summaryrefslogtreecommitdiff
path: root/base/data-struct/radix-tree-adaptive.c
blob: a657b2bac82a69314b55318ae637b01d7a4d7c8b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
// Copyright (C) 2018 Red Hat, Inc. All rights reserved.
// 
// This file is part of LVM2.
//
// This copyrighted material is made available to anyone wishing to use,
// modify, copy, or redistribute it subject to the terms and conditions
// of the GNU Lesser General Public License v.2.1.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

#include "radix-tree.h"

#include "base/memory/container_of.h"
#include "base/memory/zalloc.h"

#include <assert.h>
#include <stdlib.h>
#include <stdio.h>

//----------------------------------------------------------------

enum node_type {
	UNSET = 0,
	VALUE,
	VALUE_CHAIN,
	PREFIX_CHAIN,
	NODE4,
	NODE16,
	NODE48,
	NODE256
};

struct value {
	enum node_type type;
	union radix_value value;
};

// This is used for entries that have a key which is a prefix of another key.
struct value_chain {
	union radix_value value;
	struct value child;
};

struct prefix_chain {
	struct value child;
	unsigned len;
	uint8_t prefix[0];
};

struct node4 {
	uint32_t nr_entries;
	uint8_t keys[4];
	struct value values[4];
};

struct node16 {
	uint32_t nr_entries;
	uint8_t keys[16];
	struct value values[16];
};

struct node48 {
	uint32_t nr_entries;
	uint8_t keys[256];
	struct value values[48];
};

struct node256 {
        uint32_t nr_entries;
	struct value values[256];
};

struct radix_tree {
	unsigned nr_entries;
	struct value root;
	radix_value_dtr dtr;
	void *dtr_context;
};

//----------------------------------------------------------------

struct radix_tree *radix_tree_create(radix_value_dtr dtr, void *dtr_context)
{
	struct radix_tree *rt = malloc(sizeof(*rt));

	if (rt) {
		rt->nr_entries = 0;
		rt->root.type = UNSET;
		rt->dtr = dtr;
		rt->dtr_context = dtr_context;
	}

	return rt;
}

static inline void _dtr(struct radix_tree *rt, union radix_value v)
{
	if (rt->dtr)
        	rt->dtr(rt->dtr_context, v);
}

// Returns the number of values removed
static unsigned _free_node(struct radix_tree *rt, struct value v)
{
	unsigned i, nr = 0;
	struct value_chain *vc;
	struct prefix_chain *pc;
	struct node4 *n4;
	struct node16 *n16;
	struct node48 *n48;
	struct node256 *n256;

	switch (v.type) {
	case UNSET:
		break;

	case VALUE:
        	_dtr(rt, v.value);
        	nr = 1;
		break;

	case VALUE_CHAIN:
		vc = v.value.ptr;
		_dtr(rt, vc->value);
		nr = 1 + _free_node(rt, vc->child);
		free(vc);
		break;

	case PREFIX_CHAIN:
		pc = v.value.ptr;
		nr = _free_node(rt, pc->child);
		free(pc);
		break;

	case NODE4:
		n4 = (struct node4 *) v.value.ptr;
		for (i = 0; i < n4->nr_entries; i++)
			nr += _free_node(rt, n4->values[i]);
		free(n4);
		break;

	case NODE16:
		n16 = (struct node16 *) v.value.ptr;
		for (i = 0; i < n16->nr_entries; i++)
			nr += _free_node(rt, n16->values[i]);
		free(n16);
		break;

	case NODE48:
		n48 = (struct node48 *) v.value.ptr;
		for (i = 0; i < n48->nr_entries; i++)
			nr += _free_node(rt, n48->values[i]);
		free(n48);
		break;

	case NODE256:
		n256 = (struct node256 *) v.value.ptr;
		for (i = 0; i < 256; i++)
			nr += _free_node(rt, n256->values[i]);
		free(n256);
		break;
	}

	return nr;
}

void radix_tree_destroy(struct radix_tree *rt)
{
	_free_node(rt, rt->root);
	free(rt);
}

unsigned radix_tree_size(struct radix_tree *rt)
{
	return rt->nr_entries;
}

static bool _insert(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv);

static bool _insert_unset(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
	unsigned len = ke - kb;

	if (!len) {
		// value
		v->type = VALUE;
		v->value = rv;
		rt->nr_entries++;
	} else {
		// prefix -> value
		struct prefix_chain *pc = zalloc(sizeof(*pc) + len);
		if (!pc)
			return false;

		pc->child.type = VALUE;
		pc->child.value = rv;
		pc->len = len;
		memcpy(pc->prefix, kb, len);
		v->type = PREFIX_CHAIN;
		v->value.ptr = pc;
		rt->nr_entries++;
	}

	return true;
}

static bool _insert_value(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
	unsigned len = ke - kb;

	if (!len)
		// overwrite
		v->value = rv;

	else {
		// value_chain -> value
		struct value_chain *vc = zalloc(sizeof(*vc));
		if (!vc)
			return false;

		vc->value = v->value;
		if (!_insert(rt, &vc->child, kb, ke, rv)) {
			free(vc);
			return false;
		}

		v->type = VALUE_CHAIN;
		v->value.ptr = vc;
	}

	return true;
}

static bool _insert_value_chain(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
	struct value_chain *vc = v->value.ptr;
	return _insert(rt, &vc->child, kb, ke, rv);
}

static unsigned min(unsigned lhs, unsigned rhs)
{
	if (lhs <= rhs)
		return lhs;
	else
		return rhs;
}

static bool _insert_prefix_chain(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
	struct prefix_chain *pc = v->value.ptr;

	if (!pc->len) {
		v->type = VALUE;
		v->value = rv;

	} else if (*kb == pc->prefix[0]) {
		// There's a common prefix let's split the chain into two and
		// recurse.
		struct prefix_chain *pc2;
		unsigned i, len = min(pc->len, ke - kb);

		for (i = 0; i < len; i++)
			if (kb[i] != pc->prefix[i])
				break;

		pc2 = zalloc(sizeof(*pc2) + pc->len - i);
		pc2->len = pc->len - i;
		memmove(pc2->prefix, pc->prefix + i, pc2->len);
		pc2->child = pc->child;

		// FIXME: this trashes pc so we can't back out
		pc->child.type = PREFIX_CHAIN;
		pc->child.value.ptr = pc2;
		pc->len = i;

		if (!_insert(rt, &pc->child, kb + i, ke, rv)) {
			free(pc2);
			return false;
		}

	} else {
		// Stick an n4 in front.
		struct node4 *n4 = zalloc(sizeof(*n4));
		if (!n4)
			return false;

		n4->keys[0] = pc->prefix[0];
		if (pc->len == 1) {
			n4->values[0] = pc->child;
			free(pc);
		} else {
			memmove(pc->prefix, pc->prefix + 1, pc->len - 1);
			pc->len--;
			n4->values[0] = *v;
		}

		n4->keys[1] = *kb;
		if (!_insert(rt, n4->values + 1, kb + 1, ke, rv)) {
			free(n4);
			return false;
		}

		n4->nr_entries = 2;

		v->type = NODE4;
		v->value.ptr = n4;
	}

	return true;
}

static bool _insert_node4(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
	struct node4 *n4 = v->value.ptr;
	if (n4->nr_entries == 4) {
		struct node16 *n16 = zalloc(sizeof(*n16));
		if (!n16)
			return false;

		n16->nr_entries = 5;
		memcpy(n16->keys, n4->keys, sizeof(n4->keys));
		memcpy(n16->values, n4->values, sizeof(n4->values));

		n16->keys[4] = *kb;
		if (!_insert(rt, n16->values + 4, kb + 1, ke, rv)) {
			free(n16);
			return false;
		}
		free(n4);
		v->type = NODE16;
		v->value.ptr = n16;
	} else {
		if (!_insert(rt, n4->values + n4->nr_entries, kb + 1, ke, rv))
			return false;

		n4->keys[n4->nr_entries] = *kb;
		n4->nr_entries++;
	}
	return true;
}

static bool _insert_node16(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
	struct node16 *n16 = v->value.ptr;

	if (n16->nr_entries == 16) {
		unsigned i;
		struct node48 *n48 = zalloc(sizeof(*n48));

		if (!n48)
			return false;

		n48->nr_entries = 17;
		memset(n48->keys, 48, sizeof(n48->keys));

		for (i = 0; i < 16; i++) {
			n48->keys[n16->keys[i]] = i;
			n48->values[i] = n16->values[i];
		}

		n48->keys[*kb] = 16;
		if (!_insert(rt, n48->values + 16, kb + 1, ke, rv)) {
			free(n48);
			return false;
		}

		free(n16);
		v->type = NODE48;
		v->value.ptr = n48;
	} else {
		if (!_insert(rt, n16->values + n16->nr_entries, kb + 1, ke, rv))
			return false;
		n16->keys[n16->nr_entries] = *kb;
		n16->nr_entries++;
	}

	return true;
}

static bool _insert_node48(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
	struct node48 *n48 = v->value.ptr;
	if (n48->nr_entries == 48) {
		unsigned i;
		struct node256 *n256 = zalloc(sizeof(*n256));
		if (!n256)
			return false;

		n256->nr_entries = 49;
		for (i = 0; i < 256; i++) {
			if (n48->keys[i] < 48)
				n256->values[i] = n48->values[n48->keys[i]];
		}

		if (!_insert(rt, n256->values + *kb, kb + 1, ke, rv)) {
			free(n256);
			return false;
		}

		free(n48);
		v->type = NODE256;
		v->value.ptr = n256;

	} else {
		if (!_insert(rt, n48->values + n48->nr_entries, kb + 1, ke, rv))
			return false;

		n48->keys[*kb] = n48->nr_entries;
		n48->nr_entries++;
	}

	return true;
}

static bool _insert_node256(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
	struct node256 *n256 = v->value.ptr;
	bool r, was_unset = n256->values[*kb].type == UNSET;

	r = _insert(rt, n256->values + *kb, kb + 1, ke, rv);
	if (r && was_unset)
        	n256->nr_entries++;

	return r;
}

// FIXME: the tree should not be touched if insert fails (eg, OOM)
static bool _insert(struct radix_tree *rt, struct value *v, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
	if (kb == ke) {
		if (v->type == UNSET) {
			v->type = VALUE;
			v->value = rv;
			rt->nr_entries++;

		} else if (v->type == VALUE) {
			v->value = rv;

		} else {
			struct value_chain *vc = zalloc(sizeof(*vc));
			if (!vc)
				return false;

			vc->value = rv;
			vc->child = *v;
			v->type = VALUE_CHAIN;
			v->value.ptr = vc;
			rt->nr_entries++;
		}
		return true;
	}

	switch (v->type) {
	case UNSET:
		return _insert_unset(rt, v, kb, ke, rv);

	case VALUE:
		return _insert_value(rt, v, kb, ke, rv);

	case VALUE_CHAIN:
		return _insert_value_chain(rt, v, kb, ke, rv);

	case PREFIX_CHAIN:
		return _insert_prefix_chain(rt, v, kb, ke, rv);

	case NODE4:
		return _insert_node4(rt, v, kb, ke, rv);

	case NODE16:
		return _insert_node16(rt, v, kb, ke, rv);

	case NODE48:
		return _insert_node48(rt, v, kb, ke, rv);

	case NODE256:
		return _insert_node256(rt, v, kb, ke, rv);
	}

	// can't get here
	return false;
}

struct lookup_result {
	struct value *v;
	uint8_t *kb;
};

static struct lookup_result _lookup_prefix(struct value *v, uint8_t *kb, uint8_t *ke)
{
	unsigned i;
	struct value_chain *vc;
	struct prefix_chain *pc;
	struct node4 *n4;
	struct node16 *n16;
	struct node48 *n48;
	struct node256 *n256;

	if (kb == ke)
		return (struct lookup_result) {.v = v, .kb = kb};

	switch (v->type) {
	case UNSET:
	case VALUE:
		break;

	case VALUE_CHAIN:
		vc = v->value.ptr;
		return _lookup_prefix(&vc->child, kb, ke);

	case PREFIX_CHAIN:
		pc = v->value.ptr;
		if (ke - kb < pc->len)
			return (struct lookup_result) {.v = v, .kb = kb};

		for (i = 0; i < pc->len; i++)
			if (kb[i] != pc->prefix[i])
				return (struct lookup_result) {.v = v, .kb = kb};

		return _lookup_prefix(&pc->child, kb + pc->len, ke);

	case NODE4:
		n4 = v->value.ptr;
		for (i = 0; i < n4->nr_entries; i++)
			if (n4->keys[i] == *kb)
				return _lookup_prefix(n4->values + i, kb + 1, ke);
		break;

	case NODE16:
		// FIXME: use binary search or simd?
		n16 = v->value.ptr;
		for (i = 0; i < n16->nr_entries; i++)
			if (n16->keys[i] == *kb)
				return _lookup_prefix(n16->values + i, kb + 1, ke);
		break;

	case NODE48:
		n48 = v->value.ptr;
		i = n48->keys[*kb];
		if (i < 48)
			return _lookup_prefix(n48->values + i, kb + 1, ke);
		break;

	case NODE256:
		n256 = v->value.ptr;
		if (n256->values[*kb].type != UNSET)
			return _lookup_prefix(n256->values + *kb, kb + 1, ke);
		break;
	}

	return (struct lookup_result) {.v = v, .kb = kb};
}

bool radix_tree_insert(struct radix_tree *rt, uint8_t *kb, uint8_t *ke, union radix_value rv)
{
	struct lookup_result lr = _lookup_prefix(&rt->root, kb, ke);
	return _insert(rt, lr.v, lr.kb, ke, rv);
}

// Note the degrade functions also free the original node.
static void _degrade_to_n4(struct node16 *n16, struct value *result)
{
        struct node4 *n4 = zalloc(sizeof(*n4));

        n4->nr_entries = n16->nr_entries;
        memcpy(n4->keys, n16->keys, n16->nr_entries * sizeof(*n4->keys));
        memcpy(n4->values, n16->values, n16->nr_entries * sizeof(*n4->values));
        free(n16);

	result->type = NODE4;
	result->value.ptr = n4;
}

static void _degrade_to_n16(struct node48 *n48, struct value *result)
{
	unsigned i, count = 0;
        struct node16 *n16 = zalloc(sizeof(*n16));

        n16->nr_entries = n48->nr_entries;
        for (i = 0; i < 256; i++) {
	        if (n48->keys[i] < 48) {
		        n16->keys[count] = i;
		        count++;
	        }
        }

        memcpy(n16->values, n48->values, n48->nr_entries * sizeof(*n16->values));

        free(n48);

	result->type = NODE16;
	result->value.ptr = n16;
}

static void _degrade_to_n48(struct node256 *n256, struct value *result)
{
        unsigned i, count = 0;
        struct node48 *n48 = zalloc(sizeof(*n48));

	memset(n48->keys, 48, sizeof(n48->keys));

        n48->nr_entries = n256->nr_entries;
        for (i = 0; i < 256; i++) {
		if (n256->values[i].type == UNSET)
        		continue;

		n48->keys[i] = count;
		n48->values[count] = n256->values[i];
		count++;
        }

        free(n256);

	result->type = NODE48;
	result->value.ptr = n48;
}

// Removes an entry in an array by sliding the values above it down.
static void _erase_elt(void *array, unsigned obj_size, unsigned count, unsigned index)
{
	if (index == (count - 1))
		// The simple case
		return;

	memmove(((uint8_t *) array) + (obj_size * index),
                ((uint8_t *) array) + (obj_size * (index + 1)),
                obj_size * (count - index - 1));

	// Zero the now unused last elt (set's v.type to UNSET)
	memset(((uint8_t *) array) + (count - 1) * obj_size, 0, obj_size);
}

static bool _remove(struct radix_tree *rt, struct value *root, uint8_t *kb, uint8_t *ke)
{
	bool r;
	unsigned i, j;
	struct value_chain *vc;
	struct prefix_chain *pc;
	struct node4 *n4;
	struct node16 *n16;
	struct node48 *n48;
	struct node256 *n256;

	if (kb == ke) {
        	if (root->type == VALUE) {
                	root->type = UNSET;
                	_dtr(rt, root->value);
                	return true;

                } else if (root->type == VALUE_CHAIN) {
			vc = root->value.ptr;
			_dtr(rt, vc->value);
			memcpy(root, &vc->child, sizeof(*root));
			free(vc);
			return true;

                } else
			return false;
	}

	switch (root->type) {
	case UNSET:
	case VALUE:
        	// this is a value for a prefix of the key
        	return false;

	case VALUE_CHAIN:
		vc = root->value.ptr;
		r = _remove(rt, &vc->child, kb, ke);
		if (r && (vc->child.type == UNSET)) {
			root->type = VALUE;
			root->value = vc->value;
			free(vc);
		}
		return r;

	case PREFIX_CHAIN:
		pc = root->value.ptr;
		if (ke - kb < pc->len)
        		return false;

		for (i = 0; i < pc->len; i++)
			if (kb[i] != pc->prefix[i])
        			return false;

		r = _remove(rt, &pc->child, kb + pc->len, ke);
		if (r && pc->child.type == UNSET) {
			root->type = UNSET;
			free(pc);
		}
		return r;

	case NODE4:
		n4 = root->value.ptr;
		for (i = 0; i < n4->nr_entries; i++) {
			if (n4->keys[i] == *kb) {
				r = _remove(rt, n4->values + i, kb + 1, ke);
				if (r && n4->values[i].type == UNSET) {
        				if (i < n4->nr_entries) {
	        				_erase_elt(n4->keys, sizeof(*n4->keys), n4->nr_entries, i);
	        				_erase_elt(n4->values, sizeof(*n4->values), n4->nr_entries, i);
        				}

        				n4->nr_entries--;
					if (!n4->nr_entries) {
						free(n4);
						root->type = UNSET;
					}
				}
				return r;
			}
		}
		return false;

	case NODE16:
        	n16 = root->value.ptr;
		for (i = 0; i < n16->nr_entries; i++) {
			if (n16->keys[i] == *kb) {
				r = _remove(rt, n16->values + i, kb + 1, ke);
				if (r && n16->values[i].type == UNSET) {
        				if (i < n16->nr_entries) {
	        				_erase_elt(n16->keys, sizeof(*n16->keys), n16->nr_entries, i);
	        				_erase_elt(n16->values, sizeof(*n16->values), n16->nr_entries, i);
        				}

        				n16->nr_entries--;
					if (n16->nr_entries <= 4) {
        					_degrade_to_n4(n16, root);
					}
				}
				return r;
			}
		}
		return false;

	case NODE48:
		n48 = root->value.ptr;
		i = n48->keys[*kb];
		if (i < 48) {
        		r = _remove(rt, n48->values + i, kb + 1, ke);
        		if (r && n48->values[i].type == UNSET) {
                		n48->keys[*kb] = 48;
                		for (j = 0; j < 256; j++)
	                		if (n48->keys[j] < 48 && n48->keys[j] > i)
		                		n48->keys[j]--;
				_erase_elt(n48->values, sizeof(*n48->values), n48->nr_entries, i);
				n48->nr_entries--;
				if (n48->nr_entries <= 16)
        				_degrade_to_n16(n48, root);
        		}
        		return r;
		}
		return false;

	case NODE256:
		n256 = root->value.ptr;
		r = _remove(rt, n256->values + (*kb), kb + 1, ke);
		if (r && n256->values[*kb].type == UNSET) {
			n256->nr_entries--;
			if (n256->nr_entries <= 48)
        			_degrade_to_n48(n256, root);
		}
		return r;
	}

	return false;
}

bool radix_tree_remove(struct radix_tree *rt, uint8_t *key_begin, uint8_t *key_end)
{
	if (_remove(rt, &rt->root, key_begin, key_end)) {
        	rt->nr_entries--;
        	return true;
	}

	return false;
}

//----------------------------------------------------------------

static bool _prefix_chain_matches(struct lookup_result *lr, uint8_t *ke)
{
        // It's possible the top node is a prefix chain, and
        // the remaining key matches part of it.
        if (lr->v->type == PREFIX_CHAIN) {
                unsigned i, rlen = ke - lr->kb;
                struct prefix_chain *pc = lr->v->value.ptr;
                if (rlen < pc->len) {
                        for (i = 0; i < rlen; i++)
                                if (pc->prefix[i] != lr->kb[i])
                                        return false;
                        return true;
		}
        }

        return false;
}

static bool _remove_subtree(struct radix_tree *rt, struct value *root, uint8_t *kb, uint8_t *ke, unsigned *count)
{
	bool r;
	unsigned i, j, len;
	struct value_chain *vc;
	struct prefix_chain *pc;
	struct node4 *n4;
	struct node16 *n16;
	struct node48 *n48;
	struct node256 *n256;

	if (kb == ke) {
		*count += _free_node(rt, *root);
		root->type = UNSET;
		return true;
	}

	switch (root->type) {
	case UNSET:
	case VALUE:
		// No entries with the given prefix
        	return true;

	case VALUE_CHAIN:
		vc = root->value.ptr;
		r = _remove_subtree(rt, &vc->child, kb, ke, count);
		if (r && (vc->child.type == UNSET)) {
			root->type = VALUE;
			root->value = vc->value;
			free(vc);
		}
		return r;

	case PREFIX_CHAIN:
		pc = root->value.ptr;
		len = min(pc->len, ke - kb);
		for (i = 0; i < len; i++)
			if (kb[i] != pc->prefix[i])
        			return true;

		r = _remove_subtree(rt, &pc->child, len < pc->len ? ke : (kb + pc->len), ke, count);
		if (r && pc->child.type == UNSET) {
			root->type = UNSET;
			free(pc);
		}
		return r;

	case NODE4:
		n4 = root->value.ptr;
		for (i = 0; i < n4->nr_entries; i++) {
			if (n4->keys[i] == *kb) {
				r = _remove_subtree(rt, n4->values + i, kb + 1, ke, count);
				if (r && n4->values[i].type == UNSET) {
        				if (i < n4->nr_entries) {
	        				_erase_elt(n4->keys, sizeof(*n4->keys), n4->nr_entries, i);
	        				_erase_elt(n4->values, sizeof(*n4->values), n4->nr_entries, i);
        				}

        				n4->nr_entries--;
					if (!n4->nr_entries) {
						free(n4);
						root->type = UNSET;
					}
				}
				return r;
			}
		}
		return true;

	case NODE16:
        	n16 = root->value.ptr;
		for (i = 0; i < n16->nr_entries; i++) {
			if (n16->keys[i] == *kb) {
				r = _remove_subtree(rt, n16->values + i, kb + 1, ke, count);
				if (r && n16->values[i].type == UNSET) {
        				if (i < n16->nr_entries) {
	        				_erase_elt(n16->keys, sizeof(*n16->keys), n16->nr_entries, i);
	        				_erase_elt(n16->values, sizeof(*n16->values), n16->nr_entries, i);
        				}

        				n16->nr_entries--;
					if (n16->nr_entries <= 4)
        					_degrade_to_n4(n16, root);
				}
				return r;
			}
		}
		return true;

	case NODE48:
		n48 = root->value.ptr;
		i = n48->keys[*kb];
		if (i < 48) {
        		r = _remove_subtree(rt, n48->values + i, kb + 1, ke, count);
        		if (r && n48->values[i].type == UNSET) {
                		n48->keys[*kb] = 48;
                		for (j = 0; j < 256; j++)
	                		if (n48->keys[j] < 48 && n48->keys[j] > i)
		                		n48->keys[j]--;
				_erase_elt(n48->values, sizeof(*n48->values), n48->nr_entries, i);
				n48->nr_entries--;
				if (n48->nr_entries <= 16)
        				_degrade_to_n16(n48, root);
        		}
        		return r;
		}
		return true;

	case NODE256:
		n256 = root->value.ptr;
		if (n256->values[*kb].type == UNSET)
			return true;  // No entries

		r = _remove_subtree(rt, n256->values + (*kb), kb + 1, ke, count);
		if (r && n256->values[*kb].type == UNSET) {
			n256->nr_entries--;
			if (n256->nr_entries <= 48)
        			_degrade_to_n48(n256, root);
		}
		return r;
	}

	// Shouldn't get here
	return false;
}

unsigned radix_tree_remove_prefix(struct radix_tree *rt, uint8_t *kb, uint8_t *ke)
{
        unsigned count = 0;

        if (_remove_subtree(rt, &rt->root, kb, ke, &count))
		rt->nr_entries -= count;

	return count;
}

//----------------------------------------------------------------

bool radix_tree_lookup(struct radix_tree *rt,
		       uint8_t *kb, uint8_t *ke, union radix_value *result)
{
	struct value_chain *vc;
	struct lookup_result lr = _lookup_prefix(&rt->root, kb, ke);
	if (lr.kb == ke) {
		switch (lr.v->type) {
		case VALUE:
			*result = lr.v->value;
			return true;

		case VALUE_CHAIN:
			vc = lr.v->value.ptr;
			*result = vc->value;
			return true;

		default:
			return false;
		}
	}

	return false;
}

// FIXME: build up the keys too
static bool _iterate(struct value *v, struct radix_tree_iterator *it)
{
	unsigned i;
	struct value_chain *vc;
	struct prefix_chain *pc;
	struct node4 *n4;
	struct node16 *n16;
	struct node48 *n48;
	struct node256 *n256;

	switch (v->type) {
	case UNSET:
        	// can't happen
		break;

	case VALUE:
        	return it->visit(it, NULL, NULL, v->value);

	case VALUE_CHAIN:
		vc = v->value.ptr;
		return it->visit(it, NULL, NULL, vc->value) && _iterate(&vc->child, it);

	case PREFIX_CHAIN:
		pc = v->value.ptr;
		return _iterate(&pc->child, it);

	case NODE4:
		n4 = (struct node4 *) v->value.ptr;
		for (i = 0; i < n4->nr_entries; i++)
			if (!_iterate(n4->values + i, it))
        			return false;
        	return true;

	case NODE16:
		n16 = (struct node16 *) v->value.ptr;
		for (i = 0; i < n16->nr_entries; i++)
        		if (!_iterate(n16->values + i, it))
        			return false;
		return true;

	case NODE48:
		n48 = (struct node48 *) v->value.ptr;
		for (i = 0; i < n48->nr_entries; i++)
        		if (!_iterate(n48->values + i, it))
        			return false;
		return true;

	case NODE256:
		n256 = (struct node256 *) v->value.ptr;
		for (i = 0; i < 256; i++)
        		if (n256->values[i].type != UNSET && !_iterate(n256->values + i, it))
        			return false;
		return true;
	}

	// can't get here
	return false;
}

void radix_tree_iterate(struct radix_tree *rt, uint8_t *kb, uint8_t *ke,
                        struct radix_tree_iterator *it)
{
	struct lookup_result lr = _lookup_prefix(&rt->root, kb, ke);
	if (lr.kb == ke || _prefix_chain_matches(&lr, ke))
        	_iterate(lr.v, it);
}

//----------------------------------------------------------------
// Checks:
// 1) The number of entries matches rt->nr_entries
// 2) The number of entries is correct in each node
// 3) prefix chain len > 0
// 4) all unused values are UNSET

static bool _check_nodes(struct value *v, unsigned *count)
{
	uint64_t bits;
	unsigned i, ncount;
	struct value_chain *vc;
	struct prefix_chain *pc;
	struct node4 *n4;
	struct node16 *n16;
	struct node48 *n48;
	struct node256 *n256;

	switch (v->type) {
	case UNSET:
		return true;

	case VALUE:
		(*count)++;
		return true;

	case VALUE_CHAIN:
		(*count)++;
		vc = v->value.ptr;
		return _check_nodes(&vc->child, count);

	case PREFIX_CHAIN:
		pc = v->value.ptr;
		return _check_nodes(&pc->child, count);

	case NODE4:
		n4 = v->value.ptr;
		for (i = 0; i < n4->nr_entries; i++)
			if (!_check_nodes(n4->values + i, count))
				return false;

		for (i = n4->nr_entries; i < 4; i++)
			if (n4->values[i].type != UNSET) {
				fprintf(stderr, "unused value is not UNSET (n4)\n");
				return false;
			}

		return true;

	case NODE16:
		n16 = v->value.ptr;
		for (i = 0; i < n16->nr_entries; i++)
			if (!_check_nodes(n16->values + i, count))
				return false;

		for (i = n16->nr_entries; i < 16; i++)
			if (n16->values[i].type != UNSET) {
				fprintf(stderr, "unused value is not UNSET (n16)\n");
				return false;
			}

		return true;

	case NODE48:
		bits = 0;
		n48 = v->value.ptr;
		ncount = 0;
		for (i = 0; i < 256; i++) {
			if (n48->keys[i] < 48) {
				if (n48->keys[i] >= n48->nr_entries) {
					fprintf(stderr, "referencing value past nr_entries (n48)\n");
					return false;
				}

				if (bits & (1ull << n48->keys[i])) {
					fprintf(stderr, "duplicate entry (n48) %u\n", (unsigned) n48->keys[i]);
					return false;
				}
				bits = bits | (1ull << n48->keys[i]);
				ncount++;

				if (!_check_nodes(n48->values + n48->keys[i], count))
					return false;
			}
		}

		for (i = 0; i < n48->nr_entries; i++) {
			if (!(bits & (1ull << i))) {
				fprintf(stderr, "not all values are referenced (n48)\n");
				return false;
			}
		}

		if (ncount != n48->nr_entries) {
			fprintf(stderr, "incorrect number of entries in n48, n48->nr_entries = %u, actual = %u\n",
                                n48->nr_entries, ncount);
			return false;
		}

		for (i = 0; i < n48->nr_entries; i++)
			if (n48->values[i].type == UNSET) {
				fprintf(stderr, "value in UNSET (n48)\n");
				return false;
			}

		for (i = n48->nr_entries; i < 48; i++)
			if (n48->values[i].type != UNSET) {
				fprintf(stderr, "unused value is not UNSET (n48)\n");
				return false;
			}

		return true;

	case NODE256:
		n256 = v->value.ptr;

		ncount = 0;
		for (i = 0; i < 256; i++) {
			struct value *v2 = n256->values + i;

			if (v2->type == UNSET)
				continue;

			if (!_check_nodes(v2, count))
				return false;

			ncount++;
		}

		if (ncount != n256->nr_entries) {
			fprintf(stderr, "incorrect number of entries in n256, n256->nr_entries = %u, actual = %u\n",
                                n256->nr_entries, ncount);
			return false;
		}

		return true;

	default:
		fprintf(stderr, "unknown value type: %u\n", v->type);
	}

	fprintf(stderr, "shouldn't get here\n");
	return false;
}

bool radix_tree_is_well_formed(struct radix_tree *rt)
{
	unsigned count = 0;

	if (!_check_nodes(&rt->root, &count))
		return false;

	if (rt->nr_entries != count) {
		fprintf(stderr, "incorrect entry count: rt->nr_entries = %u, actual = %u\n",
                        rt->nr_entries, count);
		return false;
	}

	return true;
}

//----------------------------------------------------------------

static void _dump(FILE *out, struct value v, unsigned indent)
{
	unsigned i;
	struct value_chain *vc;
	struct prefix_chain *pc;
	struct node4 *n4;
	struct node16 *n16;
	struct node48 *n48;
	struct node256 *n256;

	if (v.type == UNSET)
		return;

	for (i = 0; i < 2 * indent; i++)
		fprintf(out, " ");

	switch (v.type) {
	case UNSET:
		// can't happen
		break;

	case VALUE:
		fprintf(out, "<val: %llu>\n", (unsigned long long) v.value.n);
		break;

	case VALUE_CHAIN:
		vc = v.value.ptr;
		fprintf(out, "<val_chain: %llu>\n", (unsigned long long) vc->value.n);
		_dump(out, vc->child, indent + 1);
		break;

	case PREFIX_CHAIN:
		pc = v.value.ptr;
		fprintf(out, "<prefix: ");
		for (i = 0; i < pc->len; i++)
			fprintf(out, "%x.", (unsigned) *(pc->prefix + i));
		fprintf(out, ">\n");
		_dump(out, pc->child, indent + 1);
		break;

	case NODE4:
		n4 = v.value.ptr;
		fprintf(out, "<n4: ");
		for (i = 0; i < n4->nr_entries; i++)
			fprintf(out, "%x ", (unsigned) n4->keys[i]);
		fprintf(out, ">\n");

		for (i = 0; i < n4->nr_entries; i++)
			_dump(out, n4->values[i], indent + 1);
		break;

	case NODE16:
		n16 = v.value.ptr;
		fprintf(out, "<n16: ");
		for (i = 0; i < n16->nr_entries; i++)
			fprintf(out, "%x ", (unsigned) n16->keys[i]);
		fprintf(out, ">\n");

		for (i = 0; i < n16->nr_entries; i++)
			_dump(out, n16->values[i], indent + 1);
		break;

	case NODE48:
		n48 = v.value.ptr;
		fprintf(out, "<n48: ");
		for (i = 0; i < 256; i++)
			if (n48->keys[i] < 48)
				fprintf(out, "%x ", i);
		fprintf(out, ">\n");

		for (i = 0; i < n48->nr_entries; i++) {
			assert(n48->values[i].type != UNSET);
			_dump(out, n48->values[i], indent + 1);
		}
		break;

	case NODE256:
		n256 = v.value.ptr;
		fprintf(out, "<n256: ");
		for (i = 0; i < 256; i++)
			if (n256->values[i].type != UNSET)
				fprintf(out, "%x ", i);
		fprintf(out, ">\n");

		for (i = 0; i < 256; i++)
			if (n256->values[i].type != UNSET)
				_dump(out, n256->values[i], indent + 1);
		break;
	}
}

void radix_tree_dump(struct radix_tree *rt, FILE *out)
{
	_dump(out, rt->root, 0);
}

//----------------------------------------------------------------