summaryrefslogtreecommitdiff
path: root/udev/69-dm-lvm-metad.rules.in
blob: 5b15b6fbd2c2fa83690d4fbae6d9161de7f42eb9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright (C) 2012 Red Hat, Inc. All rights reserved.
#
# This file is part of LVM2.

# Udev rules for LVM.
#
# Scan all block devices having a PV label for LVM metadata.
# Store this information in LVMetaD (the LVM metadata daemon) and maintain LVM
# metadata state for improved performance by avoiding further scans while
# running subsequent LVM commands or while using lvm2app library.
# Also, notify LVMetaD about any relevant block device removal.
#
# This rule is essential for having the information in LVMetaD up-to-date.
# It also requires blkid to be called on block devices before so only devices
# used as LVM PVs are processed (ID_FS_TYPE="LVM2_member" or "LVM1_member").

SUBSYSTEM!="block", GOTO="lvm_end"
(LVM_EXEC_RULE)

ENV{DM_UDEV_DISABLE_OTHER_RULES_FLAG}=="1", GOTO="lvm_end"

# If the PV label got lost, inform lvmetad immediately.
# Detect the lost PV label by comparing previous ID_FS_TYPE value with current one.
ENV{.ID_FS_TYPE_NEW}="$env{ID_FS_TYPE}"
IMPORT{db}="ID_FS_TYPE"
ENV{ID_FS_TYPE}=="LVM2_member|LVM1_member", ENV{.ID_FS_TYPE_NEW}!="LVM2_member|LVM1_member", ENV{LVM_PV_GONE}="1"
ENV{ID_FS_TYPE}="$env{.ID_FS_TYPE_NEW}"
ENV{LVM_PV_GONE}=="1", GOTO="lvm_scan"

# Only process devices already marked as a PV - this requires blkid to be called before.
ENV{ID_FS_TYPE}!="LVM2_member|LVM1_member", GOTO="lvm_end"
ENV{DM_MULTIPATH_DEVICE_PATH}=="1", GOTO="lvm_end"

# Inform lvmetad about any PV that is gone.
ACTION=="remove", GOTO="lvm_scan"

# If the PV is a special device listed below, scan only if the device is
# properly activated. These devices are not usable after an ADD event,
# but they require an extra setup and they are ready after a CHANGE event.
# Also support coldplugging with ADD event but only if the device is already
# properly activated.

# DM device:
KERNEL!="dm-[0-9]*", GOTO="next"
ENV{DM_UDEV_PRIMARY_SOURCE_FLAG}=="1", ENV{DM_ACTIVATION}=="1", GOTO="lvm_scan"
GOTO="lvm_end"

# MD device:
LABEL="next"
KERNEL!="md[0-9]*", GOTO="next"
IMPORT{db}="LVM_MD_PV_ACTIVATED"
ACTION=="add", ENV{LVM_MD_PV_ACTIVATED}=="1", GOTO="lvm_scan"
ACTION=="change", ENV{LVM_MD_PV_ACTIVATED}!="1", TEST=="md/array_state", ENV{LVM_MD_PV_ACTIVATED}="1", GOTO="lvm_scan"
ACTION=="add", KERNEL=="md[0-9]*p[0-9]*", GOTO="lvm_scan"
GOTO="lvm_end"

# Loop device:
LABEL="next"
KERNEL!="loop[0-9]*", GOTO="next"
ACTION=="add", ENV{LVM_LOOP_PV_ACTIVATED}=="1", GOTO="lvm_scan"
ACTION=="change", ENV{LVM_LOOP_PV_ACTIVATED}!="1", TEST=="loop/backing_file", ENV{LVM_LOOP_PV_ACTIVATED}="1", GOTO="lvm_scan"
GOTO="lvm_end"

# If the PV is not a special device listed above, scan only after device addition (ADD event)
LABEL="next"
ACTION!="add", GOTO="lvm_end"

LABEL="lvm_scan"

# The table below summarises the situations in which we reach the LABEL="lvm_scan".
# Marked by X, X* means only if the special dev is properly set up.
# The artificial ADD is supported for coldplugging. We avoid running the pvscan
# on artificial CHANGE so there's no unexpected autoactivation when WATCH rule fires.
# N.B. MD and loop never actually  reaches lvm_scan on REMOVE as the PV label is gone
# within a CHANGE event (these are caught by the "LVM_PV_GONE" rule at the beginning).
#
#        | real ADD | real CHANGE | artificial ADD | artificial CHANGE | REMOVE
# =============================================================================
#  DM    |          |      X      |       X*       |                   |   X
#  MD    |          |      X      |       X*       |                   |
#  loop  |          |      X      |       X*       |                   |
#  other |    X     |             |       X        |                   |   X
(PVSCAN_RULE)

LABEL="lvm_end"