summaryrefslogtreecommitdiff
path: root/man/lvmlockd.8_main
blob: 7fa11df543507916912e9db771b2dfb4798b9060 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
.TH "LVMLOCKD" "8" "LVM TOOLS #VERSION#" "Red Hat, Inc" "\""
.
.SH NAME
.
lvmlockd \(em LVM locking daemon
.
.SH SYNOPSIS
.
.BR lvmlockd " [" \fIoptions ]
.
.SH DESCRIPTION
.
LVM commands use lvmlockd to coordinate access to shared storage.
.br
When LVM is used on devices shared by multiple hosts, locks will:
.br
\[bu]
coordinate reading and writing of LVM metadata
.br
\[bu]
validate caching of LVM metadata
.br
\[bu]
prevent conflicting activation of logical volumes
.br
lvmlockd uses an external lock manager to perform basic locking.
.P
Lock manager (lock type) options are:
.br
\[bu]
sanlock: places locks on disk within LVM storage.
.br
\[bu]
dlm: uses network communication and a cluster manager.
.br
.
.SH OPTIONS
.
.TP
.BR -h | --help
Show this help information.
.
.TP
.BR -V | --version
Show version of lvmlockd.
.
.TP
.BR -T | --test
Test mode, do not call lock manager.
.
.TP
.BR -f | --foreground
Don't fork.
.
.TP
.BR -D | --daemon-debug
Don't fork and print debugging to stdout.
.
.TP
.BR -p | --pid-file " " \fIpath
Set path to the pid file.
.
.TP
.BR -s | --socket-path " " \fIpath
Set path to the socket to listen on.
.
.TP
.B --adopt-file \fIpath
Set path to the adopt file.
.
.TP
.BR -S | --syslog-priority " " err | warning | debug
Write log messages from this level up to syslog.
.
.TP
.BR -g | --gl-type " " sanlock | dlm
Set global lock type to be sanlock or dlm.
.
.TP
.BR -i | --host-id " " \fInum
Set the local sanlock host id.
.
.TP
.BR -F | --host-id-file " " \fIpath
A file containing the local sanlock host_id.
.
.TP
.BR -o | --sanlock-timeout " " \fIseconds
Override the default sanlock I/O timeout.
.
.TP
.BR -A | --adopt " " 0 | 1
Enable (1) or disable (0) lock adoption.
.
.SH USAGE
.
.SS Initial set up
.
Setting up LVM to use lvmlockd and a shared VG for the first time includes
some one time set up steps:
.
.SS 1. choose a lock manager
.
.I dlm
.br
If dlm (or corosync) are already being used by other cluster
software, then select dlm.  dlm uses corosync which requires additional
configuration beyond the scope of this document.  See corosync and dlm
documentation for instructions on configuration, set up and usage.
.P
.I sanlock
.br
Choose sanlock if dlm/corosync are not otherwise required.
sanlock does not depend on any clustering software or configuration.
.
.SS 2. configure hosts to use lvmlockd
.
On all hosts running lvmlockd, configure lvm.conf:
.nf
use_lvmlockd = 1
.fi
.P
.I sanlock
.br
Assign each host a unique host_id in the range 1-2000 by setting
.br
#DEFAULT_SYS_DIR#/lvmlocal.conf local/host_id
.
.SS 3. start lvmlockd
.
Start the lvmlockd daemon.
.br
Use systemctl, a cluster resource agent, or run directly, e.g.
.br
systemctl start lvmlockd
.
.SS 4. start lock manager
.
.I sanlock
.br
Start the sanlock and wdmd daemons.
.br
Use systemctl or run directly, e.g.
.br
systemctl start wdmd sanlock
.P
.I dlm
.br
Start the dlm and corosync daemons.
.br
Use systemctl, a cluster resource agent, or run directly, e.g.
.br
systemctl start corosync dlm
.
.SS 5. create VG on shared devices
.
vgcreate --shared <vgname> <devices>
.P
The shared option sets the VG lock type to sanlock or dlm depending on
which lock manager is running.  LVM commands acquire locks from lvmlockd,
and lvmlockd uses the chosen lock manager.
.
.SS 6. start VG on all hosts
.
vgchange --lock-start
.P
Shared VGs must be started before they are used.  Starting the VG performs
lock manager initialization that is necessary to begin using locks (i.e.
creating and joining a lockspace).  Starting the VG may take some time,
and until the start completes the VG may not be modified or activated.
.
.SS 7. create and activate LVs
.
Standard lvcreate and lvchange commands are used to create and activate
LVs in a shared VG.
.P
An LV activated exclusively on one host cannot be activated on another.
When multiple hosts need to use the same LV concurrently, the LV can be
activated with a shared lock (see lvchange options -aey vs -asy.)
(Shared locks are disallowed for certain LV types that cannot be used from
multiple hosts.)
.
.SS Normal start up and shut down
.
After initial set up, start up and shut down include the following steps.
They can be performed directly or may be automated using systemd or a
cluster resource manager/agents.
.P
\[bu]
start lvmlockd
.br
\[bu]
start lock manager
.br
\[bu]
vgchange --lock-start
.br
\[bu]
activate LVs in shared VGs
.br
.P
The shut down sequence is the reverse:
.P
\[bu]
deactivate LVs in shared VGs
.br
\[bu]
vgchange --lock-stop
.br
\[bu]
stop lock manager
.br
\[bu]
stop lvmlockd
.
.SH TOPICS
.
.SS Protecting VGs on shared devices
.
The following terms are used to describe the different ways of accessing
VGs on shared devices.
.P
.I "shared VG"
.P
A shared VG exists on shared storage that is visible to multiple hosts.
LVM acquires locks through lvmlockd to coordinate access to shared VGs.
A shared VG has lock_type "dlm" or "sanlock", which specifies the lock
manager lvmlockd will use.
.P
When the lock manager for the lock type is not available (e.g. not started
or failed), lvmlockd is unable to acquire locks for LVM commands.  In this
situation, LVM commands are only allowed to read and display the VG;
changes and activation will fail.
.P
.I "local VG"
.P
A local VG is meant to be used by a single host.  It has no lock type or
lock type "none".  A local VG typically exists on local (non-shared)
devices and cannot be used concurrently from different hosts.
.P
If a local VG does exist on shared devices, it should be owned by a single
host by having the system ID set, see
.BR lvmsystemid (7).
The host with a matching system ID can use the local VG and other hosts
will ignore it.  A VG with no lock type and no system ID should be
excluded from all but one host using lvm.conf filters.  Without any of
these protections, a local VG on shared devices can be easily damaged or
destroyed.
.P
.I "clvm VG"
.P
A clvm VG (or clustered VG) is a VG on shared storage (like a shared VG)
that requires clvmd for clustering and locking.  See below for converting
a clvm/clustered VG to a shared VG.
.
.SS Shared VGs from hosts not using lvmlockd
.
Hosts that do not use shared VGs will not be running lvmlockd.  In this
case, shared VGs that are still visible to the host will be ignored
(like foreign VGs, see
.BR lvmsystemid (7)).
.P
The --shared option for reporting and display commands causes shared VGs
to be displayed on a host not using lvmlockd, like the --foreign option
does for foreign VGs.
.
.SS Creating the first sanlock VG
.
When use_lvmlockd is first enabled in lvm.conf, and before the first
sanlock VG is created, no global lock will exist.  In this initial state,
LVM commands try and fail to acquire the global lock, producing a warning,
and some commands are disallowed.  Once the first sanlock VG is created,
the global lock will be available, and LVM will be fully operational.
.P
When a new sanlock VG is created, its lockspace is automatically started on
the host that creates it.  Other hosts need to run 'vgchange --lock-start'
to start the new VG before they can use it.
.P
Creating the first sanlock VG is not protected by locking, so it requires
special attention.  This is because sanlock locks exist on storage within
the VG, so they are not available until after the VG is created.  The
first sanlock VG that is created will automatically contain the "global
lock".  Be aware of the following special considerations:
.P
.IP \[bu] 2
The first vgcreate command needs to be given the path to a device that has
not yet been initialized with pvcreate.  The pvcreate initialization will
be done by vgcreate.  This is because the pvcreate command requires the
global lock, which will not be available until after the first sanlock VG
is created.
.IP \[bu]
Because the first sanlock VG will contain the global lock, this VG needs
to be accessible to all hosts that will use sanlock shared VGs.  All hosts
will need to use the global lock from the first sanlock VG.
.IP \[bu]
The device and VG name used by the initial vgcreate will not be protected
from concurrent use by another vgcreate on another host.
.P
See below for more information about managing the sanlock global lock.
.
.SS Using shared VGs
.
In the 'vgs' command, shared VGs are indicated by "s" (for shared) in
the sixth attr field, and by "shared" in the "--options shared" report
field.  The specific lock type and lock args for a shared VG can be
displayed with 'vgs -o+locktype,lockargs'.
.P
Shared VGs need to be "started" and "stopped", unlike other types of VGs.
See the following section for a full description of starting and stopping.
.P
Removing a shared VG will fail if other hosts have the VG started.  Run
vgchange --lock-stop <vgname> on all other hosts before vgremove.  (It may
take several seconds before vgremove recognizes that all hosts have
stopped a sanlock VG.)
.
.SS Starting and stopping VGs
.
Starting a shared VG (vgchange --lock-start) causes the lock manager to
start (join) the lockspace for the VG on the host where it is run.  This
makes locks for the VG available to LVM commands on the host.  Before a VG
is started, only LVM commands that read/display the VG are allowed to
continue without locks (and with a warning).
.P
Stopping a shared VG (vgchange --lock-stop) causes the lock manager to
stop (leave) the lockspace for the VG on the host where it is run.  This
makes locks for the VG inaccessible to the host.  A VG cannot be stopped
while it has active LVs.
.P
When using the lock type sanlock, starting a VG can take a long time
(potentially minutes if the host was previously shut down without cleanly
stopping the VG.)
.P
A shared VG can be started after all the following are true:
.P
\[bu]
lvmlockd is running
.br
\[bu]
the lock manager is running
.br
\[bu]
the VG's devices are visible on the system
.P
A shared VG can be stopped if all LVs are deactivated.
.P
All shared VGs can be started/stopped using:
.br
vgchange --lock-start
.br
vgchange --lock-stop
.P
Individual VGs can be started/stopped using:
.br
vgchange --lock-start <vgname> ...
.br
vgchange --lock-stop <vgname> ...
.P
To make vgchange not wait for start to complete:
.br
vgchange --lock-start --lock-opt nowait ...
.P
lvmlockd can be asked directly to stop all lockspaces:
.br
lvmlockctl -S|--stop-lockspaces
.P
To start only selected shared VGs, use the lvm.conf
activation/lock_start_list.  When defined, only VG names in this list are
started by vgchange.  If the list is not defined (the default), all
visible shared VGs are started.  To start only "vg1", use the following
lvm.conf configuration:
.P
.nf
activation {
    lock_start_list = [ "vg1" ]
    ...
}
.fi
.
.SS Internal command locking
.
To optimize the use of LVM with lvmlockd, be aware of the three kinds of
locks and when they are used:
.P
.I Global lock
.P
The global lock is associated with global information, which is
information not isolated to a single VG.  This includes:
.P
\[bu]
The global VG namespace.
.br
\[bu]
The set of orphan PVs and unused devices.
.br
\[bu]
The properties of orphan PVs, e.g. PV size.
.P
The global lock is acquired in shared mode by commands that read this
information, or in exclusive mode by commands that change it.  For
example, the command 'vgs' acquires the global lock in shared mode because
it reports the list of all VG names, and the vgcreate command acquires the
global lock in exclusive mode because it creates a new VG name, and it
takes a PV from the list of unused PVs.
.P
When an LVM command is given a tag argument, or uses select, it must read
all VGs to match the tag or selection, which causes the global lock to be
acquired.
.P
.I VG lock
.P
A VG lock is associated with each shared VG.  The VG lock is acquired in
shared mode to read the VG and in exclusive mode to change the VG or
activate LVs.  This lock serializes access to a VG with all other LVM
commands accessing the VG from all hosts.
.P
The command 'vgs <vgname>' does not acquire the global lock (it does not
need the list of all VG names), but will acquire the VG lock on each VG
name argument.
.P
.I LV lock
.P
An LV lock is acquired before the LV is activated, and is released after
the LV is deactivated.  If the LV lock cannot be acquired, the LV is not
activated.  (LV locks are persistent and remain in place when the
activation command is done.  Global and VG locks are transient, and are
held only while an LVM command is running.)
.P
.I lock retries
.P
If a request for a global or VG lock fails due to a lock conflict with
another host, lvmlockd automatically retries for a short time before
returning a failure to the LVM command.  If those retries are
insufficient, the LVM command will retry the entire lock request a number
of times specified by global/lvmlockd_lock_retries before failing.  If a
request for an LV lock fails due to a lock conflict, the command fails
immediately.
.
.SS Managing the global lock in sanlock VGs
.
The global lock exists in one of the sanlock VGs.  The first sanlock VG
created will contain the global lock.  Subsequent sanlock VGs will each
contain a disabled global lock that can be enabled later if necessary.
.P
The VG containing the global lock must be visible to all hosts using
sanlock VGs.  For this reason, it can be useful to create a small sanlock
VG, visible to all hosts, and dedicated to just holding the global lock.
While not required, this strategy can help to avoid difficulty in the
future if VGs are moved or removed.
.P
The vgcreate command typically acquires the global lock, but in the case
of the first sanlock VG, there will be no global lock to acquire until the
first vgcreate is complete.  So, creating the first sanlock VG is a
special case that skips the global lock.
.P
vgcreate determines that it's creating the first sanlock VG when no other
sanlock VGs are visible on the system.  It is possible that other sanlock
VGs do exist, but are not visible when vgcreate checks for them.  In this
case, vgcreate will create a new sanlock VG with the global lock enabled.
When the another VG containing a global lock appears, lvmlockd will then
see more than one VG with a global lock enabled.  LVM commands will report
that there are duplicate global locks.
.P
If the situation arises where more than one sanlock VG contains a global
lock, the global lock should be manually disabled in all but one of them
with the command:
.P
lvmlockctl --gl-disable <vgname>
.P
(The one VG with the global lock enabled must be visible to all hosts.)
.P
An opposite problem can occur if the VG holding the global lock is
removed.  In this case, no global lock will exist following the vgremove,
and subsequent LVM commands will fail to acquire it.  In this case, the
global lock needs to be manually enabled in one of the remaining sanlock
VGs with the command:
.P
lvmlockctl --gl-enable <vgname>
.P
(Using a small sanlock VG dedicated to holding the global lock can avoid
the case where the global lock must be manually enabled after a vgremove.)
.
.SS Internal lvmlock LV
.
A sanlock VG contains a hidden LV called "lvmlock" that holds the sanlock
locks.  vgreduce cannot yet remove the PV holding the lvmlock LV.  To
remove this PV, change the VG lock type to "none", run vgreduce, then
change the VG lock type back to "sanlock".  Similarly, pvmove cannot be
used on a PV used by the lvmlock LV.
.P
To place the lvmlock LV on a specific device, create the VG with only that
device, then use vgextend to add other devices.
.
.SS LV activation
.
In a shared VG, LV activation involves locking through lvmlockd, and the
following values are possible with lvchange/vgchange -a:
.P
.IP \fBy\fP|\fBey\fP
The command activates the LV in exclusive mode, allowing a single host
to activate the LV.  Before activating the LV, the command uses lvmlockd
to acquire an exclusive lock on the LV.  If the lock cannot be acquired,
the LV is not activated and an error is reported.  This would happen if
the LV is active on another host.
.
.IP \fBsy\fP
The command activates the LV in shared mode, allowing multiple hosts to
activate the LV concurrently.  Before activating the LV, the
command uses lvmlockd to acquire a shared lock on the LV.  If the lock
cannot be acquired, the LV is not activated and an error is reported.
This would happen if the LV is active exclusively on another host.  If the
LV type prohibits shared access, such as a snapshot, the command will
report an error and fail.
The shared mode is intended for a multi-host/cluster application or
file system.
LV types that cannot be used concurrently
from multiple hosts include thin, cache, raid, mirror, and snapshot.
.
.IP \fBn\fP
The command deactivates the LV.  After deactivating the LV, the command
uses lvmlockd to release the current lock on the LV.
.
.SS Manually repairing a shared VG
.
Some failure conditions may not be repairable while the VG has a shared
lock type.  In these cases, it may be possible to repair the VG by
forcibly changing the lock type to "none".  This is done by adding
"--lock-opt force" to the normal command for changing the lock type:
vgchange --lock-type none VG.  The VG lockspace should first be stopped on
all hosts, and be certain that no hosts are using the VG before this is
done.
.
.SS Recover from lost PV holding sanlock locks
.
In a sanlock VG, the sanlock locks are held on the hidden "lvmlock" LV.
If the PV holding this LV is lost, a new lvmlock LV needs to be created.
To do this, ensure no hosts are using the VG, then forcibly change the
lock type to "none" (see above).  Then change the lock type back to
"sanlock" with the normal command for changing the lock type:  vgchange
--lock-type sanlock VG.  This recreates the internal lvmlock LV with the
necessary locks.
.
.SS Locking system failures
.
.B lvmlockd failure
.P
If lvmlockd fails or is killed while holding locks, the locks are orphaned
in the lock manager.  Orphaned locks must be cleared or adopted before the
associated resources can be accessed normally.  If lock adoption is
enabled, lvmlockd keeps a record of locks in the adopt-file.  A subsequent
instance of lvmlockd will then adopt locks orphaned by the previous
instance.  Adoption must be enabled in both instances (--adopt|-A 1).
Without adoption, the lock manager or host would require a reset to clear
orphaned lock state.
.P
.B dlm/corosync failure
.P
If dlm or corosync fail, the clustering system will fence the host using a
method configured within the dlm/corosync clustering environment.
.P
LVM commands on other hosts will be blocked from acquiring any locks until
the dlm/corosync recovery process is complete.
.P
.B sanlock lease storage failure
.P
If the PV under a sanlock VG's lvmlock LV is disconnected, unresponsive or
too slow, sanlock cannot renew the lease for the VG's locks.  After some
time, the lease will expire, and locks that the host owns in the VG can be
acquired by other hosts.  The VG must be forcibly deactivated on the host
with the expiring lease before other hosts can acquire its locks.  This is
necessary for data protection.
.P
When the sanlock daemon detects that VG storage is lost and the VG lease
is expiring, it runs the command lvmlockctl --kill <vgname>.  This command
emits a syslog message stating that storage is lost for the VG, and that
LVs in the VG must be immediately deactivated.
.P
If no LVs are active in the VG, then the VG lockspace will be removed, and
errors will be reported when trying to use the VG.  Use the lvmlockctl
--drop command to clear the stale lockspace from lvmlockd.
.P
If the VG has active LVs, they must be quickly deactivated before the
locks expire.  After all LVs are deactivated, run lvmlockctl --drop
<vgname> to clear the expiring lockspace from lvmlockd.
.P
If all LVs in the VG are not deactivated within about 40 seconds, sanlock
uses wdmd and the local watchdog to reset the host.  The machine reset is
effectively a severe form of "deactivating" LVs before they can be
activated on other hosts.  The reset is considered a better alternative
than having LVs used by multiple hosts at once, which could easily damage
or destroy their content.
.P
.B sanlock lease storage failure automation
.P
When the sanlock daemon detects that the lease storage is lost, it runs
the command lvmlockctl --kill <vgname>.  This lvmlockctl command can be
configured to run another command to forcibly deactivate LVs, taking the
place of the manual process described above.  The other command is
configured in the lvm.conf lvmlockctl_kill_command setting.  The VG name
is appended to the end of the command specified.
.P
The lvmlockctl_kill_command should forcibly deactivate LVs in the VG,
ensuring that existing writes to LVs in the VG are complete and that
further writes to the LVs in the VG will be rejected.  If it is able to do
this successfully, it should exit with success, otherwise it should exit
with an error.  If lvmlockctl --kill gets a successful result from
lvmlockctl_kill_command, it tells lvmlockd to drop locks for the VG (the
equivalent of running lvmlockctl --drop).  If this completes in time, a
machine reset can be avoided.
.P
One possible option is to create a script my_vg_kill_script.sh:
.nf
  #!/bin/bash
  VG=$1
  # replace dm table with the error target for top level LVs
  dmsetup wipe_table -S "uuid=~LVM && vgname=$VG && lv_layer=\\"\\""
  # check that the error target is in place
  dmsetup table -c -S "uuid=~LVM && vgname=$VG && lv_layer=\\"\\"" |grep -vw error
  if [[ $? -ne 0 ]] ; then
    exit 0
  fi
  exit 1
.fi
.P
Set in lvm.conf:
.nf
  lvmlockctl_kill_command="/usr/sbin/my_vg_kill_script.sh"
.fi
.P
(The script and dmsetup commands should be tested with the actual VG to
ensure that all top level LVs are properly disabled.)
.P
If the lvmlockctl_kill_command is not configured, or fails, lvmlockctl
--kill will emit syslog messages as described in the previous section,
notifying the user to manually deactivate the VG before sanlock resets the
machine.
.P
.B sanlock daemon failure
.P
If the sanlock daemon fails or exits while a lockspace is started, the
local watchdog will reset the host.  This is necessary to protect any
application resources that depend on sanlock leases.
.
.SS Changing dlm cluster name
.
When a dlm VG is created, the cluster name is saved in the VG metadata.
To use the VG, a host must be in the named dlm cluster.  If the dlm
cluster name changes, or the VG is moved to a new cluster, the dlm cluster
name saved in the VG must also be changed.
.P
To see the dlm cluster name saved in the VG, use the command:
.br
vgs -o+locktype,lockargs <vgname>
.P
To change the dlm cluster name in the VG when the VG is still used by the
original cluster:
.P
.IP \[bu] 2
Start the VG on the host changing the lock type
.br
vgchange --lock-start <vgname>
.
.IP \[bu]
Stop the VG on all other hosts:
.br
vgchange --lock-stop <vgname>
.
.IP \[bu]
Change the VG lock type to none on the host where the VG is started:
.br
vgchange --lock-type none <vgname>
.
.IP \[bu]
Change the dlm cluster name on the hosts or move the VG to the new
cluster.  The new dlm cluster must now be running on the host.  Verify the
new name by:
.br
cat /sys/kernel/config/dlm/cluster/cluster_name
.
.IP \[bu]
Change the VG lock type back to dlm which sets the new cluster name:
.br
vgchange --lock-type dlm <vgname>
.
.IP \[bu]
Start the VG on hosts to use it:
.br
vgchange --lock-start <vgname>
.P
To change the dlm cluster name in the VG when the dlm cluster name has
already been changed on the hosts, or the VG has already moved to a
different cluster:
.
.IP \[bu] 2
Ensure the VG is not being used by any hosts.
.
.IP \[bu]
The new dlm cluster must be running on the host making the change.
The current dlm cluster name can be seen by:
.br
cat /sys/kernel/config/dlm/cluster/cluster_name
.
.IP \[bu]
Change the VG lock type to none:
.br
vgchange --lock-type none --lock-opt force <vgname>
.
.IP \[bu]
Change the VG lock type back to dlm which sets the new cluster name:
.br
vgchange --lock-type dlm <vgname>
.
.IP \[bu]
Start the VG on hosts to use it:
.br
vgchange --lock-start <vgname>
.
.SS Changing a local VG to a shared VG
.
All LVs must be inactive to change the lock type.
.P
lvmlockd must be configured and running as described in USAGE.
.
.IP \[bu] 2
Change a local VG to a shared VG with the command:
.br
vgchange --lock-type sanlock|dlm <vgname>
.
.IP \[bu]
Start the VG on hosts to use it:
.br
vgchange --lock-start <vgname>
.
.SS Changing a shared VG to a local VG
.
All LVs must be inactive to change the lock type.
.P
.IP \[bu] 2
Start the VG on the host making the change:
.br
vgchange --lock-start <vgname>
.
.IP \[bu]
Stop the VG on all other hosts:
.br
vgchange --lock-stop <vgname>
.
.IP \[bu]
Change the VG lock type to none on the host where the VG is started:
.br
vgchange --lock-type none <vgname>
.P
If the VG cannot be started with the previous lock type, then the lock
type can be forcibly changed to none with:
.br
vgchange --lock-type none --lock-opt force <vgname>
.P
To change a VG from one lock type to another (i.e. between sanlock and
dlm), first change it to a local VG, then to the new type.
.
.SS Changing a clvm/clustered VG to a shared VG
.
All LVs must be inactive to change the lock type.
.P
First change the clvm/clustered VG to a local VG.  Within a running clvm
cluster, change a clustered VG to a local VG with the command:
.P
vgchange -cn <vgname>
.P
If the clvm cluster is no longer running on any nodes, then extra options
can be used to forcibly make the VG local.  Caution: this is only safe if
all nodes have stopped using the VG:
.P
vgchange --lock-type none --lock-opt force <vgname>
.P
After the VG is local, follow the steps described in "changing a local VG
to a shared VG".
.
.SS Extending an LV active on multiple hosts
.
With lvmlockd and dlm, a special clustering procedure is used to refresh a
shared LV on remote cluster nodes after it has been extended on one node.
.P
When an LV holding gfs2 or ocfs2 is active on multiple hosts with a shared
lock, lvextend is permitted to run with an existing shared LV lock in
place of the normal exclusive LV lock.
.P
After lvextend has finished extending the LV, it sends a remote request to
other nodes running the dlm to run 'lvchange --refresh' on the LV.  This
uses dlm_controld and corosync features.
.P
Some special --lockopt values can be used to modify this process.
"shupdate" permits the lvextend update with an existing shared lock if it
isn't otherwise permitted.  "norefresh" prevents the remote refresh
operation.
.
.SS Limitations of shared VGs
.
Things that do not yet work in shared VGs:
.br
\[bu]
using external origins for thin LVs
.br
\[bu]
splitting snapshots from LVs
.br
\[bu]
splitting mirrors in sanlock VGs
.br
\[bu]
pvmove of entire PVs, or under LVs activated with shared locks
.br
\[bu]
vgsplit and vgmerge (convert to a local VG to do this)
.
.SS lvmlockd changes from clvmd
.
(See above for converting an existing clvm VG to a shared VG.)
.P
While lvmlockd and clvmd are entirely different systems, LVM command usage
remains similar.  Differences are more notable when using lvmlockd's
sanlock option.
.P
Visible usage differences between shared VGs (using lvmlockd) and
clvm/clustered VGs (using clvmd):
.
.IP \[bu] 2
lvm.conf is configured to use lvmlockd by setting use_lvmlockd=1.
clvmd used locking_type=3.
.
.IP \[bu]
vgcreate --shared creates a shared VG.  vgcreate --clustered y
created a clvm/clustered VG.
.
.IP \[bu]
lvmlockd adds the option of using sanlock for locking, avoiding the
need for network clustering.
.
.IP \[bu]
lvmlockd defaults to the exclusive activation mode whenever the activation
mode is unspecified, i.e. -ay means -aey, not -asy.
.
.IP \[bu]
lvmlockd commands always apply to the local host, and never have an effect
on a remote host.  (The activation option 'l' is not used.)
.
.IP \[bu]
lvmlockd saves the cluster name for a shared VG using dlm.  Only hosts in
the matching cluster can use the VG.
.
.IP \[bu]
lvmlockd requires starting/stopping shared VGs with vgchange --lock-start
and --lock-stop.
.
.IP \[bu]
vgremove of a sanlock VG may fail indicating that all hosts have not
stopped the VG lockspace.  Stop the VG on all hosts using vgchange
--lock-stop.
.
.IP \[bu]
vgreduce or pvmove of a PV in a sanlock VG will fail if it holds the
internal "lvmlock" LV that holds the sanlock locks.
.
.IP \[bu]
lvmlockd uses lock retries instead of lock queueing, so high lock
contention may require increasing global/lvmlockd_lock_retries to
avoid transient lock failures.
.
.IP \[bu]
lvmlockd includes VG reporting options lock_type and lock_args, and LV
reporting option lock_args to view the corresponding metadata fields.
.
.IP \[bu]
In the 'vgs' command's sixth VG attr field, "s" for "shared" is displayed
for shared VGs.
.
.IP \[bu]
If lvmlockd fails or is killed while in use, locks it held remain but are
orphaned in the lock manager.  lvmlockd can be restarted with an option to
adopt the orphan locks from the previous instance of lvmlockd.
.
.IP \[bu]
The 'lvs' command does not report any remote state, because lvmlockd is
unable to passively check the remote active or lock state of an LV.
.
.SH SEE ALSO
.
.BR lvm (8),
.BR lvmlockctl (8)