1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
|
/*
** FOLD: Constant Folding, Algebraic Simplifications and Reassociation.
** CSE: Common-Subexpression Elimination.
** Copyright (C) 2005-2009 Mike Pall. See Copyright Notice in luajit.h
*/
#define lj_opt_fold_c
#define LUA_CORE
#include "lj_obj.h"
#if LJ_HASJIT
#include "lj_str.h"
#include "lj_ir.h"
#include "lj_jit.h"
#include "lj_iropt.h"
#include "lj_trace.h"
#include "lj_vm.h"
/* Here's a short description how the FOLD engine processes instructions:
**
** The FOLD engine receives a single instruction stored in fins (J->fold.ins).
** The instruction and its operands are used to select matching fold rules.
** These are applied iteratively until a fixed point is reached.
**
** The 8 bit opcode of the instruction itself plus the opcodes of the
** two instructions referenced by its operands form a 24 bit key
** 'ins left right' (unused operands -> 0, literals -> lowest 8 bits).
**
** This key is used for partial matching against the fold rules. The
** left/right operand fields of the key are successively masked with
** the 'any' wildcard, from most specific to least specific:
**
** ins left right
** ins any right
** ins left any
** ins any any
**
** The masked key is used to lookup a matching fold rule in a semi-perfect
** hash table. If a matching rule is found, the related fold function is run.
** Multiple rules can share the same fold function. A fold rule may return
** one of several special values:
**
** - NEXTFOLD means no folding was applied, because an additional test
** inside the fold function failed. Matching continues against less
** specific fold rules. Finally the instruction is passed on to CSE.
**
** - RETRYFOLD means the instruction was modified in-place. Folding is
** retried as if this instruction had just been received.
**
** All other return values are terminal actions -- no further folding is
** applied:
**
** - INTFOLD(i) returns a reference to the integer constant i.
**
** - LEFTFOLD and RIGHTFOLD return the left/right operand reference
** without emitting an instruction.
**
** - CSEFOLD and EMITFOLD pass the instruction directly to CSE or emit
** it without passing through any further optimizations.
**
** - FAILFOLD, DROPFOLD and CONDFOLD only apply to instructions which have
** no result (e.g. guarded assertions): FAILFOLD means the guard would
** always fail, i.e. the current trace is pointless. DROPFOLD means
** the guard is always true and has been eliminated. CONDFOLD is a
** shortcut for FAILFOLD + cond (i.e. drop if true, otherwise fail).
**
** - Any other return value is interpreted as an IRRef or TRef. This
** can be a reference to an existing or a newly created instruction.
** Only the least-significant 16 bits (IRRef1) are used to form a TRef
** which is finally returned to the caller.
**
** The FOLD engine receives instructions both from the trace recorder and
** substituted instructions from LOOP unrolling. This means all types
** of instructions may end up here, even though the recorder bypasses
** FOLD in some cases. Thus all loads, stores and allocations must have
** an any/any rule to avoid being passed on to CSE.
**
** Carefully read the following requirements before adding or modifying
** any fold rules:
**
** Requirement #1: All fold rules must preserve their destination type.
**
** Consistently use INTFOLD() (KINT result) or lj_ir_knum() (KNUM result).
** Never use lj_ir_knumint() which can have either a KINT or KNUM result.
**
** Requirement #2: Fold rules should not create *new* instructions which
** reference operands *across* PHIs.
**
** E.g. a RETRYFOLD with 'fins->op1 = fleft->op1' is invalid if the
** left operand is a PHI. Then fleft->op1 would point across the PHI
** frontier to an invariant instruction. Adding a PHI for this instruction
** would be counterproductive. The solution is to add a barrier which
** prevents folding across PHIs, i.e. 'PHIBARRIER(fleft)' in this case.
** The only exception is for recurrences with high latencies like
** repeated int->num->int conversions.
**
** One could relax this condition a bit if the referenced instruction is
** a PHI, too. But this often leads to worse code due to excessive
** register shuffling.
**
** Note: returning *existing* instructions (e.g. LEFTFOLD) is ok, though.
** Even returning fleft->op1 would be ok, because a new PHI will added,
** if needed. But again, this leads to excessive register shuffling and
** should be avoided.
**
** Requirement #3: The set of all fold rules must be monotonic to guarantee
** termination.
**
** The goal is optimization, so one primarily wants to add strength-reducing
** rules. This means eliminating an instruction or replacing an instruction
** with one or more simpler instructions. Don't add fold rules which point
** into the other direction.
**
** Some rules (like commutativity) do not directly reduce the strength of
** an instruction, but enable other fold rules (e.g. by moving constants
** to the right operand). These rules must be made unidirectional to avoid
** cycles.
**
** Rule of thumb: the trace recorder expands the IR and FOLD shrinks it.
*/
/* Some local macros to save typing. Undef'd at the end. */
#define IR(ref) (&J->cur.ir[(ref)])
#define fins (&J->fold.ins)
#define fleft (&J->fold.left)
#define fright (&J->fold.right)
#define knumleft (ir_knum(fleft)->n)
#define knumright (ir_knum(fright)->n)
/* Pass IR on to next optimization in chain (FOLD). */
#define emitir(ot, a, b) (lj_ir_set(J, (ot), (a), (b)), lj_opt_fold(J))
/* Fold function type. Fastcall on x86 significantly reduces their size. */
typedef IRRef (LJ_FASTCALL *FoldFunc)(jit_State *J);
/* Macros for the fold specs, so buildvm can recognize them. */
#define LJFOLD(x)
#define LJFOLDX(x)
#define LJFOLDF(name) static TRef LJ_FASTCALL fold_##name(jit_State *J)
/* Note: They must be at the start of a line or buildvm ignores them! */
/* Barrier to prevent using operands across PHIs. */
#define PHIBARRIER(ir) if (irt_isphi((ir)->t)) return NEXTFOLD
/* Barrier to prevent folding across a GC step.
** GC steps can only happen at the head of a trace and at LOOP.
** And the GC is only driven forward if there is at least one allocation.
*/
#define gcstep_barrier(J, ref) \
((ref) < J->chain[IR_LOOP] && \
(J->chain[IR_TNEW] || J->chain[IR_TDUP] || \
J->chain[IR_SNEW] || J->chain[IR_TOSTR]))
/* -- Constant folding ---------------------------------------------------- */
LJFOLD(ADD KNUM KNUM)
LJFOLD(SUB KNUM KNUM)
LJFOLD(MUL KNUM KNUM)
LJFOLD(DIV KNUM KNUM)
LJFOLD(NEG KNUM KNUM)
LJFOLD(ABS KNUM KNUM)
LJFOLD(ATAN2 KNUM KNUM)
LJFOLD(LDEXP KNUM KNUM)
LJFOLD(MIN KNUM KNUM)
LJFOLD(MAX KNUM KNUM)
LJFOLDF(kfold_numarith)
{
lua_Number a = knumleft;
lua_Number b = knumright;
lua_Number y = lj_vm_foldarith(a, b, fins->o - IR_ADD);
return lj_ir_knum(J, y);
}
LJFOLD(FPMATH KNUM any)
LJFOLDF(kfold_fpmath)
{
lua_Number a = knumleft;
lua_Number y = lj_vm_foldfpm(a, fins->op2);
return lj_ir_knum(J, y);
}
LJFOLD(POWI KNUM KINT)
LJFOLDF(kfold_powi)
{
lua_Number a = knumleft;
lua_Number b = cast_num(fright->i);
lua_Number y = lj_vm_foldarith(a, b, IR_POWI - IR_ADD);
return lj_ir_knum(J, y);
}
static int32_t kfold_intop(int32_t k1, int32_t k2, IROp op)
{
switch (op) {
case IR_ADD: k1 += k2; break;
case IR_SUB: k1 -= k2; break;
case IR_BAND: k1 &= k2; break;
case IR_BOR: k1 |= k2; break;
case IR_BXOR: k1 ^= k2; break;
case IR_BSHL: k1 <<= (k2 & 31); break;
case IR_BSHR: k1 = (int32_t)((uint32_t)k1 >> (k2 & 31)); break;
case IR_BSAR: k1 >>= (k2 & 31); break;
case IR_BROL: k1 = (int32_t)lj_rol((uint32_t)k1, (k2 & 31)); break;
case IR_BROR: k1 = (int32_t)lj_ror((uint32_t)k1, (k2 & 31)); break;
default: lua_assert(0); break;
}
return k1;
}
LJFOLD(ADD KINT KINT)
LJFOLD(SUB KINT KINT)
LJFOLD(BAND KINT KINT)
LJFOLD(BOR KINT KINT)
LJFOLD(BXOR KINT KINT)
LJFOLD(BSHL KINT KINT)
LJFOLD(BSHR KINT KINT)
LJFOLD(BSAR KINT KINT)
LJFOLD(BROL KINT KINT)
LJFOLD(BROR KINT KINT)
LJFOLDF(kfold_intarith)
{
return INTFOLD(kfold_intop(fleft->i, fright->i, (IROp)fins->o));
}
LJFOLD(BNOT KINT)
LJFOLDF(kfold_bnot)
{
return INTFOLD(~fleft->i);
}
LJFOLD(BSWAP KINT)
LJFOLDF(kfold_bswap)
{
return INTFOLD((int32_t)lj_bswap((uint32_t)fleft->i));
}
LJFOLD(TONUM KINT)
LJFOLDF(kfold_tonum)
{
return lj_ir_knum(J, cast_num(fleft->i));
}
LJFOLD(TOBIT KNUM KNUM)
LJFOLDF(kfold_tobit)
{
TValue tv;
tv.n = knumleft + knumright;
return INTFOLD((int32_t)tv.u32.lo);
}
LJFOLD(TOINT KNUM any)
LJFOLDF(kfold_toint)
{
lua_Number n = knumleft;
int32_t k = lj_num2int(n);
if (irt_isguard(fins->t) && n != cast_num(k)) {
/* We're about to create a guard which always fails, like TOINT +1.5.
** Some pathological loops cause this during LICM, e.g.:
** local x,k,t = 0,1.5,{1,[1.5]=2}
** for i=1,200 do x = x+ t[k]; k = k == 1 and 1.5 or 1 end
** assert(x == 300)
*/
return FAILFOLD;
}
return INTFOLD(k);
}
LJFOLD(TOSTR KNUM)
LJFOLDF(kfold_tostr_knum)
{
return lj_ir_kstr(J, lj_str_fromnum(J->L, &knumleft));
}
LJFOLD(TOSTR KINT)
LJFOLDF(kfold_tostr_kint)
{
return lj_ir_kstr(J, lj_str_fromint(J->L, fleft->i));
}
LJFOLD(STRTO KGC)
LJFOLDF(kfold_strto)
{
TValue n;
if (lj_str_numconv(strdata(ir_kstr(fleft)), &n))
return lj_ir_knum(J, numV(&n));
return FAILFOLD;
}
LJFOLD(SNEW STRREF KINT)
LJFOLDF(kfold_snew)
{
if (fright->i == 0)
return lj_ir_kstr(J, lj_str_new(J->L, "", 0));
PHIBARRIER(fleft);
if (irref_isk(fleft->op1) && irref_isk(fleft->op2)) {
const char *s = strdata(ir_kstr(IR(fleft->op1)));
int32_t ofs = IR(fleft->op2)->i;
return lj_ir_kstr(J, lj_str_new(J->L, s+ofs, (size_t)fright->i));
}
return NEXTFOLD;
}
/* Must not use kfold_kref for numbers (could be NaN). */
LJFOLD(EQ KNUM KNUM)
LJFOLD(NE KNUM KNUM)
LJFOLD(LT KNUM KNUM)
LJFOLD(GE KNUM KNUM)
LJFOLD(LE KNUM KNUM)
LJFOLD(GT KNUM KNUM)
LJFOLD(ULT KNUM KNUM)
LJFOLD(UGE KNUM KNUM)
LJFOLD(ULE KNUM KNUM)
LJFOLD(UGT KNUM KNUM)
LJFOLDF(kfold_numcomp)
{
return CONDFOLD(lj_ir_numcmp(knumleft, knumright, (IROp)fins->o));
}
LJFOLD(LT KINT KINT)
LJFOLD(GE KINT KINT)
LJFOLD(LE KINT KINT)
LJFOLD(GT KINT KINT)
LJFOLD(ULT KINT KINT)
LJFOLD(UGE KINT KINT)
LJFOLD(ULE KINT KINT)
LJFOLD(UGT KINT KINT)
LJFOLD(ABC KINT KINT)
LJFOLDF(kfold_intcomp)
{
int32_t a = fleft->i, b = fright->i;
switch ((IROp)fins->o) {
case IR_LT: return CONDFOLD(a < b);
case IR_GE: return CONDFOLD(a >= b);
case IR_LE: return CONDFOLD(a <= b);
case IR_GT: return CONDFOLD(a > b);
case IR_ULT: return CONDFOLD((uint32_t)a < (uint32_t)b);
case IR_UGE: return CONDFOLD((uint32_t)a >= (uint32_t)b);
case IR_ULE: return CONDFOLD((uint32_t)a <= (uint32_t)b);
case IR_ABC:
case IR_UGT: return CONDFOLD((uint32_t)a > (uint32_t)b);
default: lua_assert(0); return FAILFOLD;
}
}
LJFOLD(LT KGC KGC)
LJFOLD(GE KGC KGC)
LJFOLD(LE KGC KGC)
LJFOLD(GT KGC KGC)
LJFOLDF(kfold_strcomp)
{
if (irt_isstr(fins->t)) {
GCstr *a = ir_kstr(fleft);
GCstr *b = ir_kstr(fright);
return CONDFOLD(lj_ir_strcmp(a, b, (IROp)fins->o));
}
return NEXTFOLD;
}
/* Don't constant-fold away FLOAD checks against KNULL. */
LJFOLD(EQ FLOAD KNULL)
LJFOLD(NE FLOAD KNULL)
LJFOLDX(lj_opt_cse)
/* But fold all other KNULL compares, since only KNULL is equal to KNULL. */
LJFOLD(EQ any KNULL)
LJFOLD(NE any KNULL)
LJFOLD(EQ KNULL any)
LJFOLD(NE KNULL any)
LJFOLD(EQ KINT KINT) /* Constants are unique, so same refs <==> same value. */
LJFOLD(NE KINT KINT)
LJFOLD(EQ KGC KGC)
LJFOLD(NE KGC KGC)
LJFOLDF(kfold_kref)
{
return CONDFOLD((fins->op1 == fins->op2) ^ (fins->o == IR_NE));
}
/* -- Algebraic shortcuts ------------------------------------------------- */
LJFOLD(FPMATH FPMATH IRFPM_FLOOR)
LJFOLD(FPMATH FPMATH IRFPM_CEIL)
LJFOLD(FPMATH FPMATH IRFPM_TRUNC)
LJFOLDF(shortcut_round)
{
IRFPMathOp op = (IRFPMathOp)fleft->op2;
if (op == IRFPM_FLOOR || op == IRFPM_CEIL || op == IRFPM_TRUNC)
return LEFTFOLD; /* round(round_left(x)) = round_left(x) */
return NEXTFOLD;
}
LJFOLD(FPMATH TONUM IRFPM_FLOOR)
LJFOLD(FPMATH TONUM IRFPM_CEIL)
LJFOLD(FPMATH TONUM IRFPM_TRUNC)
LJFOLD(ABS ABS KNUM)
LJFOLDF(shortcut_left)
{
return LEFTFOLD; /* f(g(x)) ==> g(x) */
}
LJFOLD(ABS NEG KNUM)
LJFOLDF(shortcut_dropleft)
{
PHIBARRIER(fleft);
fins->op1 = fleft->op1; /* abs(neg(x)) ==> abs(x) */
return RETRYFOLD;
}
/* Note: no safe shortcuts with STRTO and TOSTR ("1e2" ==> +100 ==> "100"). */
LJFOLD(NEG NEG KNUM)
LJFOLD(BNOT BNOT)
LJFOLD(BSWAP BSWAP)
LJFOLDF(shortcut_leftleft)
{
PHIBARRIER(fleft); /* See above. Fold would be ok, but not beneficial. */
return fleft->op1; /* f(g(x)) ==> x */
}
LJFOLD(TONUM TOINT)
LJFOLDF(shortcut_leftleft_toint)
{
PHIBARRIER(fleft);
if (irt_isguard(fleft->t)) /* Only safe with a guarded TOINT. */
return fleft->op1; /* f(g(x)) ==> x */
return NEXTFOLD;
}
LJFOLD(TOINT TONUM any)
LJFOLD(TOBIT TONUM KNUM) /* The inverse must NOT be shortcut! */
LJFOLDF(shortcut_leftleft_across_phi)
{
/* Fold even across PHI to avoid expensive int->num->int conversions. */
return fleft->op1; /* f(g(x)) ==> x */
}
/* -- FP algebraic simplifications ---------------------------------------- */
/* FP arithmetic is tricky -- there's not much to simplify.
** Please note the following common pitfalls before sending "improvements":
** x+0 ==> x is INVALID for x=-0
** 0-x ==> -x is INVALID for x=+0
** x*0 ==> 0 is INVALID for x=-0, x=+-Inf or x=NaN
*/
LJFOLD(ADD NEG any)
LJFOLDF(simplify_numadd_negx)
{
PHIBARRIER(fleft);
fins->o = IR_SUB; /* (-a) + b ==> b - a */
fins->op1 = fins->op2;
fins->op2 = fleft->op1;
return RETRYFOLD;
}
LJFOLD(ADD any NEG)
LJFOLDF(simplify_numadd_xneg)
{
PHIBARRIER(fright);
fins->o = IR_SUB; /* a + (-b) ==> a - b */
fins->op2 = fright->op1;
return RETRYFOLD;
}
LJFOLD(SUB any KNUM)
LJFOLDF(simplify_numsub_k)
{
lua_Number n = knumright;
if (n == 0.0) /* x - (+-0) ==> x */
return LEFTFOLD;
return NEXTFOLD;
}
LJFOLD(SUB NEG KNUM)
LJFOLDF(simplify_numsub_negk)
{
PHIBARRIER(fleft);
fins->op2 = fleft->op1; /* (-x) - k ==> (-k) - x */
fins->op1 = (IRRef1)lj_ir_knum(J, -knumright);
return RETRYFOLD;
}
LJFOLD(SUB any NEG)
LJFOLDF(simplify_numsub_xneg)
{
PHIBARRIER(fright);
fins->o = IR_ADD; /* a - (-b) ==> a + b */
fins->op2 = fright->op1;
return RETRYFOLD;
}
LJFOLD(MUL any KNUM)
LJFOLD(DIV any KNUM)
LJFOLDF(simplify_nummuldiv_k)
{
lua_Number n = knumright;
if (n == 1.0) { /* x o 1 ==> x */
return LEFTFOLD;
} else if (n == -1.0) { /* x o -1 ==> -x */
fins->o = IR_NEG;
fins->op2 = (IRRef1)lj_ir_knum_neg(J);
return RETRYFOLD;
} else if (fins->o == IR_MUL && n == 2.0) { /* x * 2 ==> x + x */
fins->o = IR_ADD;
fins->op2 = fins->op1;
return RETRYFOLD;
}
return NEXTFOLD;
}
LJFOLD(MUL NEG KNUM)
LJFOLD(DIV NEG KNUM)
LJFOLDF(simplify_nummuldiv_negk)
{
PHIBARRIER(fleft);
fins->op1 = fleft->op1; /* (-a) o k ==> a o (-k) */
fins->op2 = (IRRef1)lj_ir_knum(J, -knumright);
return RETRYFOLD;
}
LJFOLD(MUL NEG NEG)
LJFOLD(DIV NEG NEG)
LJFOLDF(simplify_nummuldiv_negneg)
{
PHIBARRIER(fleft);
PHIBARRIER(fright);
fins->op1 = fleft->op1; /* (-a) o (-b) ==> a o b */
fins->op2 = fright->op1;
return RETRYFOLD;
}
LJFOLD(POWI any KINT)
LJFOLDF(simplify_powi_xk)
{
int32_t k = fright->i;
TRef ref = fins->op1;
if (k == 0) /* x ^ 0 ==> 1 */
return lj_ir_knum_one(J); /* Result must be a number, not an int. */
if (k == 1) /* x ^ 1 ==> x */
return LEFTFOLD;
if ((uint32_t)(k+65536) > 2*65536u) /* Limit code explosion. */
return NEXTFOLD;
if (k < 0) { /* x ^ (-k) ==> (1/x) ^ k. */
ref = emitir(IRTN(IR_DIV), lj_ir_knum_one(J), ref);
k = -k;
}
/* Unroll x^k for 1 <= k <= 65536. */
for (; (k & 1) == 0; k >>= 1) /* Handle leading zeros. */
ref = emitir(IRTN(IR_MUL), ref, ref);
if ((k >>= 1) != 0) { /* Handle trailing bits. */
TRef tmp = emitir(IRTN(IR_MUL), ref, ref);
for (; k != 1; k >>= 1) {
if (k & 1)
ref = emitir(IRTN(IR_MUL), ref, tmp);
tmp = emitir(IRTN(IR_MUL), tmp, tmp);
}
ref = emitir(IRTN(IR_MUL), ref, tmp);
}
return ref;
}
LJFOLD(POWI KNUM any)
LJFOLDF(simplify_powi_kx)
{
lua_Number n = knumleft;
if (n == 2.0) { /* 2.0 ^ i ==> ldexp(1.0, tonum(i)) */
fins->o = IR_TONUM;
fins->op1 = fins->op2;
fins->op2 = 0;
fins->op2 = (IRRef1)lj_opt_fold(J);
fins->op1 = (IRRef1)lj_ir_knum_one(J);
fins->o = IR_LDEXP;
return RETRYFOLD;
}
return NEXTFOLD;
}
/* -- FP conversion narrowing --------------------------------------------- */
LJFOLD(TOINT ADD any)
LJFOLD(TOINT SUB any)
LJFOLD(TOBIT ADD KNUM)
LJFOLD(TOBIT SUB KNUM)
LJFOLDF(narrow_convert)
{
PHIBARRIER(fleft);
/* Narrowing ignores PHIs and repeating it inside the loop is not useful. */
if (J->chain[IR_LOOP])
return NEXTFOLD;
return lj_opt_narrow_convert(J);
}
/* Relaxed CSE rule for TOINT allows commoning with stronger checks, too. */
LJFOLD(TOINT any any)
LJFOLDF(cse_toint)
{
if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) {
IRRef ref, op1 = fins->op1;
uint8_t guard = irt_isguard(fins->t);
for (ref = J->chain[IR_TOINT]; ref > op1; ref = IR(ref)->prev)
if (IR(ref)->op1 == op1 && irt_isguard(IR(ref)->t) >= guard)
return ref;
}
return EMITFOLD; /* No fallthrough to regular CSE. */
}
/* -- Integer algebraic simplifications ----------------------------------- */
LJFOLD(ADD any KINT)
LJFOLD(ADDOV any KINT)
LJFOLD(SUBOV any KINT)
LJFOLDF(simplify_intadd_k)
{
if (fright->i == 0) /* i o 0 ==> i */
return LEFTFOLD;
return NEXTFOLD;
}
LJFOLD(SUB any KINT)
LJFOLDF(simplify_intsub_k)
{
if (fright->i == 0) /* i - 0 ==> i */
return LEFTFOLD;
fins->o = IR_ADD; /* i - k ==> i + (-k) */
fins->op2 = (IRRef1)lj_ir_kint(J, -fright->i); /* Overflow for -2^31 ok. */
return RETRYFOLD;
}
LJFOLD(SUB any any)
LJFOLD(SUBOV any any)
LJFOLDF(simplify_intsub)
{
if (fins->op1 == fins->op2 && !irt_isnum(fins->t)) /* i - i ==> 0 */
return INTFOLD(0);
return NEXTFOLD;
}
LJFOLD(SUB ADD any)
LJFOLDF(simplify_intsubadd_leftcancel)
{
if (!irt_isnum(fins->t)) {
PHIBARRIER(fleft);
if (fins->op2 == fleft->op1) /* (i + j) - i ==> j */
return fleft->op2;
if (fins->op2 == fleft->op2) /* (i + j) - j ==> i */
return fleft->op1;
}
return NEXTFOLD;
}
LJFOLD(SUB SUB any)
LJFOLDF(simplify_intsubsub_leftcancel)
{
if (!irt_isnum(fins->t)) {
PHIBARRIER(fleft);
if (fins->op1 == fleft->op1) { /* (i - j) - i ==> 0 - j */
fins->op1 = (IRRef1)lj_ir_kint(J, 0);
fins->op2 = fleft->op2;
return RETRYFOLD;
}
}
return NEXTFOLD;
}
LJFOLD(SUB any SUB)
LJFOLDF(simplify_intsubsub_rightcancel)
{
if (!irt_isnum(fins->t)) {
PHIBARRIER(fright);
if (fins->op1 == fright->op1) /* i - (i - j) ==> j */
return fright->op2;
}
return NEXTFOLD;
}
LJFOLD(SUB any ADD)
LJFOLDF(simplify_intsubadd_rightcancel)
{
if (!irt_isnum(fins->t)) {
PHIBARRIER(fright);
if (fins->op1 == fright->op1) { /* i - (i + j) ==> 0 - j */
fins->op2 = fright->op2;
fins->op1 = (IRRef1)lj_ir_kint(J, 0);
return RETRYFOLD;
}
if (fins->op1 == fright->op2) { /* i - (j + i) ==> 0 - j */
fins->op2 = fright->op1;
fins->op1 = (IRRef1)lj_ir_kint(J, 0);
return RETRYFOLD;
}
}
return NEXTFOLD;
}
LJFOLD(SUB ADD ADD)
LJFOLDF(simplify_intsubaddadd_cancel)
{
if (!irt_isnum(fins->t)) {
PHIBARRIER(fleft);
PHIBARRIER(fright);
if (fleft->op1 == fright->op1) { /* (i + j1) - (i + j2) ==> j1 - j2 */
fins->op1 = fleft->op2;
fins->op2 = fright->op2;
return RETRYFOLD;
}
if (fleft->op1 == fright->op2) { /* (i + j1) - (j2 + i) ==> j1 - j2 */
fins->op1 = fleft->op2;
fins->op2 = fright->op1;
return RETRYFOLD;
}
if (fleft->op2 == fright->op1) { /* (j1 + i) - (i + j2) ==> j1 - j2 */
fins->op1 = fleft->op1;
fins->op2 = fright->op2;
return RETRYFOLD;
}
if (fleft->op2 == fright->op2) { /* (j1 + i) - (j2 + i) ==> j1 - j2 */
fins->op1 = fleft->op1;
fins->op2 = fright->op1;
return RETRYFOLD;
}
}
return NEXTFOLD;
}
LJFOLD(BAND any KINT)
LJFOLDF(simplify_band_k)
{
if (fright->i == 0) /* i & 0 ==> 0 */
return RIGHTFOLD;
if (fright->i == -1) /* i & -1 ==> i */
return LEFTFOLD;
return NEXTFOLD;
}
LJFOLD(BOR any KINT)
LJFOLDF(simplify_bor_k)
{
if (fright->i == 0) /* i | 0 ==> i */
return LEFTFOLD;
if (fright->i == -1) /* i | -1 ==> -1 */
return RIGHTFOLD;
return NEXTFOLD;
}
LJFOLD(BXOR any KINT)
LJFOLDF(simplify_bxor_k)
{
if (fright->i == 0) /* i xor 0 ==> i */
return LEFTFOLD;
if (fright->i == -1) { /* i xor -1 ==> ~i */
fins->o = IR_BNOT;
fins->op2 = 0;
return RETRYFOLD;
}
return NEXTFOLD;
}
LJFOLD(BSHL any KINT)
LJFOLD(BSHR any KINT)
LJFOLD(BSAR any KINT)
LJFOLD(BROL any KINT)
LJFOLD(BROR any KINT)
LJFOLDF(simplify_shift_ik)
{
int32_t k = (fright->i & 31);
if (k == 0) /* i o 0 ==> i */
return LEFTFOLD;
if (k != fright->i) { /* i o k ==> i o (k & 31) */
fins->op2 = (IRRef1)lj_ir_kint(J, k);
return RETRYFOLD;
}
if (fins->o == IR_BROR) { /* bror(i, k) ==> brol(i, (-k)&31) */
fins->o = IR_BROL;
fins->op2 = (IRRef1)lj_ir_kint(J, (-k)&31);
return RETRYFOLD;
}
return NEXTFOLD;
}
LJFOLD(BSHL any BAND)
LJFOLD(BSHR any BAND)
LJFOLD(BSAR any BAND)
LJFOLD(BROL any BAND)
LJFOLD(BROR any BAND)
LJFOLDF(simplify_shift_andk)
{
#if LJ_TARGET_MASKEDSHIFT
IRIns *irk = IR(fright->op2);
PHIBARRIER(fright);
if (irk->o == IR_KINT) { /* i o (j & 31) ==> i o j */
int32_t k = irk->i & 31;
if (k == 31) {
fins->op2 = fright->op1;
return RETRYFOLD;
}
}
#endif
return NEXTFOLD;
}
LJFOLD(BSHL KINT any)
LJFOLD(BSHR KINT any)
LJFOLDF(simplify_shift1_ki)
{
if (fleft->i == 0) /* 0 o i ==> 0 */
return LEFTFOLD;
return NEXTFOLD;
}
LJFOLD(BSAR KINT any)
LJFOLD(BROL KINT any)
LJFOLD(BROR KINT any)
LJFOLDF(simplify_shift2_ki)
{
if (fleft->i == 0 || fleft->i == -1) /* 0 o i ==> 0; -1 o i ==> -1 */
return LEFTFOLD;
return NEXTFOLD;
}
/* -- Reassociation ------------------------------------------------------- */
LJFOLD(ADD ADD KINT)
LJFOLD(BAND BAND KINT)
LJFOLD(BOR BOR KINT)
LJFOLD(BXOR BXOR KINT)
LJFOLDF(reassoc_intarith_k)
{
IRIns *irk = IR(fleft->op2);
if (irk->o == IR_KINT) {
int32_t k = kfold_intop(irk->i, fright->i, (IROp)fins->o);
if (k == irk->i) /* (i o k1) o k2 ==> i o k1, if (k1 o k2) == k1. */
return LEFTFOLD;
PHIBARRIER(fleft);
fins->op1 = fleft->op1;
fins->op2 = (IRRef1)lj_ir_kint(J, k);
return RETRYFOLD; /* (i o k1) o k2 ==> i o (k1 o k2) */
}
return NEXTFOLD;
}
LJFOLD(MIN MIN any)
LJFOLD(MAX MAX any)
LJFOLD(BAND BAND any)
LJFOLD(BOR BOR any)
LJFOLDF(reassoc_dup)
{
PHIBARRIER(fleft);
if (fins->op2 == fleft->op1 || fins->op2 == fleft->op2)
return LEFTFOLD; /* (a o b) o a ==> a o b; (a o b) o b ==> a o b */
return NEXTFOLD;
}
LJFOLD(BXOR BXOR any)
LJFOLDF(reassoc_bxor)
{
PHIBARRIER(fleft);
if (fins->op2 == fleft->op1) /* (a xor b) xor a ==> b */
return fleft->op2;
if (fins->op2 == fleft->op2) /* (a xor b) xor b ==> a */
return fleft->op1;
return NEXTFOLD;
}
LJFOLD(BSHL BSHL KINT)
LJFOLD(BSHR BSHR KINT)
LJFOLD(BSAR BSAR KINT)
LJFOLD(BROL BROL KINT)
LJFOLD(BROR BROR KINT)
LJFOLDF(reassoc_shift)
{
IRIns *irk = IR(fleft->op2);
PHIBARRIER(fleft); /* The (shift any KINT) rule covers k2 == 0 and more. */
if (irk->o == IR_KINT) { /* (i o k1) o k2 ==> i o (k1 + k2) */
int32_t k = (irk->i & 31) + (fright->i & 31);
if (k > 31) { /* Combined shift too wide? */
if (fins->o == IR_BSHL || fins->o == IR_BSHR)
return INTFOLD(0);
else if (fins->o == IR_BSAR)
k = 31;
else
k &= 31;
}
fins->op1 = fleft->op1;
fins->op2 = (IRRef1)lj_ir_kint(J, k);
return RETRYFOLD;
}
return NEXTFOLD;
}
LJFOLD(MIN MIN KNUM)
LJFOLD(MAX MAX KNUM)
LJFOLDF(reassoc_minmax_k)
{
IRIns *irk = IR(fleft->op2);
if (irk->o == IR_KNUM) {
lua_Number a = ir_knum(irk)->n;
lua_Number b = knumright;
lua_Number y = lj_vm_foldarith(a, b, fins->o - IR_ADD);
if (a == y) /* (x o k1) o k2 ==> x o k1, if (k1 o k2) == k1. */
return LEFTFOLD;
PHIBARRIER(fleft);
fins->op1 = fleft->op1;
fins->op2 = (IRRef1)lj_ir_knum(J, y);
return RETRYFOLD; /* (x o k1) o k2 ==> x o (k1 o k2) */
}
return NEXTFOLD;
}
LJFOLD(MIN MAX any)
LJFOLD(MAX MIN any)
LJFOLDF(reassoc_minmax_left)
{
if (fins->op2 == fleft->op1 || fins->op2 == fleft->op2)
return RIGHTFOLD; /* (b o1 a) o2 b ==> b; (a o1 b) o2 b ==> b */
return NEXTFOLD;
}
LJFOLD(MIN any MAX)
LJFOLD(MAX any MIN)
LJFOLDF(reassoc_minmax_right)
{
if (fins->op1 == fright->op1 || fins->op1 == fright->op2)
return LEFTFOLD; /* a o2 (a o1 b) ==> a; a o2 (b o1 a) ==> a */
return NEXTFOLD;
}
/* Eliminate ABC across PHIs to handle t[i-1] forwarding case.
** ABC(asize, (i+k)+(-k)) ==> ABC(asize, i), but only if it already exists.
** Could be generalized to (i+k1)+k2 ==> i+(k1+k2), but needs better disambig.
*/
LJFOLD(ABC any ADD)
LJFOLDF(reassoc_abc)
{
if (irref_isk(fright->op2)) {
IRIns *add2 = IR(fright->op1);
if (add2->o == IR_ADD && irref_isk(add2->op2) &&
IR(fright->op2)->i == -IR(add2->op2)->i) {
IRRef ref = J->chain[IR_ABC];
IRRef lim = add2->op1;
if (fins->op1 > lim) lim = fins->op1;
while (ref > lim) {
IRIns *ir = IR(ref);
if (ir->op1 == fins->op1 && ir->op2 == add2->op1)
return DROPFOLD;
ref = ir->prev;
}
}
}
return NEXTFOLD;
}
/* -- Commutativity ------------------------------------------------------- */
/* The refs of commutative ops are canonicalized. Lower refs go to the right.
** Rationale behind this:
** - It (also) moves constants to the right.
** - It reduces the number of FOLD rules (e.g. (BOR any KINT) suffices).
** - It helps CSE to find more matches.
** - The assembler generates better code with constants at the right.
*/
LJFOLD(ADD any any)
LJFOLD(MUL any any)
LJFOLD(ADDOV any any)
LJFOLDF(comm_swap)
{
if (fins->op1 < fins->op2) { /* Move lower ref to the right. */
IRRef1 tmp = fins->op1;
fins->op1 = fins->op2;
fins->op2 = tmp;
return RETRYFOLD;
}
return NEXTFOLD;
}
LJFOLD(EQ any any)
LJFOLD(NE any any)
LJFOLDF(comm_equal)
{
/* For non-numbers only: x == x ==> drop; x ~= x ==> fail */
if (fins->op1 == fins->op2 && !irt_isnum(fins->t))
return CONDFOLD(fins->o == IR_EQ);
return fold_comm_swap(J);
}
LJFOLD(LT any any)
LJFOLD(GE any any)
LJFOLD(LE any any)
LJFOLD(GT any any)
LJFOLD(ULT any any)
LJFOLD(UGE any any)
LJFOLD(ULE any any)
LJFOLD(UGT any any)
LJFOLDF(comm_comp)
{
/* For non-numbers only: x <=> x ==> drop; x <> x ==> fail */
if (fins->op1 == fins->op2 && !irt_isnum(fins->t))
return CONDFOLD(fins->o & 1);
if (fins->op1 < fins->op2) { /* Move lower ref to the right. */
IRRef1 tmp = fins->op1;
fins->op1 = fins->op2;
fins->op2 = tmp;
fins->o ^= 3; /* GT <-> LT, GE <-> LE, does not affect U */
return RETRYFOLD;
}
return NEXTFOLD;
}
LJFOLD(BAND any any)
LJFOLD(BOR any any)
LJFOLD(MIN any any)
LJFOLD(MAX any any)
LJFOLDF(comm_dup)
{
if (fins->op1 == fins->op2) /* x o x ==> x */
return LEFTFOLD;
return fold_comm_swap(J);
}
LJFOLD(BXOR any any)
LJFOLDF(comm_bxor)
{
if (fins->op1 == fins->op2) /* i xor i ==> 0 */
return INTFOLD(0);
return fold_comm_swap(J);
}
/* -- Simplification of compound expressions ------------------------------ */
static int32_t kfold_xload(IRIns *ir, const void *p)
{
#if !LJ_TARGET_X86ORX64
#error "Missing support for unaligned loads"
#endif
switch (irt_type(ir->t)) {
case IRT_I8: return (int32_t)*(int8_t *)p;
case IRT_U8: return (int32_t)*(uint8_t *)p;
case IRT_I16: return (int32_t)*(int16_t *)p;
case IRT_U16: return (int32_t)*(uint16_t *)p;
default: lua_assert(irt_isint(ir->t)); return (int32_t)*(int32_t *)p;
}
}
/* Turn: string.sub(str, a, b) == kstr
** into: string.byte(str, a) == string.byte(kstr, 1) etc.
** Note: this creates unaligned XLOADs!
*/
LJFOLD(EQ SNEW KGC)
LJFOLD(NE SNEW KGC)
LJFOLDF(merge_eqne_snew_kgc)
{
GCstr *kstr = ir_kstr(fright);
int32_t len = (int32_t)kstr->len;
lua_assert(irt_isstr(fins->t));
if (len <= 4) { /* Handle string lengths 0, 1, 2, 3, 4. */
IROp op = (IROp)fins->o;
IRRef strref = fleft->op1;
lua_assert(IR(strref)->o == IR_STRREF);
if (op == IR_EQ) {
emitir(IRTGI(IR_EQ), fleft->op2, lj_ir_kint(J, len));
/* Caveat: fins/fleft/fright is no longer valid after emitir. */
} else {
/* NE is not expanded since this would need an OR of two conds. */
if (!irref_isk(fleft->op2)) /* Only handle the constant length case. */
return NEXTFOLD;
if (IR(fleft->op2)->i != len)
return DROPFOLD;
}
if (len > 0) {
/* A 4 byte load for length 3 is ok -- all strings have an extra NUL. */
uint16_t ot = (uint16_t)(len == 1 ? IRT(IR_XLOAD, IRT_I8) :
len == 2 ? IRT(IR_XLOAD, IRT_U16) :
IRTI(IR_XLOAD));
TRef tmp = emitir(ot, strref, len > 1 ? IRXLOAD_UNALIGNED : 0);
TRef val = lj_ir_kint(J, kfold_xload(IR(tref_ref(tmp)), strdata(kstr)));
if (len == 3)
tmp = emitir(IRTI(IR_BAND), tmp,
lj_ir_kint(J, LJ_ENDIAN_SELECT(0x00ffffff, 0xffffff00)));
fins->op1 = (IRRef1)tmp;
fins->op2 = (IRRef1)val;
fins->ot = (IROpT)IRTGI(op);
return RETRYFOLD;
} else {
return DROPFOLD;
}
}
return NEXTFOLD;
}
/* -- Loads --------------------------------------------------------------- */
/* Loads cannot be folded or passed on to CSE in general.
** Alias analysis is needed to check for forwarding opportunities.
**
** Caveat: *all* loads must be listed here or they end up at CSE!
*/
LJFOLD(ALOAD any)
LJFOLDX(lj_opt_fwd_aload)
LJFOLD(HLOAD any)
LJFOLDX(lj_opt_fwd_hload)
LJFOLD(ULOAD any)
LJFOLDX(lj_opt_fwd_uload)
LJFOLD(TLEN any)
LJFOLDX(lj_opt_fwd_tlen)
/* Upvalue refs are really loads, but there are no corresponding stores.
** So CSE is ok for them, except for UREFO across a GC step (see below).
** If the referenced function is const, its upvalue addresses are const, too.
** This can be used to improve CSE by looking for the same address,
** even if the upvalues originate from a different function.
*/
LJFOLD(UREFO KGC any)
LJFOLD(UREFC KGC any)
LJFOLDF(cse_uref)
{
if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) {
IRRef ref = J->chain[fins->o];
GCfunc *fn = ir_kfunc(fleft);
GCupval *uv = gco2uv(gcref(fn->l.uvptr[fins->op2]));
while (ref > 0) {
IRIns *ir = IR(ref);
if (irref_isk(ir->op1)) {
GCfunc *fn2 = ir_kfunc(IR(ir->op1));
if (gco2uv(gcref(fn2->l.uvptr[ir->op2])) == uv) {
if (fins->o == IR_UREFO && gcstep_barrier(J, ref))
break;
return ref;
}
}
ref = ir->prev;
}
}
return EMITFOLD;
}
/* We can safely FOLD/CSE array/hash refs and field loads, since there
** are no corresponding stores. But NEWREF may invalidate all of them.
** Lacking better disambiguation for table references, these optimizations
** are simply disabled across any NEWREF.
** Only HREF needs the NEWREF check -- AREF and HREFK already depend on
** FLOADs. And NEWREF itself is treated like a store (see below).
*/
LJFOLD(HREF any any)
LJFOLDF(cse_href)
{
TRef tr = lj_opt_cse(J);
return tref_ref(tr) < J->chain[IR_NEWREF] ? EMITFOLD : tr;
}
LJFOLD(FLOAD TNEW IRFL_TAB_ASIZE)
LJFOLDF(fload_tab_tnew_asize)
{
if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && fins->op1 > J->chain[IR_NEWREF])
return INTFOLD(fleft->op1);
return NEXTFOLD;
}
LJFOLD(FLOAD TNEW IRFL_TAB_HMASK)
LJFOLDF(fload_tab_tnew_hmask)
{
if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && fins->op1 > J->chain[IR_NEWREF])
return INTFOLD((1 << fleft->op2)-1);
return NEXTFOLD;
}
LJFOLD(FLOAD TDUP IRFL_TAB_ASIZE)
LJFOLDF(fload_tab_tdup_asize)
{
if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && fins->op1 > J->chain[IR_NEWREF])
return INTFOLD((int32_t)ir_ktab(IR(fleft->op1))->asize);
return NEXTFOLD;
}
LJFOLD(FLOAD TDUP IRFL_TAB_HMASK)
LJFOLDF(fload_tab_tdup_hmask)
{
if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD) && fins->op1 > J->chain[IR_NEWREF])
return INTFOLD((int32_t)ir_ktab(IR(fleft->op1))->hmask);
return NEXTFOLD;
}
LJFOLD(FLOAD any IRFL_TAB_ARRAY)
LJFOLD(FLOAD any IRFL_TAB_NODE)
LJFOLD(FLOAD any IRFL_TAB_ASIZE)
LJFOLD(FLOAD any IRFL_TAB_HMASK)
LJFOLDF(fload_tab_ah)
{
TRef tr = lj_opt_cse(J);
return tref_ref(tr) < J->chain[IR_NEWREF] ? EMITFOLD : tr;
}
/* Strings are immutable, so we can safely FOLD/CSE the related FLOAD. */
LJFOLD(FLOAD KGC IRFL_STR_LEN)
LJFOLDF(fload_str_len)
{
if (LJ_LIKELY(J->flags & JIT_F_OPT_FOLD))
return INTFOLD((int32_t)ir_kstr(fleft)->len);
return NEXTFOLD;
}
LJFOLD(FLOAD any IRFL_STR_LEN)
LJFOLDX(lj_opt_cse)
/* All other field loads need alias analysis. */
LJFOLD(FLOAD any any)
LJFOLDX(lj_opt_fwd_fload)
/* This is for LOOP only. Recording handles SLOADs internally. */
LJFOLD(SLOAD any any)
LJFOLDF(fwd_sload)
{
lua_assert(J->slot[fins->op1] != 0);
return J->slot[fins->op1];
}
/* Strings are immutable, so we can safely FOLD/CSE an XLOAD of a string. */
LJFOLD(XLOAD STRREF any)
LJFOLDF(xload_str)
{
if (irref_isk(fleft->op1) && irref_isk(fleft->op2)) {
GCstr *str = ir_kstr(IR(fleft->op1));
int32_t ofs = IR(fleft->op2)->i;
lua_assert((MSize)ofs < str->len);
lua_assert((MSize)(ofs + (1<<((fins->op2>>8)&3))) <= str->len);
return INTFOLD(kfold_xload(fins, strdata(str)+ofs));
}
return CSEFOLD;
}
/* No XLOAD of non-strings (yet), so we don't need a (XLOAD any any) rule. */
/* -- Write barriers ------------------------------------------------------ */
/* Write barriers are amenable to CSE, but not across any incremental
** GC steps.
**
** The same logic applies to open upvalue references, because the stack
** may be resized during a GC step.
*/
LJFOLD(TBAR any)
LJFOLD(OBAR any any)
LJFOLD(UREFO any any)
LJFOLDF(barrier_tab)
{
TRef tr = lj_opt_cse(J);
if (gcstep_barrier(J, tref_ref(tr))) /* CSE across GC step? */
return EMITFOLD; /* Raw emit. Assumes fins is left intact by CSE. */
return tr;
}
LJFOLD(TBAR TNEW)
LJFOLD(TBAR TDUP)
LJFOLDF(barrier_tnew_tdup)
{
/* New tables are always white and never need a barrier. */
if (fins->op1 < J->chain[IR_LOOP]) /* Except across a GC step. */
return NEXTFOLD;
return DROPFOLD;
}
/* -- Stores and allocations ---------------------------------------------- */
/* Stores and allocations cannot be folded or passed on to CSE in general.
** But some stores can be eliminated with dead-store elimination (DSE).
**
** Caveat: *all* stores and allocs must be listed here or they end up at CSE!
*/
LJFOLD(ASTORE any any)
LJFOLD(HSTORE any any)
LJFOLDX(lj_opt_dse_ahstore)
LJFOLD(USTORE any any)
LJFOLDX(lj_opt_dse_ustore)
LJFOLD(FSTORE any any)
LJFOLDX(lj_opt_dse_fstore)
LJFOLD(NEWREF any any) /* Treated like a store. */
LJFOLD(TNEW any any)
LJFOLD(TDUP any)
LJFOLDF(store_raw)
{
return EMITFOLD;
}
/* ------------------------------------------------------------------------ */
/* Every entry in the generated hash table is a 32 bit pattern:
**
** xxxxxxxx iiiiiiii llllllll rrrrrrrr
**
** xxxxxxxx = 8 bit index into fold function table
** iiiiiiii = 8 bit folded instruction opcode
** llllllll = 8 bit left instruction opcode
** rrrrrrrr = 8 bit right instruction opcode or 8 bits from literal field
*/
#include "lj_folddef.h"
/* ------------------------------------------------------------------------ */
/* Fold IR instruction. */
TRef LJ_FASTCALL lj_opt_fold(jit_State *J)
{
uint32_t key, any;
IRRef ref;
if (LJ_UNLIKELY((J->flags & JIT_F_OPT_MASK) != JIT_F_OPT_DEFAULT)) {
lua_assert(((JIT_F_OPT_FOLD|JIT_F_OPT_FWD|JIT_F_OPT_CSE|JIT_F_OPT_DSE) |
JIT_F_OPT_DEFAULT) == JIT_F_OPT_DEFAULT);
/* Folding disabled? Chain to CSE, but not for loads/stores/allocs. */
if (!(J->flags & JIT_F_OPT_FOLD) && irm_kind(lj_ir_mode[fins->o]) == IRM_N)
return lj_opt_cse(J);
/* Forwarding or CSE disabled? Emit raw IR for loads, except for SLOAD. */
if ((J->flags & (JIT_F_OPT_FWD|JIT_F_OPT_CSE)) !=
(JIT_F_OPT_FWD|JIT_F_OPT_CSE) &&
irm_kind(lj_ir_mode[fins->o]) == IRM_L && fins->o != IR_SLOAD)
return lj_ir_emit(J);
/* DSE disabled? Emit raw IR for stores. */
if (!(J->flags & JIT_F_OPT_DSE) && irm_kind(lj_ir_mode[fins->o]) == IRM_S)
return lj_ir_emit(J);
}
/* Fold engine start/retry point. */
retry:
/* Construct key from opcode and operand opcodes (unless literal/none). */
key = ((uint32_t)fins->o << 16);
if (fins->op1 >= J->cur.nk) {
key += (uint32_t)IR(fins->op1)->o << 8;
*fleft = *IR(fins->op1);
}
if (fins->op2 >= J->cur.nk) {
key += (uint32_t)IR(fins->op2)->o;
*fright = *IR(fins->op2);
} else {
key += (fins->op2 & 0xffu); /* For IRFPM_* and IRFL_*. */
}
/* Check for a match in order from most specific to least specific. */
any = 0;
for (;;) {
uint32_t k = key | any;
uint32_t h = fold_hashkey(k);
uint32_t fh = fold_hash[h]; /* Lookup key in semi-perfect hash table. */
if ((fh & 0xffffff) == k || (fh = fold_hash[h+1], (fh & 0xffffff) == k)) {
ref = (IRRef)tref_ref(fold_func[fh >> 24](J));
if (ref != NEXTFOLD)
break;
}
if (any == 0xffff) /* Exhausted folding. Pass on to CSE. */
return lj_opt_cse(J);
any = (any | (any >> 8)) ^ 0xff00;
}
/* Return value processing, ordered by frequency. */
if (LJ_LIKELY(ref >= MAX_FOLD))
return TREF(ref, irt_t(IR(ref)->t));
if (ref == RETRYFOLD)
goto retry;
if (ref == KINTFOLD)
return lj_ir_kint(J, fins->i);
if (ref == FAILFOLD)
lj_trace_err(J, LJ_TRERR_GFAIL);
lua_assert(ref == DROPFOLD);
return REF_DROP;
}
/* -- Common-Subexpression Elimination ------------------------------------ */
/* CSE an IR instruction. This is very fast due to the skip-list chains. */
TRef LJ_FASTCALL lj_opt_cse(jit_State *J)
{
/* Avoid narrow to wide store-to-load forwarding stall */
IRRef2 op12 = (IRRef2)fins->op1 + ((IRRef2)fins->op2 << 16);
IROp op = fins->o;
if (LJ_LIKELY(J->flags & JIT_F_OPT_CSE)) {
/* Limited search for same operands in per-opcode chain. */
IRRef ref = J->chain[op];
IRRef lim = fins->op1;
if (fins->op2 > lim) lim = fins->op2; /* Relies on lit < REF_BIAS. */
while (ref > lim) {
if (IR(ref)->op12 == op12)
return TREF(ref, irt_t(IR(ref)->t)); /* Common subexpression found. */
ref = IR(ref)->prev;
}
}
/* Otherwise emit IR (inlined for speed). */
{
IRRef ref = lj_ir_nextins(J);
IRIns *ir = IR(ref);
ir->prev = J->chain[op];
ir->op12 = op12;
J->chain[op] = (IRRef1)ref;
ir->o = fins->o;
J->guardemit.irt |= fins->t.irt;
return TREF(ref, irt_t((ir->t = fins->t)));
}
}
/* ------------------------------------------------------------------------ */
#undef IR
#undef fins
#undef fleft
#undef fright
#undef knumleft
#undef knumright
#undef emitir
#endif
|