summaryrefslogtreecommitdiff
path: root/polly/lib/Support/ScopHelper.cpp
blob: ec9155e06280c6f884c98642cf6d4dee33aa8eb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
//===- ScopHelper.cpp - Some Helper Functions for Scop.  ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Small functions that help with Scop and LLVM-IR.
//
//===----------------------------------------------------------------------===//

#include "polly/Support/ScopHelper.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/SCEVValidator.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-scop-helper"

static cl::list<std::string> DebugFunctions(
    "polly-debug-func",
    cl::desc("Allow calls to the specified functions in SCoPs even if their "
             "side-effects are unknown. This can be used to do debug output in "
             "Polly-transformed code."),
    cl::Hidden, cl::CommaSeparated, cl::cat(PollyCategory));

// Ensures that there is just one predecessor to the entry node from outside the
// region.
// The identity of the region entry node is preserved.
static void simplifyRegionEntry(Region *R, DominatorTree *DT, LoopInfo *LI,
                                RegionInfo *RI) {
  BasicBlock *EnteringBB = R->getEnteringBlock();
  BasicBlock *Entry = R->getEntry();

  // Before (one of):
  //
  //                       \    /            //
  //                      EnteringBB         //
  //                        |    \------>    //
  //   \   /                |                //
  //   Entry <--\         Entry <--\         //
  //   /   \    /         /   \    /         //
  //        ....               ....          //

  // Create single entry edge if the region has multiple entry edges.
  if (!EnteringBB) {
    SmallVector<BasicBlock *, 4> Preds;
    for (BasicBlock *P : predecessors(Entry))
      if (!R->contains(P))
        Preds.push_back(P);

    BasicBlock *NewEntering =
        SplitBlockPredecessors(Entry, Preds, ".region_entering", DT, LI);

    if (RI) {
      // The exit block of predecessing regions must be changed to NewEntering
      for (BasicBlock *ExitPred : predecessors(NewEntering)) {
        Region *RegionOfPred = RI->getRegionFor(ExitPred);
        if (RegionOfPred->getExit() != Entry)
          continue;

        while (!RegionOfPred->isTopLevelRegion() &&
               RegionOfPred->getExit() == Entry) {
          RegionOfPred->replaceExit(NewEntering);
          RegionOfPred = RegionOfPred->getParent();
        }
      }

      // Make all ancestors use EnteringBB as entry; there might be edges to it
      Region *AncestorR = R->getParent();
      RI->setRegionFor(NewEntering, AncestorR);
      while (!AncestorR->isTopLevelRegion() && AncestorR->getEntry() == Entry) {
        AncestorR->replaceEntry(NewEntering);
        AncestorR = AncestorR->getParent();
      }
    }

    EnteringBB = NewEntering;
  }
  assert(R->getEnteringBlock() == EnteringBB);

  // After:
  //
  //    \    /       //
  //  EnteringBB     //
  //      |          //
  //      |          //
  //    Entry <--\   //
  //    /   \    /   //
  //         ....    //
}

// Ensure that the region has a single block that branches to the exit node.
static void simplifyRegionExit(Region *R, DominatorTree *DT, LoopInfo *LI,
                               RegionInfo *RI) {
  BasicBlock *ExitBB = R->getExit();
  BasicBlock *ExitingBB = R->getExitingBlock();

  // Before:
  //
  //   (Region)   ______/  //
  //      \  |   /         //
  //       ExitBB          //
  //       /    \          //

  if (!ExitingBB) {
    SmallVector<BasicBlock *, 4> Preds;
    for (BasicBlock *P : predecessors(ExitBB))
      if (R->contains(P))
        Preds.push_back(P);

    //  Preds[0] Preds[1]      otherBB //
    //         \  |  ________/         //
    //          \ | /                  //
    //           BB                    //
    ExitingBB =
        SplitBlockPredecessors(ExitBB, Preds, ".region_exiting", DT, LI);
    // Preds[0] Preds[1]      otherBB  //
    //        \  /           /         //
    // BB.region_exiting    /          //
    //                  \  /           //
    //                   BB            //

    if (RI)
      RI->setRegionFor(ExitingBB, R);

    // Change the exit of nested regions, but not the region itself,
    R->replaceExitRecursive(ExitingBB);
    R->replaceExit(ExitBB);
  }
  assert(ExitingBB == R->getExitingBlock());

  // After:
  //
  //     \   /                //
  //    ExitingBB     _____/  //
  //          \      /        //
  //           ExitBB         //
  //           /    \         //
}

void polly::simplifyRegion(Region *R, DominatorTree *DT, LoopInfo *LI,
                           RegionInfo *RI) {
  assert(R && !R->isTopLevelRegion());
  assert(!RI || RI == R->getRegionInfo());
  assert((!RI || DT) &&
         "RegionInfo requires DominatorTree to be updated as well");

  simplifyRegionEntry(R, DT, LI, RI);
  simplifyRegionExit(R, DT, LI, RI);
  assert(R->isSimple());
}

// Split the block into two successive blocks.
//
// Like llvm::SplitBlock, but also preserves RegionInfo
static BasicBlock *splitBlock(BasicBlock *Old, Instruction *SplitPt,
                              DominatorTree *DT, llvm::LoopInfo *LI,
                              RegionInfo *RI) {
  assert(Old && SplitPt);

  // Before:
  //
  //  \   /  //
  //   Old   //
  //  /   \  //

  BasicBlock *NewBlock = llvm::SplitBlock(Old, SplitPt, DT, LI);

  if (RI) {
    Region *R = RI->getRegionFor(Old);
    RI->setRegionFor(NewBlock, R);
  }

  // After:
  //
  //   \   /    //
  //    Old     //
  //     |      //
  //  NewBlock  //
  //   /   \    //

  return NewBlock;
}

void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, DominatorTree *DT,
                                     LoopInfo *LI, RegionInfo *RI) {
  // Find first non-alloca instruction. Every basic block has a non-alloca
  // instruction, as every well formed basic block has a terminator.
  BasicBlock::iterator I = EntryBlock->begin();
  while (isa<AllocaInst>(I))
    ++I;

  // splitBlock updates DT, LI and RI.
  splitBlock(EntryBlock, &*I, DT, LI, RI);
}

void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
  auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
  auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
  auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
  RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>();
  RegionInfo *RI = RIP ? &RIP->getRegionInfo() : nullptr;

  // splitBlock updates DT, LI and RI.
  polly::splitEntryBlockForAlloca(EntryBlock, DT, LI, RI);
}

void polly::recordAssumption(polly::RecordedAssumptionsTy *RecordedAssumptions,
                             polly::AssumptionKind Kind, isl::set Set,
                             DebugLoc Loc, polly::AssumptionSign Sign,
                             BasicBlock *BB, bool RTC) {
  assert((Set.is_params() || BB) &&
         "Assumptions without a basic block must be parameter sets");
  if (RecordedAssumptions)
    RecordedAssumptions->push_back({Kind, Sign, Set, Loc, BB, RTC});
}

/// The SCEVExpander will __not__ generate any code for an existing SDiv/SRem
/// instruction but just use it, if it is referenced as a SCEVUnknown. We want
/// however to generate new code if the instruction is in the analyzed region
/// and we generate code outside/in front of that region. Hence, we generate the
/// code for the SDiv/SRem operands in front of the analyzed region and then
/// create a new SDiv/SRem operation there too.
struct ScopExpander final : SCEVVisitor<ScopExpander, const SCEV *> {
  friend struct SCEVVisitor<ScopExpander, const SCEV *>;

  explicit ScopExpander(const Region &R, ScalarEvolution &SE,
                        const DataLayout &DL, const char *Name, ValueMapT *VMap,
                        BasicBlock *RTCBB)
      : Expander(SE, DL, Name, /*PreserveLCSSA=*/false), SE(SE), Name(Name),
        R(R), VMap(VMap), RTCBB(RTCBB) {}

  Value *expandCodeFor(const SCEV *E, Type *Ty, Instruction *I) {
    // If we generate code in the region we will immediately fall back to the
    // SCEVExpander, otherwise we will stop at all unknowns in the SCEV and if
    // needed replace them by copies computed in the entering block.
    if (!R.contains(I))
      E = visit(E);
    return Expander.expandCodeFor(E, Ty, I);
  }

  const SCEV *visit(const SCEV *E) {
    // Cache the expansion results for intermediate SCEV expressions. A SCEV
    // expression can refer to an operand multiple times (e.g. "x*x), so
    // a naive visitor takes exponential time.
    if (SCEVCache.count(E))
      return SCEVCache[E];
    const SCEV *Result = SCEVVisitor::visit(E);
    SCEVCache[E] = Result;
    return Result;
  }

private:
  SCEVExpander Expander;
  ScalarEvolution &SE;
  const char *Name;
  const Region &R;
  ValueMapT *VMap;
  BasicBlock *RTCBB;
  DenseMap<const SCEV *, const SCEV *> SCEVCache;

  const SCEV *visitGenericInst(const SCEVUnknown *E, Instruction *Inst,
                               Instruction *IP) {
    if (!Inst || !R.contains(Inst))
      return E;

    assert(!Inst->mayThrow() && !Inst->mayReadOrWriteMemory() &&
           !isa<PHINode>(Inst));

    auto *InstClone = Inst->clone();
    for (auto &Op : Inst->operands()) {
      assert(SE.isSCEVable(Op->getType()));
      auto *OpSCEV = SE.getSCEV(Op);
      auto *OpClone = expandCodeFor(OpSCEV, Op->getType(), IP);
      InstClone->replaceUsesOfWith(Op, OpClone);
    }

    InstClone->setName(Name + Inst->getName());
    InstClone->insertBefore(IP);
    return SE.getSCEV(InstClone);
  }

  const SCEV *visitUnknown(const SCEVUnknown *E) {

    // If a value mapping was given try if the underlying value is remapped.
    Value *NewVal = VMap ? VMap->lookup(E->getValue()) : nullptr;
    if (NewVal) {
      auto *NewE = SE.getSCEV(NewVal);

      // While the mapped value might be different the SCEV representation might
      // not be. To this end we will check before we go into recursion here.
      if (E != NewE)
        return visit(NewE);
    }

    Instruction *Inst = dyn_cast<Instruction>(E->getValue());
    Instruction *IP;
    if (Inst && !R.contains(Inst))
      IP = Inst;
    else if (Inst && RTCBB->getParent() == Inst->getFunction())
      IP = RTCBB->getTerminator();
    else
      IP = RTCBB->getParent()->getEntryBlock().getTerminator();

    if (!Inst || (Inst->getOpcode() != Instruction::SRem &&
                  Inst->getOpcode() != Instruction::SDiv))
      return visitGenericInst(E, Inst, IP);

    const SCEV *LHSScev = SE.getSCEV(Inst->getOperand(0));
    const SCEV *RHSScev = SE.getSCEV(Inst->getOperand(1));

    if (!SE.isKnownNonZero(RHSScev))
      RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));

    Value *LHS = expandCodeFor(LHSScev, E->getType(), IP);
    Value *RHS = expandCodeFor(RHSScev, E->getType(), IP);

    Inst = BinaryOperator::Create((Instruction::BinaryOps)Inst->getOpcode(),
                                  LHS, RHS, Inst->getName() + Name, IP);
    return SE.getSCEV(Inst);
  }

  /// The following functions will just traverse the SCEV and rebuild it with
  /// the new operands returned by the traversal.
  ///
  ///{
  const SCEV *visitConstant(const SCEVConstant *E) { return E; }
  const SCEV *visitPtrToIntExpr(const SCEVPtrToIntExpr *E) {
    return SE.getPtrToIntExpr(visit(E->getOperand()), E->getType());
  }
  const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
    return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
  }
  const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
    return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
  }
  const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
    return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
  }
  const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
    auto *RHSScev = visit(E->getRHS());
    if (!SE.isKnownNonZero(RHSScev))
      RHSScev = SE.getUMaxExpr(RHSScev, SE.getConstant(E->getType(), 1));
    return SE.getUDivExpr(visit(E->getLHS()), RHSScev);
  }
  const SCEV *visitAddExpr(const SCEVAddExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getAddExpr(NewOps);
  }
  const SCEV *visitMulExpr(const SCEVMulExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getMulExpr(NewOps);
  }
  const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getUMaxExpr(NewOps);
  }
  const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getSMaxExpr(NewOps);
  }
  const SCEV *visitUMinExpr(const SCEVUMinExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getUMinExpr(NewOps);
  }
  const SCEV *visitSMinExpr(const SCEVSMinExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getSMinExpr(NewOps);
  }
  const SCEV *visitSequentialUMinExpr(const SCEVSequentialUMinExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getUMinExpr(NewOps, /*Sequential=*/true);
  }
  const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
    SmallVector<const SCEV *, 4> NewOps;
    for (const SCEV *Op : E->operands())
      NewOps.push_back(visit(Op));
    return SE.getAddRecExpr(NewOps, E->getLoop(), E->getNoWrapFlags());
  }
  ///}
};

Value *polly::expandCodeFor(Scop &S, ScalarEvolution &SE, const DataLayout &DL,
                            const char *Name, const SCEV *E, Type *Ty,
                            Instruction *IP, ValueMapT *VMap,
                            BasicBlock *RTCBB) {
  ScopExpander Expander(S.getRegion(), SE, DL, Name, VMap, RTCBB);
  return Expander.expandCodeFor(E, Ty, IP);
}

Value *polly::getConditionFromTerminator(Instruction *TI) {
  if (BranchInst *BR = dyn_cast<BranchInst>(TI)) {
    if (BR->isUnconditional())
      return ConstantInt::getTrue(Type::getInt1Ty(TI->getContext()));

    return BR->getCondition();
  }

  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
    return SI->getCondition();

  return nullptr;
}

Loop *polly::getLoopSurroundingScop(Scop &S, LoopInfo &LI) {
  // Start with the smallest loop containing the entry and expand that
  // loop until it contains all blocks in the region. If there is a loop
  // containing all blocks in the region check if it is itself contained
  // and if so take the parent loop as it will be the smallest containing
  // the region but not contained by it.
  Loop *L = LI.getLoopFor(S.getEntry());
  while (L) {
    bool AllContained = true;
    for (auto *BB : S.blocks())
      AllContained &= L->contains(BB);
    if (AllContained)
      break;
    L = L->getParentLoop();
  }

  return L ? (S.contains(L) ? L->getParentLoop() : L) : nullptr;
}

unsigned polly::getNumBlocksInLoop(Loop *L) {
  unsigned NumBlocks = L->getNumBlocks();
  SmallVector<BasicBlock *, 4> ExitBlocks;
  L->getExitBlocks(ExitBlocks);

  for (auto ExitBlock : ExitBlocks) {
    if (isa<UnreachableInst>(ExitBlock->getTerminator()))
      NumBlocks++;
  }
  return NumBlocks;
}

unsigned polly::getNumBlocksInRegionNode(RegionNode *RN) {
  if (!RN->isSubRegion())
    return 1;

  Region *R = RN->getNodeAs<Region>();
  return std::distance(R->block_begin(), R->block_end());
}

Loop *polly::getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
  if (!RN->isSubRegion()) {
    BasicBlock *BB = RN->getNodeAs<BasicBlock>();
    Loop *L = LI.getLoopFor(BB);

    // Unreachable statements are not considered to belong to a LLVM loop, as
    // they are not part of an actual loop in the control flow graph.
    // Nevertheless, we handle certain unreachable statements that are common
    // when modeling run-time bounds checks as being part of the loop to be
    // able to model them and to later eliminate the run-time bounds checks.
    //
    // Specifically, for basic blocks that terminate in an unreachable and
    // where the immediate predecessor is part of a loop, we assume these
    // basic blocks belong to the loop the predecessor belongs to. This
    // allows us to model the following code.
    //
    // for (i = 0; i < N; i++) {
    //   if (i > 1024)
    //     abort();            <- this abort might be translated to an
    //                            unreachable
    //
    //   A[i] = ...
    // }
    if (!L && isa<UnreachableInst>(BB->getTerminator()) && BB->getPrevNode())
      L = LI.getLoopFor(BB->getPrevNode());
    return L;
  }

  Region *NonAffineSubRegion = RN->getNodeAs<Region>();
  Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
  while (L && NonAffineSubRegion->contains(L))
    L = L->getParentLoop();
  return L;
}

static bool hasVariantIndex(GetElementPtrInst *Gep, Loop *L, Region &R,
                            ScalarEvolution &SE) {
  for (const Use &Val : llvm::drop_begin(Gep->operands(), 1)) {
    const SCEV *PtrSCEV = SE.getSCEVAtScope(Val, L);
    Loop *OuterLoop = R.outermostLoopInRegion(L);
    if (!SE.isLoopInvariant(PtrSCEV, OuterLoop))
      return true;
  }
  return false;
}

bool polly::isHoistableLoad(LoadInst *LInst, Region &R, LoopInfo &LI,
                            ScalarEvolution &SE, const DominatorTree &DT,
                            const InvariantLoadsSetTy &KnownInvariantLoads) {
  Loop *L = LI.getLoopFor(LInst->getParent());
  auto *Ptr = LInst->getPointerOperand();

  // A LoadInst is hoistable if the address it is loading from is also
  // invariant; in this case: another invariant load (whether that address
  // is also not written to has to be checked separately)
  // TODO: This only checks for a LoadInst->GetElementPtrInst->LoadInst
  // pattern generated by the Chapel frontend, but generally this applies
  // for any chain of instruction that does not also depend on any
  // induction variable
  if (auto *GepInst = dyn_cast<GetElementPtrInst>(Ptr)) {
    if (!hasVariantIndex(GepInst, L, R, SE)) {
      if (auto *DecidingLoad =
              dyn_cast<LoadInst>(GepInst->getPointerOperand())) {
        if (KnownInvariantLoads.count(DecidingLoad))
          return true;
      }
    }
  }

  const SCEV *PtrSCEV = SE.getSCEVAtScope(Ptr, L);
  while (L && R.contains(L)) {
    if (!SE.isLoopInvariant(PtrSCEV, L))
      return false;
    L = L->getParentLoop();
  }

  for (auto *User : Ptr->users()) {
    auto *UserI = dyn_cast<Instruction>(User);
    if (!UserI || !R.contains(UserI))
      continue;
    if (!UserI->mayWriteToMemory())
      continue;

    auto &BB = *UserI->getParent();
    if (DT.dominates(&BB, LInst->getParent()))
      return false;

    bool DominatesAllPredecessors = true;
    if (R.isTopLevelRegion()) {
      for (BasicBlock &I : *R.getEntry()->getParent())
        if (isa<ReturnInst>(I.getTerminator()) && !DT.dominates(&BB, &I))
          DominatesAllPredecessors = false;
    } else {
      for (auto Pred : predecessors(R.getExit()))
        if (R.contains(Pred) && !DT.dominates(&BB, Pred))
          DominatesAllPredecessors = false;
    }

    if (!DominatesAllPredecessors)
      continue;

    return false;
  }

  return true;
}

bool polly::isIgnoredIntrinsic(const Value *V) {
  if (auto *IT = dyn_cast<IntrinsicInst>(V)) {
    switch (IT->getIntrinsicID()) {
    // Lifetime markers are supported/ignored.
    case llvm::Intrinsic::lifetime_start:
    case llvm::Intrinsic::lifetime_end:
    // Invariant markers are supported/ignored.
    case llvm::Intrinsic::invariant_start:
    case llvm::Intrinsic::invariant_end:
    // Some misc annotations are supported/ignored.
    case llvm::Intrinsic::var_annotation:
    case llvm::Intrinsic::ptr_annotation:
    case llvm::Intrinsic::annotation:
    case llvm::Intrinsic::donothing:
    case llvm::Intrinsic::assume:
    // Some debug info intrinsics are supported/ignored.
    case llvm::Intrinsic::dbg_value:
    case llvm::Intrinsic::dbg_declare:
      return true;
    default:
      break;
    }
  }
  return false;
}

bool polly::canSynthesize(const Value *V, const Scop &S, ScalarEvolution *SE,
                          Loop *Scope) {
  if (!V || !SE->isSCEVable(V->getType()))
    return false;

  const InvariantLoadsSetTy &ILS = S.getRequiredInvariantLoads();
  if (const SCEV *Scev = SE->getSCEVAtScope(const_cast<Value *>(V), Scope))
    if (!isa<SCEVCouldNotCompute>(Scev))
      if (!hasScalarDepsInsideRegion(Scev, &S.getRegion(), Scope, false, ILS))
        return true;

  return false;
}

llvm::BasicBlock *polly::getUseBlock(const llvm::Use &U) {
  Instruction *UI = dyn_cast<Instruction>(U.getUser());
  if (!UI)
    return nullptr;

  if (PHINode *PHI = dyn_cast<PHINode>(UI))
    return PHI->getIncomingBlock(U);

  return UI->getParent();
}

llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::Loop *L, llvm::LoopInfo &LI,
                                           const BoxedLoopsSetTy &BoxedLoops) {
  while (BoxedLoops.count(L))
    L = L->getParentLoop();
  return L;
}

llvm::Loop *polly::getFirstNonBoxedLoopFor(llvm::BasicBlock *BB,
                                           llvm::LoopInfo &LI,
                                           const BoxedLoopsSetTy &BoxedLoops) {
  Loop *L = LI.getLoopFor(BB);
  return getFirstNonBoxedLoopFor(L, LI, BoxedLoops);
}

bool polly::isDebugCall(Instruction *Inst) {
  auto *CI = dyn_cast<CallInst>(Inst);
  if (!CI)
    return false;

  Function *CF = CI->getCalledFunction();
  if (!CF)
    return false;

  return std::find(DebugFunctions.begin(), DebugFunctions.end(),
                   CF->getName()) != DebugFunctions.end();
}

static bool hasDebugCall(BasicBlock *BB) {
  for (Instruction &Inst : *BB) {
    if (isDebugCall(&Inst))
      return true;
  }
  return false;
}

bool polly::hasDebugCall(ScopStmt *Stmt) {
  // Quick skip if no debug functions have been defined.
  if (DebugFunctions.empty())
    return false;

  if (!Stmt)
    return false;

  for (Instruction *Inst : Stmt->getInstructions())
    if (isDebugCall(Inst))
      return true;

  if (Stmt->isRegionStmt()) {
    for (BasicBlock *RBB : Stmt->getRegion()->blocks())
      if (RBB != Stmt->getEntryBlock() && ::hasDebugCall(RBB))
        return true;
  }

  return false;
}

/// Find a property in a LoopID.
static MDNode *findNamedMetadataNode(MDNode *LoopMD, StringRef Name) {
  if (!LoopMD)
    return nullptr;
  for (const MDOperand &X : drop_begin(LoopMD->operands(), 1)) {
    auto *OpNode = dyn_cast<MDNode>(X.get());
    if (!OpNode)
      continue;

    auto *OpName = dyn_cast<MDString>(OpNode->getOperand(0));
    if (!OpName)
      continue;
    if (OpName->getString() == Name)
      return OpNode;
  }
  return nullptr;
}

static Optional<const MDOperand *> findNamedMetadataArg(MDNode *LoopID,
                                                        StringRef Name) {
  MDNode *MD = findNamedMetadataNode(LoopID, Name);
  if (!MD)
    return std::nullopt;
  switch (MD->getNumOperands()) {
  case 1:
    return nullptr;
  case 2:
    return &MD->getOperand(1);
  default:
    llvm_unreachable("loop metadata has 0 or 1 operand");
  }
}

Optional<Metadata *> polly::findMetadataOperand(MDNode *LoopMD,
                                                StringRef Name) {
  MDNode *MD = findNamedMetadataNode(LoopMD, Name);
  if (!MD)
    return std::nullopt;
  switch (MD->getNumOperands()) {
  case 1:
    return nullptr;
  case 2:
    return MD->getOperand(1).get();
  default:
    llvm_unreachable("loop metadata must have 0 or 1 operands");
  }
}

static Optional<bool> getOptionalBoolLoopAttribute(MDNode *LoopID,
                                                   StringRef Name) {
  MDNode *MD = findNamedMetadataNode(LoopID, Name);
  if (!MD)
    return std::nullopt;
  switch (MD->getNumOperands()) {
  case 1:
    return true;
  case 2:
    if (ConstantInt *IntMD =
            mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
      return IntMD->getZExtValue();
    return true;
  }
  llvm_unreachable("unexpected number of options");
}

bool polly::getBooleanLoopAttribute(MDNode *LoopID, StringRef Name) {
  return getOptionalBoolLoopAttribute(LoopID, Name).value_or(false);
}

llvm::Optional<int> polly::getOptionalIntLoopAttribute(MDNode *LoopID,
                                                       StringRef Name) {
  const MDOperand *AttrMD =
      findNamedMetadataArg(LoopID, Name).value_or(nullptr);
  if (!AttrMD)
    return std::nullopt;

  ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
  if (!IntMD)
    return std::nullopt;

  return IntMD->getSExtValue();
}

bool polly::hasDisableAllTransformsHint(Loop *L) {
  return llvm::hasDisableAllTransformsHint(L);
}

bool polly::hasDisableAllTransformsHint(llvm::MDNode *LoopID) {
  return getBooleanLoopAttribute(LoopID, "llvm.loop.disable_nonforced");
}

isl::id polly::getIslLoopAttr(isl::ctx Ctx, BandAttr *Attr) {
  assert(Attr && "Must be a valid BandAttr");

  // The name "Loop" signals that this id contains a pointer to a BandAttr.
  // The ScheduleOptimizer also uses the string "Inter iteration alias-free" in
  // markers, but it's user pointer is an llvm::Value.
  isl::id Result = isl::id::alloc(Ctx, "Loop with Metadata", Attr);
  Result = isl::manage(isl_id_set_free_user(Result.release(), [](void *Ptr) {
    BandAttr *Attr = reinterpret_cast<BandAttr *>(Ptr);
    delete Attr;
  }));
  return Result;
}

isl::id polly::createIslLoopAttr(isl::ctx Ctx, Loop *L) {
  if (!L)
    return {};

  // A loop without metadata does not need to be annotated.
  MDNode *LoopID = L->getLoopID();
  if (!LoopID)
    return {};

  BandAttr *Attr = new BandAttr();
  Attr->OriginalLoop = L;
  Attr->Metadata = L->getLoopID();

  return getIslLoopAttr(Ctx, Attr);
}

bool polly::isLoopAttr(const isl::id &Id) {
  if (Id.is_null())
    return false;

  return Id.get_name() == "Loop with Metadata";
}

BandAttr *polly::getLoopAttr(const isl::id &Id) {
  if (!isLoopAttr(Id))
    return nullptr;

  return reinterpret_cast<BandAttr *>(Id.get_user());
}