1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
/*
Copyright (c) 2009, 2011, Monty Program Ab
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/****************************************************************************
MRR Range Sequence Interface implementation that walks a SEL_ARG* tree.
****************************************************************************/
/* MRR range sequence, SEL_ARG* implementation: stack entry */
typedef struct st_range_seq_entry
{
/*
Pointers in min and max keys. They point to right-after-end of key
images. The 0-th entry has these pointing to key tuple start.
*/
uchar *min_key, *max_key;
/*
Flags, for {keypart0, keypart1, ... this_keypart} subtuple.
min_key_flag may have NULL_RANGE set.
*/
uint min_key_flag, max_key_flag;
/* Number of key parts */
uint min_key_parts, max_key_parts;
SEL_ARG *key_tree;
} RANGE_SEQ_ENTRY;
/*
MRR range sequence, SEL_ARG* implementation: SEL_ARG graph traversal context
*/
typedef struct st_sel_arg_range_seq
{
uint keyno; /* index of used tree in SEL_TREE structure */
uint real_keyno; /* Number of the index in tables */
PARAM *param;
SEL_ARG *start; /* Root node of the traversed SEL_ARG* graph */
RANGE_SEQ_ENTRY stack[MAX_REF_PARTS];
int i; /* Index of last used element in the above array */
bool at_start; /* TRUE <=> The traversal has just started */
} SEL_ARG_RANGE_SEQ;
/*
Range sequence interface, SEL_ARG* implementation: Initialize the traversal
SYNOPSIS
init()
init_params SEL_ARG tree traversal context
n_ranges [ignored] The number of ranges obtained
flags [ignored] HA_MRR_SINGLE_POINT, HA_MRR_FIXED_KEY
RETURN
Value of init_param
*/
range_seq_t sel_arg_range_seq_init(void *init_param, uint n_ranges, uint flags)
{
SEL_ARG_RANGE_SEQ *seq= (SEL_ARG_RANGE_SEQ*)init_param;
seq->at_start= TRUE;
seq->stack[0].key_tree= NULL;
seq->stack[0].min_key= seq->param->min_key;
seq->stack[0].min_key_flag= 0;
seq->stack[0].min_key_parts= 0;
seq->stack[0].max_key= seq->param->max_key;
seq->stack[0].max_key_flag= 0;
seq->stack[0].max_key_parts= 0;
seq->i= 0;
return init_param;
}
static void step_down_to(SEL_ARG_RANGE_SEQ *arg, SEL_ARG *key_tree)
{
RANGE_SEQ_ENTRY *cur= &arg->stack[arg->i+1];
RANGE_SEQ_ENTRY *prev= &arg->stack[arg->i];
cur->key_tree= key_tree;
cur->min_key= prev->min_key;
cur->max_key= prev->max_key;
cur->min_key_parts= prev->min_key_parts;
cur->max_key_parts= prev->max_key_parts;
uint16 stor_length= arg->param->key[arg->keyno][key_tree->part].store_length;
cur->min_key_parts += key_tree->store_min(stor_length, &cur->min_key,
prev->min_key_flag);
cur->max_key_parts += key_tree->store_max(stor_length, &cur->max_key,
prev->max_key_flag);
cur->min_key_flag= prev->min_key_flag | key_tree->min_flag;
cur->max_key_flag= prev->max_key_flag | key_tree->max_flag;
if (key_tree->is_null_interval())
cur->min_key_flag |= NULL_RANGE;
(arg->i)++;
}
/*
Range sequence interface, SEL_ARG* implementation: get the next interval
SYNOPSIS
sel_arg_range_seq_next()
rseq Value returned from sel_arg_range_seq_init
range OUT Store information about the range here
DESCRIPTION
This is "get_next" function for Range sequence interface implementation
for SEL_ARG* tree.
IMPLEMENTATION
The traversal also updates those param members:
- is_ror_scan
- range_count
- max_key_part
RETURN
FALSE Ok
TRUE No more ranges in the sequence
*/
#if (_MSC_FULL_VER == 160030319)
/*
Workaround Visual Studio 2010 RTM compiler backend bug, the function enters
infinite loop.
*/
#pragma optimize("g", off)
#endif
bool sel_arg_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
{
SEL_ARG *key_tree;
SEL_ARG_RANGE_SEQ *seq= (SEL_ARG_RANGE_SEQ*)rseq;
if (seq->at_start)
{
key_tree= seq->start;
seq->at_start= FALSE;
goto walk_up_n_right;
}
key_tree= seq->stack[seq->i].key_tree;
/* Ok, we're at some "full tuple" position in the tree */
/* Step down if we can */
if (key_tree->next && key_tree->next != &null_element)
{
//step down; (update the tuple, we'll step right and stay there)
seq->i--;
step_down_to(seq, key_tree->next);
key_tree= key_tree->next;
seq->param->is_ror_scan= FALSE;
goto walk_right_n_up;
}
/* Ok, can't step down, walk left until we can step down */
while (1)
{
if (seq->i == 1) // can't step left
return 1;
/* Step left */
seq->i--;
key_tree= seq->stack[seq->i].key_tree;
/* Step down if we can */
if (key_tree->next && key_tree->next != &null_element)
{
// Step down; update the tuple
seq->i--;
step_down_to(seq, key_tree->next);
key_tree= key_tree->next;
break;
}
}
/*
Ok, we've stepped down from the path to previous tuple.
Walk right-up while we can
*/
walk_right_n_up:
while (key_tree->next_key_part && key_tree->next_key_part != &null_element &&
key_tree->next_key_part->part == key_tree->part + 1 &&
key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
{
{
RANGE_SEQ_ENTRY *cur= &seq->stack[seq->i];
uint min_key_length= cur->min_key - seq->param->min_key;
uint max_key_length= cur->max_key - seq->param->max_key;
uint len= cur->min_key - cur[-1].min_key;
if (!(min_key_length == max_key_length &&
!memcmp(cur[-1].min_key, cur[-1].max_key, len) &&
!key_tree->min_flag && !key_tree->max_flag))
{
seq->param->is_ror_scan= FALSE;
if (!key_tree->min_flag)
cur->min_key_parts +=
key_tree->next_key_part->store_min_key(seq->param->key[seq->keyno],
&cur->min_key,
&cur->min_key_flag, MAX_KEY);
if (!key_tree->max_flag)
cur->max_key_parts +=
key_tree->next_key_part->store_max_key(seq->param->key[seq->keyno],
&cur->max_key,
&cur->max_key_flag, MAX_KEY);
break;
}
}
/*
Ok, current atomic interval is in form "t.field=const" and there is
next_key_part interval. Step right, and walk up from there.
*/
key_tree= key_tree->next_key_part;
walk_up_n_right:
while (key_tree->prev && key_tree->prev != &null_element)
{
/* Step up */
key_tree= key_tree->prev;
}
step_down_to(seq, key_tree);
}
/* Ok got a tuple */
RANGE_SEQ_ENTRY *cur= &seq->stack[seq->i];
uint min_key_length= cur->min_key - seq->param->min_key;
range->ptr= (char*)(intptr)(key_tree->part);
if (cur->min_key_flag & GEOM_FLAG)
{
range->range_flag= cur->min_key_flag;
/* Here minimum contains also function code bits, and maximum is +inf */
range->start_key.key= seq->param->min_key;
range->start_key.length= min_key_length;
range->start_key.keypart_map= make_prev_keypart_map(cur->min_key_parts);
range->start_key.flag= (ha_rkey_function) (cur->min_key_flag ^ GEOM_FLAG);
}
else
{
range->range_flag= cur->min_key_flag | cur->max_key_flag;
range->start_key.key= seq->param->min_key;
range->start_key.length= cur->min_key - seq->param->min_key;
range->start_key.keypart_map= make_prev_keypart_map(cur->min_key_parts);
range->start_key.flag= (cur->min_key_flag & NEAR_MIN ? HA_READ_AFTER_KEY :
HA_READ_KEY_EXACT);
range->end_key.key= seq->param->max_key;
range->end_key.length= cur->max_key - seq->param->max_key;
range->end_key.flag= (cur->max_key_flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
HA_READ_AFTER_KEY);
range->end_key.keypart_map= make_prev_keypart_map(cur->max_key_parts);
KEY *key_info;
if (seq->real_keyno== MAX_KEY)
key_info= NULL;
else
key_info= &seq->param->table->key_info[seq->real_keyno];
/*
Conditions below:
(1) - range analysis is used for estimating condition selectivity
(2) - This is a unique key, and we have conditions for all its
user-defined key parts.
(3) - The table uses extended keys, and we have conditions for
all key parts.
*/
if (!(cur->min_key_flag & ~NULL_RANGE) && !cur->max_key_flag &&
(!key_info || // (1)
((uint)key_tree->part+1 == key_info->user_defined_key_parts && // (2)
key_info->flags & HA_NOSAME) || // (2)
(seq->param->table->s->use_ext_keys && // (3)
(uint)key_tree->part+1 == key_info->ext_key_parts) // (3)
) &&
range->start_key.length == range->end_key.length &&
!memcmp(seq->param->min_key,seq->param->max_key,range->start_key.length))
range->range_flag= UNIQUE_RANGE | (cur->min_key_flag & NULL_RANGE);
if (seq->param->is_ror_scan)
{
/*
If we get here, the condition on the key was converted to form
"(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND
somecond(keyXpart{key_tree->part})"
Check if
somecond is "keyXpart{key_tree->part} = const" and
uncovered "tail" of KeyX parts is either empty or is identical to
first members of clustered primary key.
*/
if (!(!(cur->min_key_flag & ~NULL_RANGE) && !cur->max_key_flag &&
(range->start_key.length == range->end_key.length) &&
!memcmp(range->start_key.key, range->end_key.key, range->start_key.length) &&
is_key_scan_ror(seq->param, seq->real_keyno, key_tree->part + 1)))
seq->param->is_ror_scan= FALSE;
}
}
seq->param->range_count++;
seq->param->max_key_part=MY_MAX(seq->param->max_key_part,key_tree->part);
return 0;
}
#if (_MSC_FULL_VER == 160030319)
/* VS2010 compiler bug workaround */
#pragma optimize("g", on)
#endif
/****************************************************************************
MRR Range Sequence Interface implementation that walks array<QUICK_RANGE>
****************************************************************************/
/*
Range sequence interface implementation for array<QUICK_RANGE>: initialize
SYNOPSIS
quick_range_seq_init()
init_param Caller-opaque paramenter: QUICK_RANGE_SELECT* pointer
n_ranges Number of ranges in the sequence (ignored)
flags MRR flags (currently not used)
RETURN
Opaque value to be passed to quick_range_seq_next
*/
range_seq_t quick_range_seq_init(void *init_param, uint n_ranges, uint flags)
{
QUICK_RANGE_SELECT *quick= (QUICK_RANGE_SELECT*)init_param;
quick->qr_traversal_ctx.first= (QUICK_RANGE**)quick->ranges.buffer;
quick->qr_traversal_ctx.cur= (QUICK_RANGE**)quick->ranges.buffer;
quick->qr_traversal_ctx.last= quick->qr_traversal_ctx.cur +
quick->ranges.elements;
return &quick->qr_traversal_ctx;
}
/*
Range sequence interface implementation for array<QUICK_RANGE>: get next
SYNOPSIS
quick_range_seq_next()
rseq Value returned from quick_range_seq_init
range OUT Store information about the range here
RETURN
0 Ok
1 No more ranges in the sequence
*/
bool quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range)
{
QUICK_RANGE_SEQ_CTX *ctx= (QUICK_RANGE_SEQ_CTX*)rseq;
if (ctx->cur == ctx->last)
return 1; /* no more ranges */
QUICK_RANGE *cur= *(ctx->cur);
cur->make_min_endpoint(&range->start_key);
cur->make_max_endpoint(&range->end_key);
range->range_flag= cur->flag;
ctx->cur++;
return 0;
}
|