is the first argument of "method" of type "isl_ctx *"?
 */
static bool first_arg_is_ctx(const Method &method)
{
	return generator::first_arg_is_isl_ctx(method.fd);
}

/* Is the first signature argument set to { Ctx }?
 */
static bool first_kind_is_ctx(const Signature &sig)
{
	return sig.args[0].size() > 0 && sig.args[0][0] == Ctx;
}

/* Print a declaration or definition of the member method "method"
 * if it matches the signature "sig".
 * Return true if so.
 *
 * First determine the part of the signature that needs to match
 * the template class specialization and
 * check that it has the same number of template arguments.
 * Also check that the number of arguments of the signature
 * matches that of the method.
 * If there is at least one argument, then check that the first method argument
 * is an isl_ctx if and only if the first signature argument is Ctx.
 *
 * If these tests succeed, proceed with the actual matching.
 */
bool template_cpp_generator::class_printer::print_matching_method(
	const Method &method, const Signature &sig)
{
	auto match_arg = matching_kind(method, sig);
	int n_args = sig.args.size();

	if (match_arg.size() != instance.kind.size())
		return false;
	if (n_args != total_params(method))
		return false;
	if (n_args > 0 && first_arg_is_ctx(method) != first_kind_is_ctx(sig))
		return false;

	return print_matching_method(method, sig, match_arg);
}

/* Print a declaration or definition of the member method "method"
 * for each matching signature in "signatures".
 *
 * If there is no matching signature in "signatures",
 * then explicitly delete the method (using a signature based on
 * the specialization) so that it is not inherited from the base class.
 */
void template_cpp_generator::class_printer::print_matching_method(
	const Method &method, const std::vector<Signature> &signatures)
{
	auto any = false;

	for (const auto &sig : signatures)
		if (print_matching_method(method, sig))
			any = true;

	if (!any)
		print_method_sig(method, instance_sig(method, instance), true);
}

/* Signatures for "at" methods applied to a multi-expression,
 * which make the final tuple anonymous.
 */
static Signature select_set = { { Anonymous }, { { Domain }, { Integer } } };
static Signature select_map =
	{ { Domain, Anonymous }, { { Domain, Range }, { Integer } } };
static std::vector<Signature> at_select = { select_set, select_map };

/* Signatures for other "at" methods applied to a list,
 * which do not modify the tuple kind.
 */
static Signature bin_set_int = { { Domain }, { { Domain }, { Integer } } };
static Signature bin_map_int =
	{ { Domain, Range }, { { Domain, Range }, { Integer } } };
static std::vector<Signature> at_keep = { bin_set_int, bin_map_int };

/* Print a declaration or definition of the "at" member method "method".
 *
 * There are two types of methods called "at".
 * One type extracts an element from a multi-expression and
 * the other extracts an element from a list.
 *
 * In the first case, the return type is an anonymous function
 * while the object type is not.  In this case, the return kind
 * should have a final Anonymous tuple.
 * Otherwise, the return kind should be the same as the object kind.
 */
void template_cpp_generator::class_printer::print_at_method(
	const Method &method)
{
	auto anon = instance.template_class.is_anon();
	auto return_type = plain_return_type(method);
	auto return_class = generator.template_classes.at(return_type);

	if (!anon && return_class.is_anon())
		return print_matching_method(method, at_select);
	else
		return print_matching_method(method, at_keep);
}

/* Does the string "s" contain "sub" as a substring?
 */
static bool contains(const std::string &s, const std::string &sub)
{
	return s.find(sub) != std::string::npos;
}

/* Print a declaration or definition of the member method "method",
 * if it has a special signature in "special_methods".
 * Return true if this is the case.
 *
 * Check if any special signatures are specified for this method and
 * if the class name matches any of those with special signatures.
 * If so, pick the one with the best match, i.e., the first match
 * since the largest keys appear first.
 */
bool template_cpp_generator::class_printer::print_special_method(
	const Method &method, const infix_map_map &special_methods)
{
	if (special_methods.count(method.name) == 0)
		return false;

	for (const auto &kvp : special_methods.at(method.name)) {
		if (!contains(instance.template_class.class_name, kvp.first))
			continue;
		print_matching_method(method, kvp.second);
		return true;
	}

	return false;
}

/* Print a declaration or definition of the member method "method",
 * if it has a special signature specified by special_member_methods.
 * Return true if this is the case.
 */
bool template_cpp_generator::class_printer::print_special_member_method(
	const Method &method)
{
	return print_special_method(method, special_member_methods);
}

/* Print a declaration or definition of the member method "method",
 * if it is named after a template class.  Return true if this is the case.
 */
bool template_cpp_generator::class_printer::print_type_named_member_method(
	const Method &method)
{
	if (generator.template_classes.count(method.name) == 0)
		return false;

	print_matching_method(method, constructor_sig);

	return true;
}

/* Print a declaration or definition of the member method "method"
 * using a signature associated to method name "name", if there is any.
 * Return true if this is the case.
 */
bool template_cpp_generator::class_printer::print_member_method_with_name(
	const Method &method, const std::string &name)
{
	if (member_methods.count(name) == 0)
		return false;

	print_matching_method(method, member_methods.at(name));
	return true;
}

/* If "sub" appears inside "str", then remove the first occurrence and
 * return the result.  Otherwise, simply return "str".
 */
static std::string drop_occurrence(const std::string &str,
	const std::string &sub)
{
	auto res = str;
	auto pos = str.find(sub);

	if (pos != std::string::npos)
		res.erase(pos, sub.length());

	return res;
}

/* If "sub" appears in "str" next to an underscore, then remove the combination.
 * Otherwise, simply return "str".
 */
static std::string drop_underscore_occurrence(const std::string &str,
	const std::string &sub)
{
	auto res = drop_occurrence(str, sub + "_");
	if (res != str)
		return res;
	return drop_occurrence(res, std::string("_") + sub);
}

/* Return the name of "method", with the name of the return type,
 * along with an underscore, removed, if this combination appears in the name.
 * Otherwise, simply return the name.
 */
const std::string name_without_return(const Method &method)
{
	auto return_infix = plain_return_type(method);
	return drop_underscore_occurrence(method.name, return_infix);
}

/* If this method has a callback, then remove the type
 * of the first argument of the first callback from the name of the method.
 * Otherwise, simply return the name of the method.
 */
const std::string callback_name(const Method &method)
{
	if (method.callbacks.size() == 0)
		return method.name;

	auto type = method.callbacks.at(0)->getType();
	auto callback = cpp_generator::extract_prototype(type);
	auto arg_type = plain_type(callback->getArgType(0));
	return generator::drop_suffix(method.name, "_" + arg_type);
}

/* Print a declaration or definition of the member method "method".
 *
 * If the method is called "at", then it requires special treatment.
 * Otherwise, check if the signature is overridden for this class or
 * if the method is named after some other type.
 * Otherwise look for an appropriate signature using different variations
 * of the method name.  First try the method name itself,
 * then the method name with the return type removed and
 * finally the method name with the callback argument type removed.
 */
void template_cpp_generator::class_printer::print_member_method(
	const Method &method)
{
	if (method.name == "at")
		return print_at_method(method);
	if (print_special_member_method(method))
		return;
	if (print_type_named_member_method(method))
		return;
	if (print_member_method_with_name(method, method.name))
		return;
	if (print_member_method_with_name(method, name_without_return(method)))
		return;
	if (print_member_method_with_name(method, callback_name(method)))
		return;
}

/* Print a declaration or definition of "method" based on its type.
 */
void template_cpp_generator::class_printer::print_any_method(
	const Method &method)
{
	switch (method.kind) {
	case Method::Kind::static_method:
		print_static_method(method);
		break;
	case Method::Kind::constructor:
		print_constructor(method);
		break;
	case Method::Kind::member_method:
		print_member_method(method);
		break;
	}
}

/* Print a declaration or definition of "method".
 *
 * Mark the method as not requiring copies of the arguments.
 */
void template_cpp_generator::class_printer::print_method(const Method &method)
{
	print_any_method(NoCopyMethod(method));
}

/* Print a declaration or definition of "method".
 *
 * Note that a ConversionMethod is already marked
 * as not requiring copies of the arguments.
 */
void template_cpp_generator::class_printer::print_method(
	const ConversionMethod &method)
{
	print_any_method(method);
}

/* Helper class for printing the declarations for
 * template class specializations.
 */
struct template_cpp_generator::class_decl_printer :
	public specialization_printer
{
	class_decl_printer(std::ostream &os,
				template_cpp_generator &generator) :
		specialization_printer(os, generator) {}

	void print_arg_subclass_constructor(const specialization &instance,
		const std::vector<std::string> &params) const;
	void print_super_constructor(const specialization &instance) const;
	virtual void print_class(const specialization &instance) const override;
};

/* Print the declaration and definition of a constructor
 * for the template class specialization "instance" taking
 * an instance with more specialized template arguments,
 * where "params" holds the template parameters of "instance".
 * It is assumed that there is at least one template parameter as otherwise
 * there are no template arguments to be specialized and
 * no constructor needs to be printed.
 *
 * In particular, the constructor takes an object of the same instance where
 * for each template parameter, the corresponding template argument
 * of the input object is a subclass of the template argument
 * of the constructed object.
 *
 * Pick fresh names for all template parameters and
 * add a constructor with these fresh names as extra template parameters and
 * a constraint requiring that each of them is a subclass
 * of the corresponding class template parameter.
 * The plain C++ interface object of the constructed object is initialized with
 * the plain C++ interface object of the constructor argument.
 */
void template_cpp_generator::class_decl_printer::print_arg_subclass_constructor(
	const specialization &instance,
	const std::vector<std::string> &params) const
{
	const auto &class_name = instance.class_name();
	auto rename = param_renamer(params, "Arg");
	auto derived = instance.kind.apply(rename);

	os << "  template ";
	os << "<";
	print_pure_template_args(os, derived.params());
	os << ",\n";
	os << "            typename std::enable_if<\n";
	for (size_t i = 0; i < params.size(); ++i) {
		if (i != 0)
			os << " &&\n";
		os << "              std::is_base_of<"
		   << params[i] << ", "
		   << rename.at(params[i])->params()[0] << ">{}";
	}
	os << ",\n";
	os << "            bool>::type = true>";
	os << "\n";
	os << "  " << class_name << "(const ";
	print_bare_template_type(os, class_name, derived);
	os << " &obj) : " << instance.base_name() << "(obj) {}\n";
}

/* Print the declaration and definition of a constructor
 * for the template class specialization "instance" taking
 * an instance of the base class.
 *
 * If the instance kind is that of an anonymous set
 * (i.e., it has a single tuple that is set to Anonymous),
 * then allow the constructor to be called externally.
 * This is mostly useful for being able to use isl::val and
 * isl::typed::val<Anonymous> interchangeably and similarly for isl::id.
 *
 * If the instance is of any other kind, then make this constructor private
 * to avoid objects of the plain interface being converted automatically.
 * Also make sure that it does not apply to any type derived
 * from the base class.  In particular, this makes sure it does
 * not apply to any other specializations of this template class as
 * otherwise any conflict in specializations would simply point
 * to the private constructor.
 *
 * A factory method is added to be able to perform the conversion explicitly,
 * with an explicit specification of the template arguments.
 */
void template_cpp_generator::class_decl_printer::print_super_constructor(
	const specialization &instance) const
{
	bool hide = !instance.kind.is_anon_set();
	const auto &base_name = instance.base_name();
	const auto &arg_name = hide ? "base" : base_name;

	if (hide) {
		os << " private:\n";
		os << "  template <typename base,\n";
		os << "            typename std::enable_if<\n";
		os << "              std::is_same<base, " << base_name
		   << ">{}, bool>::type = true>\n";
	}
	os << "  " << instance.class_name()
	   << "(const " << arg_name << " &obj) : "
	   << base_name << "(obj) {}\n";
	if (hide)
		os << " public:\n";
	os << "  static " << instance.class_name() << " from"
	   << "(const " << base_name << " &obj) {\n";
	os << "    return " << instance.class_name() << "(obj);\n";
	os << "  }\n";
}

/* Print a "declaration" for the given template class specialization.
 * In particular, print the class definition and the method declarations.
 *
 * The template parameters are the distinct variable names
 * in the instance kind.
 *
 * Each instance of the template class derives from the corresponding
 * plain C++ interface class.
 *
 * All (other) template classes are made friends of this template class
 * to allow them to call the private constructor taking an object
 * of the plain interface.
 *
 * Besides the constructors and methods that forward
 * to the corresponding methods in the plain C++ interface class,
 * some extra constructors are defined.
 * The default zero-argument constructor is useful for declaring
 * a variable that only gets assigned a value at a later stage.
 * The constructor taking an instance with more specialized
 * template arguments is useful for lifting the class hierarchy
 * of the template arguments to the template class.
 * The constructor taking an instance of the base class
 * is useful for (explicitly) constructing a template type
 * from a plain type.
 */
void template_cpp_generator::class_decl_printer::print_class(
	const specialization &instance) const
{
	const auto &class_name = instance.class_name();
	auto params = instance.kind.params();

	os << "\n";

	print_template(os, params);

	os << "struct ";
	print_bare_template_type(os, class_name, instance.kind);
	os << " : public " << instance.base_name() << " {\n";

	generator.print_friends(os);
	os << "\n";

	os << "  " << class_name << "() = default;\n";
	if (params.size() != 0)
		print_arg_subclass_constructor(instance, params);
	print_super_constructor(instance);
	method_decl_printer(instance, *this).print_all_methods();

	os << "};\n";
}

/* Helper class for printing the definitions of template class specializations.
 */
struct template_cpp_generator::class_impl_printer :
	public specialization_printer
{
	class_impl_printer(std::ostream &os,
				template_cpp_generator &generator) :
		specialization_printer(os, generator) {}

	virtual void print_class(const specialization &instance) const override;
};

/* Print a definition for the given template class specialization.
 *
 * In particular, print definitions
 * for the constructors and methods that forward
 * to the corresponding methods in the plain C++ interface class.
 * The extra constructors declared in the class definition
 * are defined inline.
 */
void template_cpp_generator::class_impl_printer::print_class(
	const specialization &instance) const
{
	method_impl_printer(instance, *this).print_all_methods();
}

/* Generate a templated cpp interface
 * based on the extracted types and functions.
 *
 * First print forward declarations for all template classes,
 * then the declarations of the classes, and at the end all
 * method implementations.
 */
void template_cpp_generator::generate()
{
	ostream &os = std::cout;

	os << "\n";

	print_forward_declarations(os);
	class_decl_printer(os, *this).print_classes();
	class_impl_printer(os, *this).print_classes();
}