summaryrefslogtreecommitdiff
path: root/lib/crypto/crypto_scrypt-ref.c
blob: 1b0d51480a1532646811e143d9c44f8c08db5ca2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*-
 * Copyright 2009 Colin Percival
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * This file was originally written by Colin Percival as part of the Tarsnap
 * online backup system.
 */
 
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>

#include "sha256.h"
#include "sysendian.h"

#include "crypto_scrypt.h"

static void blkcpy(uint8_t *, uint8_t *, size_t);
static void blkxor(uint8_t *, uint8_t *, size_t);
static void salsa20_8(uint8_t[64]);
static void blockmix_salsa8(uint8_t *, uint8_t *, size_t);
static uint64_t integerify(uint8_t *, size_t);
static void smix(uint8_t *, size_t, uint64_t, uint8_t *, uint8_t *);

static void
blkcpy(uint8_t * dest, uint8_t * src, size_t len)
{
	size_t i;

	for (i = 0; i < len; i++)
		dest[i] = src[i];
}

static void
blkxor(uint8_t * dest, uint8_t * src, size_t len)
{
	size_t i;

	for (i = 0; i < len; i++)
		dest[i] ^= src[i];
}

/**
 * salsa20_8(B):
 * Apply the salsa20/8 core to the provided block.
 */
static void
salsa20_8(uint8_t B[64])
{
	uint32_t B32[16];
	uint32_t x[16];
	size_t i;

	/* Convert little-endian values in. */
	for (i = 0; i < 16; i++)
		B32[i] = le32dec(&B[i * 4]);

	/* Compute x = doubleround^4(B32). */
	for (i = 0; i < 16; i++)
		x[i] = B32[i];
	for (i = 0; i < 8; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
		/* Operate on columns. */
		x[ 4] ^= R(x[ 0]+x[12], 7);  x[ 8] ^= R(x[ 4]+x[ 0], 9);
		x[12] ^= R(x[ 8]+x[ 4],13);  x[ 0] ^= R(x[12]+x[ 8],18);

		x[ 9] ^= R(x[ 5]+x[ 1], 7);  x[13] ^= R(x[ 9]+x[ 5], 9);
		x[ 1] ^= R(x[13]+x[ 9],13);  x[ 5] ^= R(x[ 1]+x[13],18);

		x[14] ^= R(x[10]+x[ 6], 7);  x[ 2] ^= R(x[14]+x[10], 9);
		x[ 6] ^= R(x[ 2]+x[14],13);  x[10] ^= R(x[ 6]+x[ 2],18);

		x[ 3] ^= R(x[15]+x[11], 7);  x[ 7] ^= R(x[ 3]+x[15], 9);
		x[11] ^= R(x[ 7]+x[ 3],13);  x[15] ^= R(x[11]+x[ 7],18);

		/* Operate on rows. */
		x[ 1] ^= R(x[ 0]+x[ 3], 7);  x[ 2] ^= R(x[ 1]+x[ 0], 9);
		x[ 3] ^= R(x[ 2]+x[ 1],13);  x[ 0] ^= R(x[ 3]+x[ 2],18);

		x[ 6] ^= R(x[ 5]+x[ 4], 7);  x[ 7] ^= R(x[ 6]+x[ 5], 9);
		x[ 4] ^= R(x[ 7]+x[ 6],13);  x[ 5] ^= R(x[ 4]+x[ 7],18);

		x[11] ^= R(x[10]+x[ 9], 7);  x[ 8] ^= R(x[11]+x[10], 9);
		x[ 9] ^= R(x[ 8]+x[11],13);  x[10] ^= R(x[ 9]+x[ 8],18);

		x[12] ^= R(x[15]+x[14], 7);  x[13] ^= R(x[12]+x[15], 9);
		x[14] ^= R(x[13]+x[12],13);  x[15] ^= R(x[14]+x[13],18);
#undef R
	}

	/* Compute B32 = B32 + x. */
	for (i = 0; i < 16; i++)
		B32[i] += x[i];

	/* Convert little-endian values out. */
	for (i = 0; i < 16; i++)
		le32enc(&B[4 * i], B32[i]);
}

/**
 * blockmix_salsa8(B, Y, r):
 * Compute B = BlockMix_{salsa20/8, r}(B).  The input B must be 128r bytes in
 * length; the temporary space Y must also be the same size.
 */
static void
blockmix_salsa8(uint8_t * B, uint8_t * Y, size_t r)
{
	uint8_t X[64];
	size_t i;

	/* 1: X <-- B_{2r - 1} */
	blkcpy(X, &B[(2 * r - 1) * 64], 64);

	/* 2: for i = 0 to 2r - 1 do */
	for (i = 0; i < 2 * r; i++) {
		/* 3: X <-- H(X \xor B_i) */
		blkxor(X, &B[i * 64], 64);
		salsa20_8(X);

		/* 4: Y_i <-- X */
		blkcpy(&Y[i * 64], X, 64);
	}

	/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
	for (i = 0; i < r; i++)
		blkcpy(&B[i * 64], &Y[(i * 2) * 64], 64);
	for (i = 0; i < r; i++)
		blkcpy(&B[(i + r) * 64], &Y[(i * 2 + 1) * 64], 64);
}

/**
 * integerify(B, r):
 * Return the result of parsing B_{2r-1} as a little-endian integer.
 */
static uint64_t
integerify(uint8_t * B, size_t r)
{
	uint8_t * X = &B[(2 * r - 1) * 64];

	return (le64dec(X));
}

/**
 * smix(B, r, N, V, XY):
 * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length; the
 * temporary storage V must be 128rN bytes in length; the temporary storage
 * XY must be 256r bytes in length.  The value N must be a power of 2.
 */
static void
smix(uint8_t * B, size_t r, uint64_t N, uint8_t * V, uint8_t * XY)
{
	uint8_t * X = XY;
	uint8_t * Y = &XY[128 * r];
	uint64_t i;
	uint64_t j;

	/* 1: X <-- B */
	blkcpy(X, B, 128 * r);

	/* 2: for i = 0 to N - 1 do */
	for (i = 0; i < N; i++) {
		/* 3: V_i <-- X */
		blkcpy(&V[i * (128 * r)], X, 128 * r);

		/* 4: X <-- H(X) */
		blockmix_salsa8(X, Y, r);
	}

	/* 6: for i = 0 to N - 1 do */
	for (i = 0; i < N; i++) {
		/* 7: j <-- Integerify(X) mod N */
		j = integerify(X, r) & (N - 1);

		/* 8: X <-- H(X \xor V_j) */
		blkxor(X, &V[j * (128 * r)], 128 * r);
		blockmix_salsa8(X, Y, r);
	}

	/* 10: B' <-- X */
	blkcpy(B, X, 128 * r);
}

/**
 * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
 * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
 * p, buflen) and write the result into buf.  The parameters r, p, and buflen
 * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32.  The parameter N
 * must be a power of 2.
 *
 * Return 0 on success; or -1 on error.
 */
int
crypto_scrypt(const uint8_t * passwd, size_t passwdlen,
    const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
    uint8_t * buf, size_t buflen)
{
	uint8_t * B;
	uint8_t * V;
	uint8_t * XY;
	uint32_t i;

	/* Sanity-check parameters. */
#if SIZE_MAX > UINT32_MAX
	if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
		errno = EFBIG;
		goto err0;
	}
#endif
	if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
		errno = EFBIG;
		goto err0;
	}
	if (((N & (N - 1)) != 0) || (N == 0)) {
		errno = EINVAL;
		goto err0;
	}
	if ((r > SIZE_MAX / 128 / p) ||
#if SIZE_MAX / 256 <= UINT32_MAX
	    (r > SIZE_MAX / 256) ||
#endif
	    (N > SIZE_MAX / 128 / r)) {
		errno = ENOMEM;
		goto err0;
	}

	/* Allocate memory. */
	if ((B = malloc(128 * r * p)) == NULL)
		goto err0;
	if ((XY = malloc(256 * r)) == NULL)
		goto err1;
	if ((V = malloc(128 * r * N)) == NULL)
		goto err2;

	/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
	PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);

	/* 2: for i = 0 to p - 1 do */
	for (i = 0; i < p; i++) {
		/* 3: B_i <-- MF(B_i, N) */
		smix(&B[i * 128 * r], r, N, V, XY);
	}

	/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
	PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);

	/* Free memory. */
	free(V);
	free(XY);
	free(B);

	/* Success! */
	return (0);

err2:
	free(XY);
err1:
	free(B);
err0:
	/* Failure! */
	return (-1);
}