1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
|
#ifndef ITEM_SUM_INCLUDED
#define ITEM_SUM_INCLUDED
/* Copyright (c) 2000, 2013 Oracle and/or its affiliates.
Copyright (c) 2008, 2013 Monty Program Ab.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
/* classes for sum functions */
#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif
#include <my_tree.h>
#include "sql_udf.h" /* udf_handler */
class Item_sum;
class Aggregator_distinct;
class Aggregator_simple;
/**
The abstract base class for the Aggregator_* classes.
It implements the data collection functions (setup/add/clear)
as either pass-through to the real functionality or
as collectors into an Unique (for distinct) structure.
Note that update_field/reset_field are not in that
class, because they're simply not called when
GROUP BY/DISTINCT can be handled with help of index on grouped
fields (quick_group = 0);
*/
class Aggregator : public Sql_alloc
{
friend class Item_sum;
friend class Item_sum_sum;
friend class Item_sum_count;
friend class Item_sum_avg;
/*
All members are protected as this class is not usable outside of an
Item_sum descendant.
*/
protected:
/* the aggregate function class to act on */
Item_sum *item_sum;
public:
Aggregator (Item_sum *arg): item_sum(arg) {}
virtual ~Aggregator () {} /* Keep gcc happy */
enum Aggregator_type { SIMPLE_AGGREGATOR, DISTINCT_AGGREGATOR };
virtual Aggregator_type Aggrtype() = 0;
/**
Called before adding the first row.
Allocates and sets up the internal aggregation structures used,
e.g. the Unique instance used to calculate distinct.
*/
virtual bool setup(THD *) = 0;
/**
Called when we need to wipe out all the data from the aggregator :
all the values acumulated and all the state.
Cleans up the internal structures and resets them to their initial state.
*/
virtual void clear() = 0;
/**
Called when there's a new value to be aggregated.
Updates the internal state of the aggregator to reflect the new value.
*/
virtual bool add() = 0;
/**
Called when there are no more data and the final value is to be retrieved.
Finalises the state of the aggregator, so the final result can be retrieved.
*/
virtual void endup() = 0;
/** Decimal value of being-aggregated argument */
virtual my_decimal *arg_val_decimal(my_decimal * value) = 0;
/** Floating point value of being-aggregated argument */
virtual double arg_val_real() = 0;
/**
NULLness of being-aggregated argument.
@param use_null_value Optimization: to determine if the argument is NULL
we must, in the general case, call is_null() on it, which itself might
call val_*() on it, which might be costly. If you just have called
arg_val*(), you can pass use_null_value=true; this way, arg_is_null()
might avoid is_null() and instead do a cheap read of the Item's null_value
(updated by arg_val*()).
*/
virtual bool arg_is_null(bool use_null_value) = 0;
};
class st_select_lex;
class Window_spec;
/**
Class Item_sum is the base class used for special expressions that SQL calls
'set functions'. These expressions are formed with the help of aggregate
functions such as SUM, MAX, GROUP_CONCAT etc.
GENERAL NOTES
A set function cannot be used in certain positions where expressions are
accepted. There are some quite explicable restrictions for the usage of
set functions.
In the query:
SELECT AVG(b) FROM t1 WHERE SUM(b) > 20 GROUP by a
the usage of the set function AVG(b) is legal, while the usage of SUM(b)
is illegal. A WHERE condition must contain expressions that can be
evaluated for each row of the table. Yet the expression SUM(b) can be
evaluated only for each group of rows with the same value of column a.
In the query:
SELECT AVG(b) FROM t1 WHERE c > 30 GROUP BY a HAVING SUM(b) > 20
both set function expressions AVG(b) and SUM(b) are legal.
We can say that in a query without nested selects an occurrence of a
set function in an expression of the SELECT list or/and in the HAVING
clause is legal, while in the WHERE clause it's illegal.
The general rule to detect whether a set function is legal in a query with
nested subqueries is much more complicated.
Consider the the following query:
SELECT t1.a FROM t1 GROUP BY t1.a
HAVING t1.a > ALL (SELECT t2.c FROM t2 WHERE SUM(t1.b) < t2.c).
The set function SUM(b) is used here in the WHERE clause of the subquery.
Nevertheless it is legal since it is under the HAVING clause of the query
to which this function relates. The expression SUM(t1.b) is evaluated
for each group defined in the main query, not for groups of the subquery.
The problem of finding the query where to aggregate a particular
set function is not so simple as it seems to be.
In the query:
SELECT t1.a FROM t1 GROUP BY t1.a
HAVING t1.a > ALL(SELECT t2.c FROM t2 GROUP BY t2.c
HAVING SUM(t1.a) < t2.c)
the set function can be evaluated for both outer and inner selects.
If we evaluate SUM(t1.a) for the outer query then we get the value of t1.a
multiplied by the cardinality of a group in table t1. In this case
in each correlated subquery SUM(t1.a) is used as a constant. But we also
can evaluate SUM(t1.a) for the inner query. In this case t1.a will be a
constant for each correlated subquery and summation is performed
for each group of table t2.
(Here it makes sense to remind that the query
SELECT c FROM t GROUP BY a HAVING SUM(1) < a
is quite legal in our SQL).
So depending on what query we assign the set function to we
can get different result sets.
The general rule to detect the query where a set function is to be
evaluated can be formulated as follows.
Consider a set function S(E) where E is an expression with occurrences
of column references C1, ..., CN. Resolve these column references against
subqueries that contain the set function S(E). Let Q be the innermost
subquery of those subqueries. (It should be noted here that S(E)
in no way can be evaluated in the subquery embedding the subquery Q,
otherwise S(E) would refer to at least one unbound column reference)
If S(E) is used in a construct of Q where set functions are allowed then
we evaluate S(E) in Q.
Otherwise we look for a innermost subquery containing S(E) of those where
usage of S(E) is allowed.
Let's demonstrate how this rule is applied to the following queries.
1. SELECT t1.a FROM t1 GROUP BY t1.a
HAVING t1.a > ALL(SELECT t2.b FROM t2 GROUP BY t2.b
HAVING t2.b > ALL(SELECT t3.c FROM t3 GROUP BY t3.c
HAVING SUM(t1.a+t2.b) < t3.c))
For this query the set function SUM(t1.a+t2.b) depends on t1.a and t2.b
with t1.a defined in the outermost query, and t2.b defined for its
subquery. The set function is in the HAVING clause of the subquery and can
be evaluated in this subquery.
2. SELECT t1.a FROM t1 GROUP BY t1.a
HAVING t1.a > ALL(SELECT t2.b FROM t2
WHERE t2.b > ALL (SELECT t3.c FROM t3 GROUP BY t3.c
HAVING SUM(t1.a+t2.b) < t3.c))
Here the set function SUM(t1.a+t2.b)is in the WHERE clause of the second
subquery - the most upper subquery where t1.a and t2.b are defined.
If we evaluate the function in this subquery we violate the context rules.
So we evaluate the function in the third subquery (over table t3) where it
is used under the HAVING clause.
3. SELECT t1.a FROM t1 GROUP BY t1.a
HAVING t1.a > ALL(SELECT t2.b FROM t2
WHERE t2.b > ALL (SELECT t3.c FROM t3
WHERE SUM(t1.a+t2.b) < t3.c))
In this query evaluation of SUM(t1.a+t2.b) is not legal neither in the second
nor in the third subqueries. So this query is invalid.
Mostly set functions cannot be nested. In the query
SELECT t1.a from t1 GROUP BY t1.a HAVING AVG(SUM(t1.b)) > 20
the expression SUM(b) is not acceptable, though it is under a HAVING clause.
Yet it is acceptable in the query:
SELECT t.1 FROM t1 GROUP BY t1.a HAVING SUM(t1.b) > 20.
An argument of a set function does not have to be a reference to a table
column as we saw it in examples above. This can be a more complex expression
SELECT t1.a FROM t1 GROUP BY t1.a HAVING SUM(t1.b+1) > 20.
The expression SUM(t1.b+1) has a very clear semantics in this context:
we sum up the values of t1.b+1 where t1.b varies for all values within a
group of rows that contain the same t1.a value.
A set function for an outer query yields a constant within a subquery. So
the semantics of the query
SELECT t1.a FROM t1 GROUP BY t1.a
HAVING t1.a IN (SELECT t2.c FROM t2 GROUP BY t2.c
HAVING AVG(t2.c+SUM(t1.b)) > 20)
is still clear. For a group of the rows with the same t1.a values we
calculate the value of SUM(t1.b). This value 's' is substituted in the
the subquery:
SELECT t2.c FROM t2 GROUP BY t2.c HAVING AVG(t2.c+s)
than returns some result set.
By the same reason the following query with a subquery
SELECT t1.a FROM t1 GROUP BY t1.a
HAVING t1.a IN (SELECT t2.c FROM t2 GROUP BY t2.c
HAVING AVG(SUM(t1.b)) > 20)
is also acceptable.
IMPLEMENTATION NOTES
Three methods were added to the class to check the constraints specified
in the previous section. These methods utilize several new members.
The field 'nest_level' contains the number of the level for the subquery
containing the set function. The main SELECT is of level 0, its subqueries
are of levels 1, the subqueries of the latter are of level 2 and so on.
The field 'aggr_level' is to contain the nest level of the subquery
where the set function is aggregated.
The field 'max_arg_level' is for the maximum of the nest levels of the
unbound column references occurred in the set function. A column reference
is unbound within a set function if it is not bound by any subquery
used as a subexpression in this function. A column reference is bound by
a subquery if it is a reference to the column by which the aggregation
of some set function that is used in the subquery is calculated.
For the set function used in the query
SELECT t1.a FROM t1 GROUP BY t1.a
HAVING t1.a > ALL(SELECT t2.b FROM t2 GROUP BY t2.b
HAVING t2.b > ALL(SELECT t3.c FROM t3 GROUP BY t3.c
HAVING SUM(t1.a+t2.b) < t3.c))
the value of max_arg_level is equal to 1 since t1.a is bound in the main
query, and t2.b is bound by the first subquery whose nest level is 1.
Obviously a set function cannot be aggregated in the subquery whose
nest level is less than max_arg_level. (Yet it can be aggregated in the
subqueries whose nest level is greater than max_arg_level.)
In the query
SELECT t.a FROM t1 HAVING AVG(t1.a+(SELECT MIN(t2.c) FROM t2))
the value of the max_arg_level for the AVG set function is 0 since
the reference t2.c is bound in the subquery.
The field 'max_sum_func_level' is to contain the maximum of the
nest levels of the set functions that are used as subexpressions of
the arguments of the given set function, but not aggregated in any
subquery within this set function. A nested set function s1 can be
used within set function s0 only if s1.max_sum_func_level <
s0.max_sum_func_level. Set function s1 is considered as nested
for set function s0 if s1 is not calculated in any subquery
within s0.
A set function that is used as a subexpression in an argument of another
set function refers to the latter via the field 'in_sum_func'.
The condition imposed on the usage of set functions are checked when
we traverse query subexpressions with the help of the recursive method
fix_fields. When we apply this method to an object of the class
Item_sum, first, on the descent, we call the method init_sum_func_check
that initialize members used at checking. Then, on the ascent, we
call the method check_sum_func that validates the set function usage
and reports an error if it is illegal.
The method register_sum_func serves to link the items for the set functions
that are aggregated in the embedding (sub)queries. Circular chains of such
functions are attached to the corresponding st_select_lex structures
through the field inner_sum_func_list.
Exploiting the fact that the members mentioned above are used in one
recursive function we could have allocated them on the thread stack.
Yet we don't do it now.
We assume that the nesting level of subquries does not exceed 127.
TODO: to catch queries where the limit is exceeded to make the
code clean here.
@note
The implementation takes into account the used strategy:
- Items resolved at optimization phase return 0 from Item_sum::used_tables().
- Items that depend on the number of join output records, but not columns of
any particular table (like COUNT(*)), returm 0 from Item_sum::used_tables(),
but still return false from Item_sum::const_item().
*/
class Item_sum :public Item_func_or_sum
{
friend class Aggregator_distinct;
friend class Aggregator_simple;
protected:
/**
Aggregator class instance. Not set initially. Allocated only after
it is determined if the incoming data are already distinct.
*/
Aggregator *aggr;
private:
/**
Used in making ROLLUP. Set for the ROLLUP copies of the original
Item_sum and passed to create_tmp_field() to cause it to work
over the temp table buffer that is referenced by
Item_result_field::result_field.
*/
bool force_copy_fields;
/**
Indicates how the aggregate function was specified by the parser :
1 if it was written as AGGREGATE(DISTINCT),
0 if it was AGGREGATE()
*/
bool with_distinct;
/* TRUE if this is aggregate function of a window function */
bool window_func_sum_expr_flag;
public:
bool has_force_copy_fields() const { return force_copy_fields; }
bool has_with_distinct() const { return with_distinct; }
enum Sumfunctype
{ COUNT_FUNC, COUNT_DISTINCT_FUNC, SUM_FUNC, SUM_DISTINCT_FUNC, AVG_FUNC,
AVG_DISTINCT_FUNC, MIN_FUNC, MAX_FUNC, STD_FUNC,
VARIANCE_FUNC, SUM_BIT_FUNC, UDF_SUM_FUNC, GROUP_CONCAT_FUNC,
ROW_NUMBER_FUNC, RANK_FUNC, DENSE_RANK_FUNC, PERCENT_RANK_FUNC,
CUME_DIST_FUNC, NTILE_FUNC, FIRST_VALUE_FUNC, LAST_VALUE_FUNC,
NTH_VALUE_FUNC, LEAD_FUNC, LAG_FUNC, PERCENTILE_CONT_FUNC,
PERCENTILE_DISC_FUNC, SP_AGGREGATE_FUNC
};
Item **ref_by; /* pointer to a ref to the object used to register it */
Item_sum *next; /* next in the circular chain of registered objects */
Item_sum *in_sum_func; /* embedding set function if any */
st_select_lex * aggr_sel; /* select where the function is aggregated */
int8 nest_level; /* number of the nesting level of the set function */
int8 aggr_level; /* nesting level of the aggregating subquery */
int8 max_arg_level; /* max level of unbound column references */
int8 max_sum_func_level;/* max level of aggregation for embedded functions */
bool quick_group; /* If incremental update of fields */
/*
This list is used by the check for mixing non aggregated fields and
sum functions in the ONLY_FULL_GROUP_BY_MODE. We save all outer fields
directly or indirectly used under this function it as it's unclear
at the moment of fixing outer field whether it's aggregated or not.
*/
List<Item_field> outer_fields;
protected:
/*
Copy of the arguments list to hold the original set of arguments.
Used in EXPLAIN EXTENDED instead of the current argument list because
the current argument list can be altered by usage of temporary tables.
*/
Item **orig_args, *tmp_orig_args[2];
static size_t ram_limitation(THD *thd);
public:
void mark_as_sum_func();
Item_sum(THD *thd): Item_func_or_sum(thd), quick_group(1)
{
mark_as_sum_func();
init_aggregator();
}
Item_sum(THD *thd, Item *a): Item_func_or_sum(thd, a), quick_group(1),
orig_args(tmp_orig_args)
{
mark_as_sum_func();
init_aggregator();
}
Item_sum(THD *thd, Item *a, Item *b): Item_func_or_sum(thd, a, b),
quick_group(1), orig_args(tmp_orig_args)
{
mark_as_sum_func();
init_aggregator();
}
Item_sum(THD *thd, List<Item> &list);
//Copy constructor, need to perform subselects with temporary tables
Item_sum(THD *thd, Item_sum *item);
enum Type type() const { return SUM_FUNC_ITEM; }
virtual enum Sumfunctype sum_func () const=0;
bool is_aggr_sum_func()
{
switch (sum_func()) {
case COUNT_FUNC:
case COUNT_DISTINCT_FUNC:
case SUM_FUNC:
case SUM_DISTINCT_FUNC:
case AVG_FUNC:
case AVG_DISTINCT_FUNC:
case MIN_FUNC:
case MAX_FUNC:
case STD_FUNC:
case VARIANCE_FUNC:
case SUM_BIT_FUNC:
case UDF_SUM_FUNC:
case GROUP_CONCAT_FUNC:
return true;
default:
return false;
}
}
/**
Resets the aggregate value to its default and aggregates the current
value of its attribute(s).
*/
inline bool reset_and_add()
{
aggregator_clear();
return aggregator_add();
};
/*
Called when new group is started and results are being saved in
a temporary table. Similarly to reset_and_add() it resets the
value to its default and aggregates the value of its
attribute(s), but must also store it in result_field.
This set of methods (result_item(), reset_field, update_field()) of
Item_sum is used only if quick_group is not null. Otherwise
copy_or_same() is used to obtain a copy of this item.
*/
virtual void reset_field()=0;
/*
Called for each new value in the group, when temporary table is in use.
Similar to add(), but uses temporary table field to obtain current value,
Updated value is then saved in the field.
*/
virtual void update_field()=0;
virtual bool fix_length_and_dec()
{ maybe_null=1; null_value=1; return FALSE; }
virtual Item *result_item(THD *thd, Field *field);
void update_used_tables ();
COND *build_equal_items(THD *thd, COND_EQUAL *inherited,
bool link_item_fields,
COND_EQUAL **cond_equal_ref)
{
/*
Item_sum (and derivants) of the original WHERE/HAVING clauses
should already be replaced to Item_aggregate_ref by the time when
build_equal_items() is called. See Item::split_sum_func2().
*/
DBUG_ASSERT(0);
return Item::build_equal_items(thd, inherited, link_item_fields,
cond_equal_ref);
}
bool is_null() { return null_value; }
/**
make_const()
Called if we've managed to calculate the value of this Item in
opt_sum_query(), hence it can be considered constant at all subsequent
steps.
*/
void make_const ()
{
used_tables_cache= 0;
const_item_cache= true;
}
void reset_forced_const() { const_item_cache= false; }
virtual bool const_during_execution() const { return false; }
virtual void print(String *str, enum_query_type query_type);
void fix_num_length_and_dec();
/**
Mark an aggregate as having no rows.
This function is called by the execution engine to assign 'NO ROWS
FOUND' value to an aggregate item, when the underlying result set
has no rows. Such value, in a general case, may be different from
the default value of the item after 'clear()': e.g. a numeric item
may be initialized to 0 by clear() and to NULL by
no_rows_in_result().
*/
virtual void no_rows_in_result()
{
set_aggregator(with_distinct ?
Aggregator::DISTINCT_AGGREGATOR :
Aggregator::SIMPLE_AGGREGATOR);
aggregator_clear();
}
virtual void make_unique() { force_copy_fields= TRUE; }
Item *get_tmp_table_item(THD *thd);
Field *create_tmp_field(bool group, TABLE *table);
virtual bool collect_outer_ref_processor(void *param);
bool init_sum_func_check(THD *thd);
bool check_sum_func(THD *thd, Item **ref);
bool register_sum_func(THD *thd, Item **ref);
st_select_lex *depended_from()
{ return (nest_level == aggr_level ? 0 : aggr_sel); }
Item *get_arg(uint i) const { return args[i]; }
Item *set_arg(uint i, THD *thd, Item *new_val);
uint get_arg_count() const { return arg_count; }
virtual Item **get_args() { return fixed ? orig_args : args; }
/* Initialization of distinct related members */
void init_aggregator()
{
aggr= NULL;
with_distinct= FALSE;
force_copy_fields= FALSE;
}
/**
Called to initialize the aggregator.
*/
inline bool aggregator_setup(THD *thd) { return aggr->setup(thd); };
/**
Called to cleanup the aggregator.
*/
inline void aggregator_clear() { aggr->clear(); }
/**
Called to add value to the aggregator.
*/
inline bool aggregator_add() { return aggr->add(); };
/* stores the declared DISTINCT flag (from the parser) */
void set_distinct(bool distinct)
{
with_distinct= distinct;
quick_group= with_distinct ? 0 : 1;
}
/*
Set the type of aggregation : DISTINCT or not.
May be called multiple times.
*/
int set_aggregator(Aggregator::Aggregator_type aggregator);
virtual void clear()= 0;
virtual bool add()= 0;
virtual bool setup(THD *thd) { return false; }
virtual bool supports_removal() const { return false; }
virtual void remove() { DBUG_ASSERT(0); }
virtual void cleanup();
bool check_vcol_func_processor(void *arg);
virtual void setup_window_func(THD *thd, Window_spec *window_spec) {}
void mark_as_window_func_sum_expr() { window_func_sum_expr_flag= true; }
bool is_window_func_sum_expr() { return window_func_sum_expr_flag; }
virtual void setup_caches(THD *thd) {};
virtual void set_partition_row_count(ulonglong count) { DBUG_ASSERT(0); }
};
class Unique;
/**
The distinct aggregator.
Implements AGGFN (DISTINCT ..)
Collects all the data into an Unique (similarly to what Item_sum
does currently when with_distinct=true) and then (if applicable) iterates over
the list of unique values and pumps them back into its object
*/
class Aggregator_distinct : public Aggregator
{
friend class Item_sum_sum;
/*
flag to prevent consecutive runs of endup(). Normally in endup there are
expensive calculations (like walking the distinct tree for example)
which we must do only once if there are no data changes.
We can re-use the data for the second and subsequent val_xxx() calls.
endup_done set to TRUE also means that the calculated values for
the aggregate functions are correct and don't need recalculation.
*/
bool endup_done;
/*
Used depending on the type of the aggregate function and the presence of
blob columns in it:
- For COUNT(DISTINCT) and no blob fields this points to a real temporary
table. It's used as a hash table.
- For AVG/SUM(DISTINCT) or COUNT(DISTINCT) with blob fields only the
in-memory data structure of a temporary table is constructed.
It's used by the Field classes to transform data into row format.
*/
TABLE *table;
/*
An array of field lengths on row allocated and used only for
COUNT(DISTINCT) with multiple columns and no blobs. Used in
Aggregator_distinct::composite_key_cmp (called from Unique to compare
nodes
*/
uint32 *field_lengths;
/*
Used in conjunction with 'table' to support the access to Field classes
for COUNT(DISTINCT). Needed by copy_fields()/copy_funcs().
*/
TMP_TABLE_PARAM *tmp_table_param;
/*
If there are no blobs in the COUNT(DISTINCT) arguments, we can use a tree,
which is faster than heap table. In that case, we still use the table
to help get things set up, but we insert nothing in it.
For AVG/SUM(DISTINCT) we always use this tree (as it takes a single
argument) to get the distinct rows.
*/
Unique *tree;
/*
The length of the temp table row. Must be a member of the class as it
gets passed down to simple_raw_key_cmp () as a compare function argument
to Unique. simple_raw_key_cmp () is used as a fast comparison function
when the entire row can be binary compared.
*/
uint tree_key_length;
/*
Set to true if the result is known to be always NULL.
If set deactivates creation and usage of the temporary table (in the
'table' member) and the Unique instance (in the 'tree' member) as well as
the calculation of the final value on the first call to
Item_[sum|avg|count]::val_xxx().
*/
bool always_null;
/**
When feeding back the data in endup() from Unique/temp table back to
Item_sum::add() methods we must read the data from Unique (and not
recalculate the functions that are given as arguments to the aggregate
function.
This flag is to tell the arg_*() methods to take the data from the Unique
instead of calling the relevant val_..() method.
*/
bool use_distinct_values;
public:
Aggregator_distinct (Item_sum *sum) :
Aggregator(sum), table(NULL), tmp_table_param(NULL), tree(NULL),
always_null(false), use_distinct_values(false) {}
virtual ~Aggregator_distinct ();
Aggregator_type Aggrtype() { return DISTINCT_AGGREGATOR; }
bool setup(THD *);
void clear();
bool add();
void endup();
virtual my_decimal *arg_val_decimal(my_decimal * value);
virtual double arg_val_real();
virtual bool arg_is_null(bool use_null_value);
bool unique_walk_function(void *element);
bool unique_walk_function_for_count(void *element);
static int composite_key_cmp(void* arg, uchar* key1, uchar* key2);
};
/**
The pass-through aggregator.
Implements AGGFN (DISTINCT ..) by knowing it gets distinct data on input.
So it just pumps them back to the Item_sum descendant class.
*/
class Aggregator_simple : public Aggregator
{
public:
Aggregator_simple (Item_sum *sum) :
Aggregator(sum) {}
Aggregator_type Aggrtype() { return Aggregator::SIMPLE_AGGREGATOR; }
bool setup(THD * thd) { return item_sum->setup(thd); }
void clear() { item_sum->clear(); }
bool add() { return item_sum->add(); }
void endup() {};
virtual my_decimal *arg_val_decimal(my_decimal * value);
virtual double arg_val_real();
virtual bool arg_is_null(bool use_null_value);
};
class Item_sum_num :public Item_sum
{
public:
Item_sum_num(THD *thd): Item_sum(thd) {}
Item_sum_num(THD *thd, Item *item_par):
Item_sum(thd, item_par) {}
Item_sum_num(THD *thd, Item *a, Item* b):
Item_sum(thd, a, b) {}
Item_sum_num(THD *thd, List<Item> &list):
Item_sum(thd, list) {}
Item_sum_num(THD *thd, Item_sum_num *item):
Item_sum(thd, item) {}
bool fix_fields(THD *, Item **);
void reset_field();
};
class Item_sum_double :public Item_sum_num
{
public:
Item_sum_double(THD *thd): Item_sum_num(thd) {}
Item_sum_double(THD *thd, Item *item_par): Item_sum_num(thd, item_par) {}
Item_sum_double(THD *thd, List<Item> &list): Item_sum_num(thd, list) {}
Item_sum_double(THD *thd, Item_sum_double *item) :Item_sum_num(thd, item) {}
longlong val_int()
{
return val_int_from_real();
}
String *val_str(String*str)
{
return val_string_from_real(str);
}
my_decimal *val_decimal(my_decimal *to)
{
return val_decimal_from_real(to);
}
bool get_date(MYSQL_TIME *ltime, ulonglong fuzzydate)
{
return get_date_from_real(ltime, fuzzydate);
}
const Type_handler *type_handler() const { return &type_handler_double; }
};
class Item_sum_int :public Item_sum_num
{
public:
Item_sum_int(THD *thd): Item_sum_num(thd) {}
Item_sum_int(THD *thd, Item *item_par): Item_sum_num(thd, item_par) {}
Item_sum_int(THD *thd, List<Item> &list): Item_sum_num(thd, list) {}
Item_sum_int(THD *thd, Item_sum_int *item) :Item_sum_num(thd, item) {}
double val_real() { DBUG_ASSERT(fixed == 1); return (double) val_int(); }
String *val_str(String*str);
my_decimal *val_decimal(my_decimal *);
bool get_date(MYSQL_TIME *ltime, ulonglong fuzzydate)
{
return get_date_from_int(ltime, fuzzydate);
}
const Type_handler *type_handler() const { return &type_handler_longlong; }
bool fix_length_and_dec()
{ decimals=0; max_length=21; maybe_null=null_value=0; return FALSE; }
};
class Item_sum_sum :public Item_sum_num,
public Type_handler_hybrid_field_type
{
protected:
bool direct_added;
bool direct_reseted_field;
bool direct_sum_is_null;
double direct_sum_real;
double sum;
my_decimal direct_sum_decimal;
my_decimal dec_buffs[2];
uint curr_dec_buff;
bool fix_length_and_dec();
public:
Item_sum_sum(THD *thd, Item *item_par, bool distinct):
Item_sum_num(thd, item_par), direct_added(FALSE),
direct_reseted_field(FALSE)
{
set_distinct(distinct);
}
Item_sum_sum(THD *thd, Item_sum_sum *item);
enum Sumfunctype sum_func () const
{
return has_with_distinct() ? SUM_DISTINCT_FUNC : SUM_FUNC;
}
void cleanup();
void direct_add(my_decimal *add_sum_decimal);
void direct_add(double add_sum_real, bool add_sum_is_null);
void clear();
bool add();
double val_real();
longlong val_int();
String *val_str(String*str);
my_decimal *val_decimal(my_decimal *);
bool get_date(MYSQL_TIME *ltime, ulonglong fuzzydate)
{
return type_handler()->Item_get_date(this, ltime, fuzzydate);
}
const Type_handler *type_handler() const
{ return Type_handler_hybrid_field_type::type_handler(); }
void fix_length_and_dec_double();
void fix_length_and_dec_decimal();
void reset_field();
void update_field();
void no_rows_in_result() {}
const char *func_name() const
{
return has_with_distinct() ? "sum(distinct " : "sum(";
}
Item *copy_or_same(THD* thd);
void remove();
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_sum>(thd, this); }
bool supports_removal() const
{
return true;
}
private:
void add_helper(bool perform_removal);
ulonglong count;
};
class Item_sum_count :public Item_sum_int
{
bool direct_counted;
bool direct_reseted_field;
longlong direct_count;
longlong count;
friend class Aggregator_distinct;
void clear();
bool add();
void cleanup();
void remove();
public:
Item_sum_count(THD *thd, Item *item_par):
Item_sum_int(thd, item_par), direct_counted(FALSE),
direct_reseted_field(FALSE), count(0)
{}
/**
Constructs an instance for COUNT(DISTINCT)
@param list a list of the arguments to the aggregate function
This constructor is called by the parser only for COUNT (DISTINCT).
*/
Item_sum_count(THD *thd, List<Item> &list):
Item_sum_int(thd, list), direct_counted(FALSE),
direct_reseted_field(FALSE), count(0)
{
set_distinct(TRUE);
}
Item_sum_count(THD *thd, Item_sum_count *item):
Item_sum_int(thd, item), direct_counted(FALSE),
direct_reseted_field(FALSE), count(item->count)
{}
enum Sumfunctype sum_func () const
{
return has_with_distinct() ? COUNT_DISTINCT_FUNC : COUNT_FUNC;
}
void no_rows_in_result() { count=0; }
void make_const(longlong count_arg)
{
count=count_arg;
Item_sum::make_const();
}
longlong val_int();
void reset_field();
void update_field();
void direct_add(longlong add_count);
const char *func_name() const
{
return has_with_distinct() ? "count(distinct " : "count(";
}
Item *copy_or_same(THD* thd);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_count>(thd, this); }
bool supports_removal() const
{
return true;
}
};
class Item_sum_avg :public Item_sum_sum
{
public:
// TODO-cvicentiu given that Item_sum_sum now uses a counter of its own, in
// order to implement remove(), it is possible to remove this member.
ulonglong count;
uint prec_increment;
uint f_precision, f_scale, dec_bin_size;
Item_sum_avg(THD *thd, Item *item_par, bool distinct):
Item_sum_sum(thd, item_par, distinct), count(0)
{}
Item_sum_avg(THD *thd, Item_sum_avg *item)
:Item_sum_sum(thd, item), count(item->count),
prec_increment(item->prec_increment) {}
void fix_length_and_dec_double();
void fix_length_and_dec_decimal();
bool fix_length_and_dec();
enum Sumfunctype sum_func () const
{
return has_with_distinct() ? AVG_DISTINCT_FUNC : AVG_FUNC;
}
void clear();
bool add();
void remove();
double val_real();
// In SPs we might force the "wrong" type with select into a declare variable
longlong val_int() { return val_int_from_real(); }
my_decimal *val_decimal(my_decimal *);
String *val_str(String *str);
void reset_field();
void update_field();
Item *result_item(THD *thd, Field *field);
void no_rows_in_result() {}
const char *func_name() const
{
return has_with_distinct() ? "avg(distinct " : "avg(";
}
Item *copy_or_same(THD* thd);
Field *create_tmp_field(bool group, TABLE *table);
void cleanup()
{
count= 0;
Item_sum_sum::cleanup();
}
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_avg>(thd, this); }
bool supports_removal() const
{
return true;
}
};
/*
variance(a) =
= sum (ai - avg(a))^2 / count(a) )
= sum (ai^2 - 2*ai*avg(a) + avg(a)^2) / count(a)
= (sum(ai^2) - sum(2*ai*avg(a)) + sum(avg(a)^2))/count(a) =
= (sum(ai^2) - 2*avg(a)*sum(a) + count(a)*avg(a)^2)/count(a) =
= (sum(ai^2) - 2*sum(a)*sum(a)/count(a) + count(a)*sum(a)^2/count(a)^2 )/count(a) =
= (sum(ai^2) - 2*sum(a)^2/count(a) + sum(a)^2/count(a) )/count(a) =
= (sum(ai^2) - sum(a)^2/count(a))/count(a)
But, this falls prey to catastrophic cancellation. Instead, use the recurrence formulas
M_{1} = x_{1}, ~ M_{k} = M_{k-1} + (x_{k} - M_{k-1}) / k newline
S_{1} = 0, ~ S_{k} = S_{k-1} + (x_{k} - M_{k-1}) times (x_{k} - M_{k}) newline
for 2 <= k <= n newline
ital variance = S_{n} / (n-1)
*/
class Item_sum_variance : public Item_sum_double
{
bool fix_length_and_dec();
public:
double recurrence_m, recurrence_s; /* Used in recurrence relation. */
ulonglong count;
uint sample;
uint prec_increment;
Item_sum_variance(THD *thd, Item *item_par, uint sample_arg):
Item_sum_double(thd, item_par), count(0),
sample(sample_arg)
{}
Item_sum_variance(THD *thd, Item_sum_variance *item);
enum Sumfunctype sum_func () const { return VARIANCE_FUNC; }
void fix_length_and_dec_double();
void fix_length_and_dec_decimal();
void clear();
bool add();
double val_real();
void reset_field();
void update_field();
Item *result_item(THD *thd, Field *field);
void no_rows_in_result() {}
const char *func_name() const
{ return sample ? "var_samp(" : "variance("; }
Item *copy_or_same(THD* thd);
Field *create_tmp_field(bool group, TABLE *table);
void cleanup()
{
count= 0;
Item_sum_double::cleanup();
}
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_variance>(thd, this); }
};
/*
standard_deviation(a) = sqrt(variance(a))
*/
class Item_sum_std :public Item_sum_variance
{
public:
Item_sum_std(THD *thd, Item *item_par, uint sample_arg):
Item_sum_variance(thd, item_par, sample_arg) {}
Item_sum_std(THD *thd, Item_sum_std *item)
:Item_sum_variance(thd, item)
{}
enum Sumfunctype sum_func () const { return STD_FUNC; }
double val_real();
Item *result_item(THD *thd, Field *field);
const char *func_name() const { return sample ? "stddev_samp(" : "std("; }
Item *copy_or_same(THD* thd);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_std>(thd, this); }
};
class Item_sum_hybrid: public Item_sum,
public Type_handler_hybrid_field_type
{
public:
Item_sum_hybrid(THD *thd, Item *item_par):
Item_sum(thd, item_par),
Type_handler_hybrid_field_type(&type_handler_longlong)
{ collation.set(&my_charset_bin); }
Item_sum_hybrid(THD *thd, Item *a, Item *b):
Item_sum(thd, a, b),
Type_handler_hybrid_field_type(&type_handler_longlong)
{ collation.set(&my_charset_bin); }
Item_sum_hybrid(THD *thd, Item_sum_hybrid *item)
:Item_sum(thd, item),
Type_handler_hybrid_field_type(item)
{ }
const Type_handler *type_handler() const
{ return Type_handler_hybrid_field_type::type_handler(); }
bool fix_length_and_dec_generic();
bool fix_length_and_dec_numeric(const Type_handler *h);
bool fix_length_and_dec_string();
};
// This class is a string or number function depending on num_func
class Arg_comparator;
class Item_cache;
class Item_sum_min_max :public Item_sum_hybrid
{
protected:
bool direct_added;
Item *direct_item;
Item_cache *value, *arg_cache;
Arg_comparator *cmp;
int cmp_sign;
bool was_values; // Set if we have found at least one row (for max/min only)
bool was_null_value;
public:
Item_sum_min_max(THD *thd, Item *item_par,int sign):
Item_sum_hybrid(thd, item_par),
direct_added(FALSE), value(0), arg_cache(0), cmp(0),
cmp_sign(sign), was_values(TRUE)
{ collation.set(&my_charset_bin); }
Item_sum_min_max(THD *thd, Item_sum_min_max *item)
:Item_sum_hybrid(thd, item),
direct_added(FALSE), value(item->value), arg_cache(0),
cmp_sign(item->cmp_sign), was_values(item->was_values)
{ }
bool fix_fields(THD *, Item **);
bool fix_length_and_dec();
void setup_hybrid(THD *thd, Item *item, Item *value_arg);
void clear();
void direct_add(Item *item);
double val_real();
longlong val_int();
my_decimal *val_decimal(my_decimal *);
bool get_date(MYSQL_TIME *ltime, ulonglong fuzzydate);
void reset_field();
String *val_str(String *);
const Type_handler *real_type_handler() const
{
return get_arg(0)->real_type_handler();
}
TYPELIB *get_typelib() const { return args[0]->get_typelib(); }
void update_field();
void min_max_update_str_field();
void min_max_update_real_field();
void min_max_update_int_field();
void min_max_update_decimal_field();
void cleanup();
bool any_value() { return was_values; }
void no_rows_in_result();
void restore_to_before_no_rows_in_result();
Field *create_tmp_field(bool group, TABLE *table);
void setup_caches(THD *thd) { setup_hybrid(thd, arguments()[0], NULL); }
};
class Item_sum_min :public Item_sum_min_max
{
public:
Item_sum_min(THD *thd, Item *item_par): Item_sum_min_max(thd, item_par, 1) {}
Item_sum_min(THD *thd, Item_sum_min *item) :Item_sum_min_max(thd, item) {}
enum Sumfunctype sum_func () const {return MIN_FUNC;}
bool add();
const char *func_name() const { return "min("; }
Item *copy_or_same(THD* thd);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_min>(thd, this); }
};
class Item_sum_max :public Item_sum_min_max
{
public:
Item_sum_max(THD *thd, Item *item_par): Item_sum_min_max(thd, item_par, -1) {}
Item_sum_max(THD *thd, Item_sum_max *item) :Item_sum_min_max(thd, item) {}
enum Sumfunctype sum_func () const {return MAX_FUNC;}
bool add();
const char *func_name() const { return "max("; }
Item *copy_or_same(THD* thd);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_max>(thd, this); }
};
class Item_sum_bit :public Item_sum_int
{
public:
Item_sum_bit(THD *thd, Item *item_par, ulonglong reset_arg):
Item_sum_int(thd, item_par), reset_bits(reset_arg), bits(reset_arg),
as_window_function(FALSE), num_values_added(0) {}
Item_sum_bit(THD *thd, Item_sum_bit *item):
Item_sum_int(thd, item), reset_bits(item->reset_bits), bits(item->bits),
as_window_function(item->as_window_function),
num_values_added(item->num_values_added)
{
if (as_window_function)
memcpy(bit_counters, item->bit_counters, sizeof(bit_counters));
}
enum Sumfunctype sum_func () const {return SUM_BIT_FUNC;}
void clear();
longlong val_int();
void reset_field();
void update_field();
bool fix_length_and_dec()
{
decimals= 0; max_length=21; unsigned_flag= 1; maybe_null= null_value= 0;
return FALSE;
}
void cleanup()
{
bits= reset_bits;
if (as_window_function)
clear_as_window();
Item_sum_int::cleanup();
}
void setup_window_func(THD *thd __attribute__((unused)),
Window_spec *window_spec __attribute__((unused)))
{
as_window_function= TRUE;
clear_as_window();
}
void remove()
{
if (as_window_function)
{
remove_as_window(args[0]->val_int());
return;
}
// Unless we're counting bits, we can not remove anything.
DBUG_ASSERT(0);
}
bool supports_removal() const
{
return true;
}
protected:
enum bit_counters { NUM_BIT_COUNTERS= 64 };
ulonglong reset_bits,bits;
/*
Marks whether the function is to be computed as a window function.
*/
bool as_window_function;
// When used as an aggregate window function, we need to store
// this additional information.
ulonglong num_values_added;
ulonglong bit_counters[NUM_BIT_COUNTERS];
bool add_as_window(ulonglong value);
bool remove_as_window(ulonglong value);
bool clear_as_window();
virtual void set_bits_from_counters()= 0;
};
class Item_sum_or :public Item_sum_bit
{
public:
Item_sum_or(THD *thd, Item *item_par): Item_sum_bit(thd, item_par, 0) {}
Item_sum_or(THD *thd, Item_sum_or *item) :Item_sum_bit(thd, item) {}
bool add();
const char *func_name() const { return "bit_or("; }
Item *copy_or_same(THD* thd);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_or>(thd, this); }
private:
void set_bits_from_counters();
};
class Item_sum_and :public Item_sum_bit
{
public:
Item_sum_and(THD *thd, Item *item_par):
Item_sum_bit(thd, item_par, ULONGLONG_MAX) {}
Item_sum_and(THD *thd, Item_sum_and *item) :Item_sum_bit(thd, item) {}
bool add();
const char *func_name() const { return "bit_and("; }
Item *copy_or_same(THD* thd);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_and>(thd, this); }
private:
void set_bits_from_counters();
};
class Item_sum_xor :public Item_sum_bit
{
public:
Item_sum_xor(THD *thd, Item *item_par): Item_sum_bit(thd, item_par, 0) {}
Item_sum_xor(THD *thd, Item_sum_xor *item) :Item_sum_bit(thd, item) {}
bool add();
const char *func_name() const { return "bit_xor("; }
Item *copy_or_same(THD* thd);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_xor>(thd, this); }
private:
void set_bits_from_counters();
};
class sp_head;
class sp_name;
class Query_arena;
struct st_sp_security_context;
/*
Item_sum_sp handles STORED AGGREGATE FUNCTIONS
Each Item_sum_sp represents a custom aggregate function. Inside the
function's body, we require at least one occurence of FETCH GROUP NEXT ROW
instruction. This cursor is what makes custom stored aggregates possible.
During computation the function's add method is called. This in turn performs
an execution of the function. The function will execute from the current
function context (and instruction), if one exists, or from the start if not.
See Item_sp for more details.
Upon encounter of FETCH GROUP NEXT ROW instruction, the function will pause
execution. We assume that the user has performed the necessary additions for
a row, between two encounters of FETCH GROUP NEXT ROW.
Example:
create aggregate function f1(x INT) returns int
begin
declare continue handler for not found return s;
declare s int default 0
loop
fetch group next row;
set s = s + x;
end loop;
end
The function will always stop after an encounter of FETCH GROUP NEXT ROW,
except (!) on first encounter, as the value for the first row in the
group is already set in the argument x. This behaviour is done so when
a user writes a function, he should "logically" include FETCH GROUP NEXT ROW
before any "add" instructions in the stored function. This means however that
internally, the first occurence doesn't stop the function. See the
implementation of FETCH GROUP NEXT ROW for details as to how it happens.
Either way, one should assume that after calling "Item_sum_sp::add()" that
the values for that particular row have been added to the aggregation.
To produce values for val_xxx methods we need an extra syntactic construct.
We require a continue handler when "no more rows are available". val_xxx
methods force a function return by executing the function again, while
setting a server flag that no more rows have been found. This implies
that val_xxx methods should only be called once per group however.
Example:
DECLARE CONTINUE HANDLER FOR NOT FOUND RETURN ret_val;
*/
class Item_sum_sp :public Item_sum,
public Item_sp
{
private:
bool execute();
public:
Item_sum_sp(THD *thd, Name_resolution_context *context_arg, sp_name *name,
sp_head *sp);
Item_sum_sp(THD *thd, Name_resolution_context *context_arg, sp_name *name,
sp_head *sp, List<Item> &list);
Item_sum_sp(THD *thd, Item_sum_sp *item);
enum Sumfunctype sum_func () const
{
return SP_AGGREGATE_FUNC;
}
Field *create_field_for_create_select(TABLE *table)
{
return create_table_field_from_handler(table);
}
bool fix_length_and_dec();
bool fix_fields(THD *thd, Item **ref);
const char *func_name() const;
const Type_handler *type_handler() const;
bool add();
/* val_xx functions */
longlong val_int()
{
if(execute())
return 0;
return sp_result_field->val_int();
}
double val_real()
{
if(execute())
return 0.0;
return sp_result_field->val_real();
}
my_decimal *val_decimal(my_decimal *dec_buf)
{
if(execute())
return NULL;
return sp_result_field->val_decimal(dec_buf);
}
String *val_str(String *str)
{
String buf;
char buff[20];
buf.set(buff, 20, str->charset());
buf.length(0);
if (execute())
return NULL;
/*
result_field will set buf pointing to internal buffer
of the resul_field. Due to this it will change any time
when SP is executed. In order to prevent occasional
corruption of returned value, we make here a copy.
*/
sp_result_field->val_str(&buf);
str->copy(buf);
return str;
}
void reset_field(){DBUG_ASSERT(0);}
void update_field(){DBUG_ASSERT(0);}
void clear();
void cleanup();
bool get_date(MYSQL_TIME *ltime, ulonglong fuzzydate)
{
return execute() || sp_result_field->get_date(ltime, fuzzydate);
}
inline Field *get_sp_result_field()
{
return sp_result_field;
}
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_sp>(thd, this); }
Item *copy_or_same(THD *thd);
};
/* Items to get the value of a stored sum function */
class Item_sum_field :public Item
{
protected:
Field *field;
public:
Item_sum_field(THD *thd, Item_sum *item)
:Item(thd), field(item->result_field)
{
name= item->name;
maybe_null= true;
decimals= item->decimals;
max_length= item->max_length;
unsigned_flag= item->unsigned_flag;
fixed= true;
}
table_map used_tables() const { return (table_map) 1L; }
void save_in_result_field(bool no_conversions) { DBUG_ASSERT(0); }
bool check_vcol_func_processor(void *arg)
{
return mark_unsupported_function(name.str, arg, VCOL_IMPOSSIBLE);
}
bool get_date(MYSQL_TIME *ltime, ulonglong fuzzydate)
{
return type_handler()->Item_get_date(this, ltime, fuzzydate);
}
};
class Item_avg_field :public Item_sum_field
{
protected:
uint prec_increment;
public:
Item_avg_field(THD *thd, Item_sum_avg *item)
:Item_sum_field(thd, item), prec_increment(item->prec_increment)
{ }
enum Type type() const { return FIELD_AVG_ITEM; }
bool is_null() { update_null_value(); return null_value; }
};
class Item_avg_field_double :public Item_avg_field
{
public:
Item_avg_field_double(THD *thd, Item_sum_avg *item)
:Item_avg_field(thd, item)
{ }
const Type_handler *type_handler() const { return &type_handler_double; }
longlong val_int() { return val_int_from_real(); }
my_decimal *val_decimal(my_decimal *dec) { return val_decimal_from_real(dec); }
String *val_str(String *str) { return val_string_from_real(str); }
double val_real();
Item *get_copy(THD *thd)
{ return get_item_copy<Item_avg_field_double>(thd, this); }
};
class Item_avg_field_decimal :public Item_avg_field
{
uint f_precision, f_scale, dec_bin_size;
public:
Item_avg_field_decimal(THD *thd, Item_sum_avg *item)
:Item_avg_field(thd, item),
f_precision(item->f_precision),
f_scale(item->f_scale),
dec_bin_size(item->dec_bin_size)
{ }
const Type_handler *type_handler() const { return &type_handler_newdecimal; }
double val_real() { return val_real_from_decimal(); }
longlong val_int() { return val_int_from_decimal(); }
String *val_str(String *str) { return val_string_from_decimal(str); }
my_decimal *val_decimal(my_decimal *);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_avg_field_decimal>(thd, this); }
};
class Item_variance_field :public Item_sum_field
{
uint sample;
public:
Item_variance_field(THD *thd, Item_sum_variance *item)
:Item_sum_field(thd, item), sample(item->sample)
{ }
enum Type type() const {return FIELD_VARIANCE_ITEM; }
double val_real();
longlong val_int() { return val_int_from_real(); }
String *val_str(String *str)
{ return val_string_from_real(str); }
my_decimal *val_decimal(my_decimal *dec_buf)
{ return val_decimal_from_real(dec_buf); }
bool is_null() { update_null_value(); return null_value; }
const Type_handler *type_handler() const { return &type_handler_double; }
Item *get_copy(THD *thd)
{ return get_item_copy<Item_variance_field>(thd, this); }
};
class Item_std_field :public Item_variance_field
{
public:
Item_std_field(THD *thd, Item_sum_std *item)
:Item_variance_field(thd, item)
{ }
enum Type type() const { return FIELD_STD_ITEM; }
double val_real();
Item *get_copy(THD *thd)
{ return get_item_copy<Item_std_field>(thd, this); }
};
/*
User defined aggregates
*/
#ifdef HAVE_DLOPEN
class Item_udf_sum : public Item_sum
{
protected:
udf_handler udf;
public:
Item_udf_sum(THD *thd, udf_func *udf_arg):
Item_sum(thd), udf(udf_arg)
{ quick_group=0; }
Item_udf_sum(THD *thd, udf_func *udf_arg, List<Item> &list):
Item_sum(thd, list), udf(udf_arg)
{ quick_group=0;}
Item_udf_sum(THD *thd, Item_udf_sum *item)
:Item_sum(thd, item), udf(item->udf)
{ udf.not_original= TRUE; }
const char *func_name() const { return udf.name(); }
bool fix_fields(THD *thd, Item **ref)
{
DBUG_ASSERT(fixed == 0);
if (init_sum_func_check(thd))
return TRUE;
fixed= 1;
/*
We set const_item_cache to false in constructors.
It can be later changed to "true", in a Item_sum::make_const() call.
No make_const() calls should have happened so far.
*/
DBUG_ASSERT(!const_item_cache);
if (udf.fix_fields(thd, this, this->arg_count, this->args))
return TRUE;
/**
The above call for udf.fix_fields() updates
the Used_tables_and_const_cache part of "this" as if it was a regular
non-aggregate UDF function and can change both const_item_cache and
used_tables_cache members.
- The used_tables_cache will be re-calculated in update_used_tables()
which is called from check_sum_func() below. So we don't care about
its current value.
- The const_item_cache must stay "false" until a Item_sum::make_const()
call happens, if ever. So we need to reset const_item_cache back to
"false" here.
*/
const_item_cache= false;
memcpy (orig_args, args, sizeof (Item *) * arg_count);
return check_sum_func(thd, ref);
}
enum Sumfunctype sum_func () const { return UDF_SUM_FUNC; }
virtual bool have_field_update(void) const { return 0; }
void clear();
bool add();
void reset_field() {};
void update_field() {};
void cleanup();
virtual void print(String *str, enum_query_type query_type);
bool get_date(MYSQL_TIME *ltime, ulonglong fuzzydate)
{
return type_handler()->Item_get_date(this, ltime, fuzzydate);
}
};
class Item_sum_udf_float :public Item_udf_sum
{
public:
Item_sum_udf_float(THD *thd, udf_func *udf_arg):
Item_udf_sum(thd, udf_arg) {}
Item_sum_udf_float(THD *thd, udf_func *udf_arg, List<Item> &list):
Item_udf_sum(thd, udf_arg, list) {}
Item_sum_udf_float(THD *thd, Item_sum_udf_float *item)
:Item_udf_sum(thd, item) {}
longlong val_int() { return val_int_from_real(); }
double val_real();
String *val_str(String*str);
my_decimal *val_decimal(my_decimal *);
const Type_handler *type_handler() const { return &type_handler_double; }
bool fix_length_and_dec() { fix_num_length_and_dec(); return FALSE; }
Item *copy_or_same(THD* thd);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_udf_float>(thd, this); }
};
class Item_sum_udf_int :public Item_udf_sum
{
public:
Item_sum_udf_int(THD *thd, udf_func *udf_arg):
Item_udf_sum(thd, udf_arg) {}
Item_sum_udf_int(THD *thd, udf_func *udf_arg, List<Item> &list):
Item_udf_sum(thd, udf_arg, list) {}
Item_sum_udf_int(THD *thd, Item_sum_udf_int *item)
:Item_udf_sum(thd, item) {}
longlong val_int();
double val_real()
{ DBUG_ASSERT(fixed == 1); return (double) Item_sum_udf_int::val_int(); }
String *val_str(String*str);
my_decimal *val_decimal(my_decimal *);
const Type_handler *type_handler() const { return &type_handler_longlong; }
bool fix_length_and_dec() { decimals=0; max_length=21; return FALSE; }
Item *copy_or_same(THD* thd);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_udf_int>(thd, this); }
};
class Item_sum_udf_str :public Item_udf_sum
{
public:
Item_sum_udf_str(THD *thd, udf_func *udf_arg):
Item_udf_sum(thd, udf_arg) {}
Item_sum_udf_str(THD *thd, udf_func *udf_arg, List<Item> &list):
Item_udf_sum(thd, udf_arg, list) {}
Item_sum_udf_str(THD *thd, Item_sum_udf_str *item)
:Item_udf_sum(thd, item) {}
String *val_str(String *);
double val_real()
{
int err_not_used;
char *end_not_used;
String *res;
res=val_str(&str_value);
return res ? my_strntod(res->charset(),(char*) res->ptr(),res->length(),
&end_not_used, &err_not_used) : 0.0;
}
longlong val_int()
{
int err_not_used;
char *end;
String *res;
CHARSET_INFO *cs;
if (!(res= val_str(&str_value)))
return 0; /* Null value */
cs= res->charset();
end= (char*) res->ptr()+res->length();
return cs->cset->strtoll10(cs, res->ptr(), &end, &err_not_used);
}
my_decimal *val_decimal(my_decimal *dec);
const Type_handler *type_handler() const { return string_type_handler(); }
bool fix_length_and_dec();
Item *copy_or_same(THD* thd);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_udf_str>(thd, this); }
};
class Item_sum_udf_decimal :public Item_udf_sum
{
public:
Item_sum_udf_decimal(THD *thd, udf_func *udf_arg):
Item_udf_sum(thd, udf_arg) {}
Item_sum_udf_decimal(THD *thd, udf_func *udf_arg, List<Item> &list):
Item_udf_sum(thd, udf_arg, list) {}
Item_sum_udf_decimal(THD *thd, Item_sum_udf_decimal *item)
:Item_udf_sum(thd, item) {}
String *val_str(String *);
double val_real();
longlong val_int();
my_decimal *val_decimal(my_decimal *);
const Type_handler *type_handler() const { return &type_handler_newdecimal; }
bool fix_length_and_dec() { fix_num_length_and_dec(); return FALSE; }
Item *copy_or_same(THD* thd);
Item *get_copy(THD *thd)
{ return get_item_copy<Item_sum_udf_decimal>(thd, this); }
};
#else /* Dummy functions to get sql_yacc.cc compiled */
class Item_sum_udf_float :public Item_sum_double
{
public:
Item_sum_udf_float(THD *thd, udf_func *udf_arg):
Item_sum_double(thd) {}
Item_sum_udf_float(THD *thd, udf_func *udf_arg, List<Item> &list):
Item_sum_double(thd) {}
Item_sum_udf_float(THD *thd, Item_sum_udf_float *item)
:Item_sum_double(thd, item) {}
enum Sumfunctype sum_func () const { return UDF_SUM_FUNC; }
double val_real() { DBUG_ASSERT(fixed == 1); return 0.0; }
void clear() {}
bool add() { return 0; }
void update_field() {}
};
class Item_sum_udf_int :public Item_sum_double
{
public:
Item_sum_udf_int(THD *thd, udf_func *udf_arg):
Item_sum_double(thd) {}
Item_sum_udf_int(THD *thd, udf_func *udf_arg, List<Item> &list):
Item_sum_double(thd) {}
Item_sum_udf_int(THD *thd, Item_sum_udf_int *item)
:Item_sum_double(thd, item) {}
enum Sumfunctype sum_func () const { return UDF_SUM_FUNC; }
longlong val_int() { DBUG_ASSERT(fixed == 1); return 0; }
double val_real() { DBUG_ASSERT(fixed == 1); return 0; }
void clear() {}
bool add() { return 0; }
void update_field() {}
};
class Item_sum_udf_decimal :public Item_sum_double
{
public:
Item_sum_udf_decimal(THD *thd, udf_func *udf_arg):
Item_sum_double(thd) {}
Item_sum_udf_decimal(THD *thd, udf_func *udf_arg, List<Item> &list):
Item_sum_double(thd) {}
Item_sum_udf_decimal(THD *thd, Item_sum_udf_float *item)
:Item_sum_double(thd, item) {}
enum Sumfunctype sum_func () const { return UDF_SUM_FUNC; }
double val_real() { DBUG_ASSERT(fixed == 1); return 0.0; }
my_decimal *val_decimal(my_decimal *) { DBUG_ASSERT(fixed == 1); return 0; }
void clear() {}
bool add() { return 0; }
void update_field() {}
};
class Item_sum_udf_str :public Item_sum_double
{
public:
Item_sum_udf_str(THD *thd, udf_func *udf_arg):
Item_sum_double(thd) {}
Item_sum_udf_str(THD *thd, udf_func *udf_arg, List<Item> &list):
Item_sum_double(thd) {}
Item_sum_udf_str(THD *thd, Item_sum_udf_str *item)
:Item_sum_double(thd, item) {}
String *val_str(String *)
{ DBUG_ASSERT(fixed == 1); null_value=1; return 0; }
double val_real() { DBUG_ASSERT(fixed == 1); null_value=1; return 0.0; }
longlong val_int() { DBUG_ASSERT(fixed == 1); null_value=1; return 0; }
bool fix_length_and_dec() { maybe_null=1; max_length=0; return FALSE; }
enum Sumfunctype sum_func () const { return UDF_SUM_FUNC; }
void clear() {}
bool add() { return 0; }
void update_field() {}
};
#endif /* HAVE_DLOPEN */
C_MODE_START
int group_concat_key_cmp_with_distinct(void* arg, const void* key1,
const void* key2);
int group_concat_key_cmp_with_order(void* arg, const void* key1,
const void* key2);
int dump_leaf_key(void* key_arg,
element_count count __attribute__((unused)),
void* item_arg);
C_MODE_END
class Item_func_group_concat : public Item_sum
{
TMP_TABLE_PARAM *tmp_table_param;
String result;
String *separator;
TREE tree_base;
TREE *tree;
size_t tree_len;
Item **ref_pointer_array;
/**
If DISTINCT is used with this GROUP_CONCAT, this member is used to filter
out duplicates.
@see Item_func_group_concat::setup
@see Item_func_group_concat::add
@see Item_func_group_concat::clear
*/
Unique *unique_filter;
TABLE *table;
ORDER **order;
Name_resolution_context *context;
/** The number of ORDER BY items. */
uint arg_count_order;
/** The number of selected items, aka the expr list. */
uint arg_count_field;
uint row_count;
bool distinct;
bool warning_for_row;
bool always_null;
bool force_copy_fields;
/** True if entire result of GROUP_CONCAT has been written to output buffer. */
bool result_finalized;
/** Limits the rows in the result */
Item *row_limit;
/** Skips a particular number of rows in from the result*/
Item *offset_limit;
bool limit_clause;
/* copy of the offset limit */
ulonglong copy_offset_limit;
/*copy of the row limit */
ulonglong copy_row_limit;
/*
Following is 0 normal object and pointer to original one for copy
(to correctly free resources)
*/
Item_func_group_concat *original;
friend int group_concat_key_cmp_with_distinct(void* arg, const void* key1,
const void* key2);
friend int group_concat_key_cmp_with_order(void* arg, const void* key1,
const void* key2);
friend int dump_leaf_key(void* key_arg,
element_count count __attribute__((unused)),
void* item_arg);
bool repack_tree(THD *thd);
public:
Item_func_group_concat(THD *thd, Name_resolution_context *context_arg,
bool is_distinct, List<Item> *is_select,
const SQL_I_List<ORDER> &is_order, String *is_separator,
bool limit_clause, Item *row_limit, Item *offset_limit);
Item_func_group_concat(THD *thd, Item_func_group_concat *item);
~Item_func_group_concat();
void cleanup();
enum Sumfunctype sum_func () const {return GROUP_CONCAT_FUNC;}
const char *func_name() const { return "group_concat("; }
const Type_handler *type_handler() const
{
if (too_big_for_varchar())
return &type_handler_blob;
return &type_handler_varchar;
}
void clear();
bool add();
void reset_field() { DBUG_ASSERT(0); } // not used
void update_field() { DBUG_ASSERT(0); } // not used
bool fix_fields(THD *,Item **);
bool setup(THD *thd);
void make_unique();
double val_real()
{
int error;
const char *end;
String *res;
if (!(res= val_str(&str_value)))
return 0.0;
end= res->ptr() + res->length();
return (my_strtod(res->ptr(), (char**) &end, &error));
}
longlong val_int()
{
String *res;
char *end_ptr;
int error;
if (!(res= val_str(&str_value)))
return (longlong) 0;
end_ptr= (char*) res->ptr()+ res->length();
return my_strtoll10(res->ptr(), &end_ptr, &error);
}
my_decimal *val_decimal(my_decimal *decimal_value)
{
return val_decimal_from_string(decimal_value);
}
bool get_date(MYSQL_TIME *ltime, ulonglong fuzzydate)
{
return get_date_from_string(ltime, fuzzydate);
}
String* val_str(String* str);
Item *copy_or_same(THD* thd);
void no_rows_in_result() {}
void print(String *str, enum_query_type query_type);
bool change_context_processor(void *cntx)
{ context= (Name_resolution_context *)cntx; return FALSE; }
Item *get_copy(THD *thd)
{ return get_item_copy<Item_func_group_concat>(thd, this); }
};
#endif /* ITEM_SUM_INCLUDED */
|