summaryrefslogtreecommitdiff
path: root/sql/rpl_parallel.cc
blob: 582f0e4a65fce04a11eb3c1f907fcbb6cea4084e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
#include "my_global.h"
#include "rpl_parallel.h"
#include "slave.h"
#include "rpl_mi.h"


/*
  Code for optional parallel execution of replicated events on the slave.

  ToDo list:

   - Retry of failed transactions is not yet implemented for the parallel case.

   - All the waits (eg. in struct wait_for_commit and in
     rpl_parallel_thread_pool::get_thread()) need to be killable. And on kill,
     everything needs to be correctly rolled back and stopped in all threads,
     to ensure a consistent slave replication state.

   - Handle the case of a partial event group. This occurs when the master
     crashes in the middle of writing the event group to the binlog. The
     slave rolls back the transaction; parallel execution needs to be able
     to deal with this wrt. commit_orderer and such.
     See Format_description_log_event::do_apply_event().
*/

struct rpl_parallel_thread_pool global_rpl_thread_pool;


static int
rpt_handle_event(rpl_parallel_thread::queued_event *qev,
                 struct rpl_parallel_thread *rpt)
{
  int err __attribute__((unused));
  rpl_group_info *rgi= qev->rgi;
  Relay_log_info *rli= rgi->rli;
  THD *thd= rgi->thd;

  thd->rgi_slave= rgi;
  thd->rpl_filter = rli->mi->rpl_filter;

  /* ToDo: Access to thd, and what about rli, split out a parallel part? */
  mysql_mutex_lock(&rli->data_lock);
  qev->ev->thd= thd;
  strcpy(rgi->event_relay_log_name_buf, qev->event_relay_log_name);
  rgi->event_relay_log_name= rgi->event_relay_log_name_buf;
  rgi->event_relay_log_pos= qev->event_relay_log_pos;
  rgi->future_event_relay_log_pos= qev->future_event_relay_log_pos;
  strcpy(rgi->future_event_master_log_name, qev->future_event_master_log_name);
  err= apply_event_and_update_pos(qev->ev, thd, rgi, rpt);
  thd->rgi_slave= NULL;

  thread_safe_increment64(&rli->executed_entries,
                          &slave_executed_entries_lock);
  /* ToDo: error handling. */
  return err;
}


static void
handle_queued_pos_update(THD *thd, rpl_parallel_thread::queued_event *qev)
{
  int cmp;
  Relay_log_info *rli;
  /*
    Events that are not part of an event group, such as Format Description,
    Stop, GTID List and such, are executed directly in the driver SQL thread,
    to keep the relay log state up-to-date. But the associated position update
    is done here, in sync with other normal events as they are queued to
    worker threads.
  */
  if ((thd->variables.option_bits & OPTION_BEGIN) &&
      opt_using_transactions)
    return;
  rli= qev->rgi->rli;
  mysql_mutex_lock(&rli->data_lock);
  cmp= strcmp(rli->group_relay_log_name, qev->event_relay_log_name);
  if (cmp < 0)
  {
    rli->group_relay_log_pos= qev->future_event_relay_log_pos;
    strmake_buf(rli->group_relay_log_name, qev->event_relay_log_name);
    rli->notify_group_relay_log_name_update();
  } else if (cmp == 0 &&
             rli->group_relay_log_pos < qev->future_event_relay_log_pos)
    rli->group_relay_log_pos= qev->future_event_relay_log_pos;

  cmp= strcmp(rli->group_master_log_name, qev->future_event_master_log_name);
  if (cmp < 0)
  {
    strcpy(rli->group_master_log_name, qev->future_event_master_log_name);
    rli->notify_group_master_log_name_update();
    rli->group_master_log_pos= qev->future_event_master_log_pos;
  }
  else if (cmp == 0
           && rli->group_master_log_pos < qev->future_event_master_log_pos)
    rli->group_master_log_pos= qev->future_event_master_log_pos;
  mysql_mutex_unlock(&rli->data_lock);
  mysql_cond_broadcast(&rli->data_cond);
}


static bool
sql_worker_killed(THD *thd, rpl_group_info *rgi, bool in_event_group)
{
  if (!rgi->rli->abort_slave && !abort_loop)
    return false;

  /*
    Do not abort in the middle of an event group that cannot be rolled back.
  */
  if ((thd->transaction.all.modified_non_trans_table ||
       (thd->variables.option_bits & OPTION_KEEP_LOG))
      && in_event_group)
    return false;
  /* ToDo: should we add some timeout like in sql_slave_killed?
       if (rgi->last_event_start_time == 0)
         rgi->last_event_start_time= my_time(0);
  */

  return true;
}


pthread_handler_t
handle_rpl_parallel_thread(void *arg)
{
  THD *thd;
  PSI_stage_info old_stage;
  struct rpl_parallel_thread::queued_event *events;
  bool group_standalone= true;
  bool in_event_group= false;
  uint64 event_gtid_sub_id= 0;
  int err;

  struct rpl_parallel_thread *rpt= (struct rpl_parallel_thread *)arg;

  my_thread_init();
  thd = new THD;
  thd->thread_stack = (char*)&thd;
  mysql_mutex_lock(&LOCK_thread_count);
  thd->thread_id= thd->variables.pseudo_thread_id= thread_id++;
  threads.append(thd);
  mysql_mutex_unlock(&LOCK_thread_count);
  set_current_thd(thd);
  pthread_detach_this_thread();
  thd->init_for_queries();
  thd->variables.binlog_annotate_row_events= 0;
  init_thr_lock();
  thd->store_globals();
  thd->system_thread= SYSTEM_THREAD_SLAVE_SQL;
  thd->security_ctx->skip_grants();
  thd->variables.max_allowed_packet= slave_max_allowed_packet;
  thd->slave_thread= 1;
  thd->enable_slow_log= opt_log_slow_slave_statements;
  thd->variables.log_slow_filter= global_system_variables.log_slow_filter;
  set_slave_thread_options(thd);
  thd->client_capabilities = CLIENT_LOCAL_FILES;
  thd_proc_info(thd, "Waiting for work from main SQL threads");
  thd->set_time();
  thd->variables.lock_wait_timeout= LONG_TIMEOUT;

  mysql_mutex_lock(&rpt->LOCK_rpl_thread);
  rpt->thd= thd;

  while (rpt->delay_start)
    mysql_cond_wait(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread);

  rpt->running= true;
  mysql_cond_signal(&rpt->COND_rpl_thread);

  while (!rpt->stop && !thd->killed)
  {
    rpl_parallel_thread *list;

    thd->ENTER_COND(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread,
                    &stage_waiting_for_work_from_sql_thread, &old_stage);
    while (!(events= rpt->event_queue) && !rpt->stop && !thd->killed)
      mysql_cond_wait(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread);
    rpt->dequeue(events);
    thd->EXIT_COND(&old_stage);
    mysql_cond_signal(&rpt->COND_rpl_thread);

  more_events:
    while (events)
    {
      struct rpl_parallel_thread::queued_event *next= events->next;
      Log_event_type event_type;
      rpl_group_info *rgi= events->rgi;
      rpl_parallel_entry *entry= rgi->parallel_entry;
      uint64 wait_for_sub_id;
      uint64 wait_start_sub_id;
      bool end_of_group;

      if (!events->ev)
      {
        handle_queued_pos_update(thd, events);
        my_free(events);
        events= next;
        continue;
      }

      err= 0;
      /* Handle a new event group, which will be initiated by a GTID event. */
      if ((event_type= events->ev->get_type_code()) == GTID_EVENT)
      {
        in_event_group= true;
        /*
          If the standalone flag is set, then this event group consists of a
          single statement (possibly preceeded by some Intvar_log_event and
          similar), without any terminating COMMIT/ROLLBACK/XID.
        */
        group_standalone=
          (0 != (static_cast<Gtid_log_event *>(events->ev)->flags2 &
                 Gtid_log_event::FL_STANDALONE));

        /* Save this, as it gets cleared when the event group commits. */
        event_gtid_sub_id= rgi->gtid_sub_id;

        rgi->thd= thd;

        /*
          Register ourself to wait for the previous commit, if we need to do
          such registration _and_ that previous commit has not already
          occured.

          Also do not start parallel execution of this event group until all
          prior groups have committed that are not safe to run in parallel with.
        */
        wait_for_sub_id= rgi->wait_commit_sub_id;
        wait_start_sub_id= rgi->wait_start_sub_id;
        if (wait_for_sub_id || wait_start_sub_id)
        {
          mysql_mutex_lock(&entry->LOCK_parallel_entry);
          if (wait_start_sub_id)
          {
            while (wait_start_sub_id > entry->last_committed_sub_id)
              mysql_cond_wait(&entry->COND_parallel_entry,
                              &entry->LOCK_parallel_entry);
          }
          rgi->wait_start_sub_id= 0;            /* No need to check again. */
          if (wait_for_sub_id > entry->last_committed_sub_id)
          {
            wait_for_commit *waitee=
              &rgi->wait_commit_group_info->commit_orderer;
            rgi->commit_orderer.register_wait_for_prior_commit(waitee);
          }
          mysql_mutex_unlock(&entry->LOCK_parallel_entry);
        }

        if(thd->wait_for_commit_ptr)
        {
          /*
            This indicates that we get a new GTID event in the middle of
            a not completed event group. This is corrupt binlog (the master
            will never write such binlog), so it does not happen unless
            someone tries to inject wrong crafted binlog, but let us still
            try to handle it somewhat nicely.
          */
          rgi->cleanup_context(thd, true);
          thd->wait_for_commit_ptr->unregister_wait_for_prior_commit();
          thd->wait_for_commit_ptr->wakeup_subsequent_commits(err);
        }
        thd->wait_for_commit_ptr= &rgi->commit_orderer;
      }

      /*
        If the SQL thread is stopping, we just skip execution of all the
        following event groups. We still do all the normal waiting and wakeup
        processing between the event groups as a simple way to ensure that
        everything is stopped and cleaned up correctly.
      */
      if (!rgi->is_error && !sql_worker_killed(thd, rgi, in_event_group))
        err= rpt_handle_event(events, rpt);
      else
        err= thd->wait_for_prior_commit();

      end_of_group=
        in_event_group &&
        ((group_standalone && !Log_event::is_part_of_group(event_type)) ||
         event_type == XID_EVENT ||
         (event_type == QUERY_EVENT &&
          (((Query_log_event *)events->ev)->is_commit() ||
           ((Query_log_event *)events->ev)->is_rollback())));

      delete_or_keep_event_post_apply(rgi, event_type, events->ev);
      my_free(events);

      if (err)
      {
        rgi->is_error= true;
        slave_output_error_info(rgi->rli, thd);
        rgi->cleanup_context(thd, true);
        rgi->rli->abort_slave= true;
      }
      if (end_of_group)
      {
        in_event_group= false;

        /*
          Remove any left-over registration to wait for a prior commit to
          complete. Normally, such wait would already have been removed at
          this point by wait_for_prior_commit(), but eg. in error case we
          might have skipped waiting, so we would need to remove it explicitly.
        */
        rgi->commit_orderer.unregister_wait_for_prior_commit();
        thd->wait_for_commit_ptr= NULL;

        /*
          Record that this event group has finished (eg. transaction is
          committed, if transactional), so other event groups will no longer
          attempt to wait for us to commit. Once we have increased
          entry->last_committed_sub_id, no other threads will execute
          register_wait_for_prior_commit() against us. Thus, by doing one
          extra (usually redundant) wakeup_subsequent_commits() we can ensure
          that no register_wait_for_prior_commit() can ever happen without a
          subsequent wakeup_subsequent_commits() to wake it up.

          We can race here with the next transactions, but that is fine, as
          long as we check that we do not decrease last_committed_sub_id. If
          this commit is done, then any prior commits will also have been
          done and also no longer need waiting for.
        */
        mysql_mutex_lock(&entry->LOCK_parallel_entry);
        if (entry->last_committed_sub_id < event_gtid_sub_id)
        {
          entry->last_committed_sub_id= event_gtid_sub_id;
          mysql_cond_broadcast(&entry->COND_parallel_entry);
        }
        mysql_mutex_unlock(&entry->LOCK_parallel_entry);

        rgi->commit_orderer.wakeup_subsequent_commits(err);
        delete rgi;
      }

      events= next;
    }

    mysql_mutex_lock(&rpt->LOCK_rpl_thread);
    if ((events= rpt->event_queue) != NULL)
    {
      /*
        Take next group of events from the replication pool.
        This is faster than having to wakeup the pool manager thread to give us
        a new event.
      */
      rpt->dequeue(events);
      mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
      mysql_cond_signal(&rpt->COND_rpl_thread);
      goto more_events;
    }

    if (!in_event_group)
    {
      rpt->current_entry= NULL;
      if (!rpt->stop)
      {
        mysql_mutex_lock(&rpt->pool->LOCK_rpl_thread_pool);
        list= rpt->pool->free_list;
        rpt->next= list;
        rpt->pool->free_list= rpt;
        if (!list)
          mysql_cond_broadcast(&rpt->pool->COND_rpl_thread_pool);
        mysql_mutex_unlock(&rpt->pool->LOCK_rpl_thread_pool);
      }
    }
  }

  rpt->thd= NULL;
  mysql_mutex_unlock(&rpt->LOCK_rpl_thread);

  thd->clear_error();
  thd->catalog= 0;
  thd->reset_query();
  thd->reset_db(NULL, 0);
  thd_proc_info(thd, "Slave worker thread exiting");
  thd->temporary_tables= 0;
  mysql_mutex_lock(&LOCK_thread_count);
  THD_CHECK_SENTRY(thd);
  delete thd;
  mysql_mutex_unlock(&LOCK_thread_count);

  mysql_mutex_lock(&rpt->LOCK_rpl_thread);
  rpt->running= false;
  mysql_cond_signal(&rpt->COND_rpl_thread);
  mysql_mutex_unlock(&rpt->LOCK_rpl_thread);

  my_thread_end();

  return NULL;
}


int
rpl_parallel_change_thread_count(rpl_parallel_thread_pool *pool,
                                 uint32 new_count, bool skip_check)
{
  uint32 i;
  rpl_parallel_thread **new_list= NULL;
  rpl_parallel_thread *new_free_list= NULL;
  rpl_parallel_thread *rpt_array= NULL;

  /*
    Allocate the new list of threads up-front.
    That way, if we fail half-way, we only need to free whatever we managed
    to allocate, and will not be left with a half-functional thread pool.
  */
  if (new_count &&
      !my_multi_malloc(MYF(MY_WME|MY_ZEROFILL),
                       &new_list, new_count*sizeof(*new_list),
                       &rpt_array, new_count*sizeof(*rpt_array),
                       NULL))
  {
    my_error(ER_OUTOFMEMORY, MYF(0), (int(new_count*sizeof(*new_list) +
                                          new_count*sizeof(*rpt_array))));
    goto err;;
  }

  for (i= 0; i < new_count; ++i)
  {
    pthread_t th;

    new_list[i]= &rpt_array[i];
    new_list[i]->delay_start= true;
    mysql_mutex_init(key_LOCK_rpl_thread, &new_list[i]->LOCK_rpl_thread,
                     MY_MUTEX_INIT_SLOW);
    mysql_cond_init(key_COND_rpl_thread, &new_list[i]->COND_rpl_thread, NULL);
    new_list[i]->pool= pool;
    if (mysql_thread_create(key_rpl_parallel_thread, &th, NULL,
                            handle_rpl_parallel_thread, new_list[i]))
    {
      my_error(ER_OUT_OF_RESOURCES, MYF(0));
      goto err;
    }
    new_list[i]->next= new_free_list;
    new_free_list= new_list[i];
  }

  if (!skip_check)
  {
    mysql_mutex_lock(&LOCK_active_mi);
    if (master_info_index->give_error_if_slave_running())
    {
      mysql_mutex_unlock(&LOCK_active_mi);
      goto err;
    }
    if (pool->changing)
    {
      mysql_mutex_unlock(&LOCK_active_mi);
      my_error(ER_CHANGE_SLAVE_PARALLEL_THREADS_ACTIVE, MYF(0));
      goto err;
    }
    pool->changing= true;
    mysql_mutex_unlock(&LOCK_active_mi);
  }

  /*
    Grab each old thread in turn, and signal it to stop.

    Note that since we require all replication threads to be stopped before
    changing the parallel replication worker thread pool, all the threads will
    be already idle and will terminate immediately.
  */
  for (i= 0; i < pool->count; ++i)
  {
    rpl_parallel_thread *rpt= pool->get_thread(NULL);
    rpt->stop= true;
    mysql_cond_signal(&rpt->COND_rpl_thread);
    mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
  }

  for (i= 0; i < pool->count; ++i)
  {
    rpl_parallel_thread *rpt= pool->threads[i];
    mysql_mutex_lock(&rpt->LOCK_rpl_thread);
    while (rpt->running)
      mysql_cond_wait(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread);
    mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
    mysql_mutex_destroy(&rpt->LOCK_rpl_thread);
    mysql_cond_destroy(&rpt->COND_rpl_thread);
  }

  my_free(pool->threads);
  pool->threads= new_list;
  pool->free_list= new_free_list;
  pool->count= new_count;
  for (i= 0; i < pool->count; ++i)
  {
    mysql_mutex_lock(&pool->threads[i]->LOCK_rpl_thread);
    pool->threads[i]->delay_start= false;
    mysql_cond_signal(&pool->threads[i]->COND_rpl_thread);
    while (!pool->threads[i]->running)
      mysql_cond_wait(&pool->threads[i]->COND_rpl_thread,
                      &pool->threads[i]->LOCK_rpl_thread);
    mysql_mutex_unlock(&pool->threads[i]->LOCK_rpl_thread);
  }

  if (!skip_check)
  {
    mysql_mutex_lock(&LOCK_active_mi);
    pool->changing= false;
    mysql_mutex_unlock(&LOCK_active_mi);
  }
  return 0;

err:
  if (new_list)
  {
    while (new_free_list)
    {
      mysql_mutex_lock(&new_free_list->LOCK_rpl_thread);
      new_free_list->delay_start= false;
      new_free_list->stop= true;
      mysql_cond_signal(&new_free_list->COND_rpl_thread);
      while (!new_free_list->running)
        mysql_cond_wait(&new_free_list->COND_rpl_thread,
                        &new_free_list->LOCK_rpl_thread);
      while (new_free_list->running)
        mysql_cond_wait(&new_free_list->COND_rpl_thread,
                        &new_free_list->LOCK_rpl_thread);
      mysql_mutex_unlock(&new_free_list->LOCK_rpl_thread);
      new_free_list= new_free_list->next;
    }
    my_free(new_list);
  }
  if (!skip_check)
  {
    mysql_mutex_lock(&LOCK_active_mi);
    pool->changing= false;
    mysql_mutex_unlock(&LOCK_active_mi);
  }
  return 1;
}


rpl_parallel_thread_pool::rpl_parallel_thread_pool()
  : count(0), threads(0), free_list(0), changing(false), inited(false)
{
}


int
rpl_parallel_thread_pool::init(uint32 size)
{
  count= 0;
  threads= NULL;
  free_list= NULL;

  mysql_mutex_init(key_LOCK_rpl_thread_pool, &LOCK_rpl_thread_pool,
                   MY_MUTEX_INIT_SLOW);
  mysql_cond_init(key_COND_rpl_thread_pool, &COND_rpl_thread_pool, NULL);
  changing= false;
  inited= true;

  return rpl_parallel_change_thread_count(this, size, true);
}


void
rpl_parallel_thread_pool::destroy()
{
  if (!inited)
    return;
  rpl_parallel_change_thread_count(this, 0, true);
  mysql_mutex_destroy(&LOCK_rpl_thread_pool);
  mysql_cond_destroy(&COND_rpl_thread_pool);
  inited= false;
}


/*
  Wait for a worker thread to become idle. When one does, grab the thread for
  our use and return it.

  Note that we return with the worker threads's LOCK_rpl_thread mutex locked.
*/
struct rpl_parallel_thread *
rpl_parallel_thread_pool::get_thread(rpl_parallel_entry *entry)
{
  rpl_parallel_thread *rpt;

  mysql_mutex_lock(&LOCK_rpl_thread_pool);
  while ((rpt= free_list) == NULL)
    mysql_cond_wait(&COND_rpl_thread_pool, &LOCK_rpl_thread_pool);
  free_list= rpt->next;
  mysql_mutex_unlock(&LOCK_rpl_thread_pool);
  mysql_mutex_lock(&rpt->LOCK_rpl_thread);
  rpt->current_entry= entry;

  return rpt;
}


static void
free_rpl_parallel_entry(void *element)
{
  rpl_parallel_entry *e= (rpl_parallel_entry *)element;
  mysql_cond_destroy(&e->COND_parallel_entry);
  mysql_mutex_destroy(&e->LOCK_parallel_entry);
  my_free(e);
}


rpl_parallel::rpl_parallel() :
  current(NULL), sql_thread_stopping(false)
{
  my_hash_init(&domain_hash, &my_charset_bin, 32,
               offsetof(rpl_parallel_entry, domain_id), sizeof(uint32),
               NULL, free_rpl_parallel_entry, HASH_UNIQUE);
}


void
rpl_parallel::reset()
{
  my_hash_reset(&domain_hash);
  current= NULL;
  sql_thread_stopping= false;
}


rpl_parallel::~rpl_parallel()
{
  my_hash_free(&domain_hash);
}


rpl_parallel_entry *
rpl_parallel::find(uint32 domain_id)
{
  struct rpl_parallel_entry *e;

  if (!(e= (rpl_parallel_entry *)my_hash_search(&domain_hash,
                                                (const uchar *)&domain_id, 0)))
  {
    /* Allocate a new, empty one. */
    if (!(e= (struct rpl_parallel_entry *)my_malloc(sizeof(*e),
                                                    MYF(MY_ZEROFILL))))
      return NULL;
    e->domain_id= domain_id;
    if (my_hash_insert(&domain_hash, (uchar *)e))
    {
      my_free(e);
      return NULL;
    }
    mysql_mutex_init(key_LOCK_parallel_entry, &e->LOCK_parallel_entry,
                     MY_MUTEX_INIT_FAST);
    mysql_cond_init(key_COND_parallel_entry, &e->COND_parallel_entry, NULL);
  }

  return e;
}


void
rpl_parallel::wait_for_done()
{
  struct rpl_parallel_entry *e;
  uint32 i;

  for (i= 0; i < domain_hash.records; ++i)
  {
    e= (struct rpl_parallel_entry *)my_hash_element(&domain_hash, i);
    mysql_mutex_lock(&e->LOCK_parallel_entry);
    while (e->current_sub_id > e->last_committed_sub_id)
      mysql_cond_wait(&e->COND_parallel_entry, &e->LOCK_parallel_entry);
    mysql_mutex_unlock(&e->LOCK_parallel_entry);
  }
}


/*
  do_event() is executed by the sql_driver_thd thread.
  It's main purpose is to find a thread that can execute the query.

  @retval false 	ok, event was accepted
  @retval true          error
*/

bool
rpl_parallel::do_event(rpl_group_info *serial_rgi, Log_event *ev,
                       ulonglong event_size)
{
  rpl_parallel_entry *e;
  rpl_parallel_thread *cur_thread;
  rpl_parallel_thread::queued_event *qev;
  rpl_group_info *rgi= NULL;
  Relay_log_info *rli= serial_rgi->rli;
  enum Log_event_type typ;
  bool is_group_event;

  /* ToDo: what to do with this lock?!? */
  mysql_mutex_unlock(&rli->data_lock);

  /*
    Stop queueing additional event groups once the SQL thread is requested to
    stop.
  */
  if (((typ= ev->get_type_code()) == GTID_EVENT ||
       !(is_group_event= Log_event::is_group_event(typ))) &&
      rli->abort_slave)
    sql_thread_stopping= true;
  if (sql_thread_stopping)
  {
    /* QQ: Need a better comment why we return false here */
    return false;
  }

  if (!(qev= (rpl_parallel_thread::queued_event *)my_malloc(sizeof(*qev),
                                                            MYF(0))))
  {
    my_error(ER_OUT_OF_RESOURCES, MYF(0));
    return true;
  }
  qev->ev= ev;
  qev->event_size= event_size;
  qev->next= NULL;
  strcpy(qev->event_relay_log_name, rli->event_relay_log_name);
  qev->event_relay_log_pos= rli->event_relay_log_pos;
  qev->future_event_relay_log_pos= rli->future_event_relay_log_pos;
  strcpy(qev->future_event_master_log_name, rli->future_event_master_log_name);

  if (typ == GTID_EVENT)
  {
    Gtid_log_event *gtid_ev= static_cast<Gtid_log_event *>(ev);
    uint32 domain_id= (rli->mi->using_gtid == Master_info::USE_GTID_NO ?
                       0 : gtid_ev->domain_id);

    if (!(e= find(domain_id)) ||
        !(rgi= new rpl_group_info(rli)) ||
        event_group_new_gtid(rgi, gtid_ev))
    {
      my_error(ER_OUT_OF_RESOURCES, MYF(MY_WME));
      delete rgi;
      return true;
    }
    rgi->is_parallel_exec = true;
    if ((rgi->deferred_events_collecting= rli->mi->rpl_filter->is_on()))
      rgi->deferred_events= new Deferred_log_events(rli);

    if ((gtid_ev->flags2 & Gtid_log_event::FL_GROUP_COMMIT_ID) &&
        e->last_commit_id == gtid_ev->commit_id)
    {
      /*
        We are already executing something else in this domain. But the two
        event groups were committed together in the same group commit on the
        master, so we can still do them in parallel here on the slave.

        However, the commit of this event must wait for the commit of the prior
        event, to preserve binlog commit order and visibility across all
        servers in the replication hierarchy.
      */
      rpl_parallel_thread *rpt= global_rpl_thread_pool.get_thread(e);
      rgi->wait_commit_sub_id= e->current_sub_id;
      rgi->wait_commit_group_info= e->current_group_info;
      rgi->wait_start_sub_id= e->prev_groupcommit_sub_id;
      e->rpl_thread= cur_thread= rpt;
      /* get_thread() returns with the LOCK_rpl_thread locked. */
    }
    else
    {
      /*
        Check if we already have a worker thread for this entry.

        We continue to queue more events up for the worker thread while it is
        still executing the first ones, to be able to start executing a large
        event group without having to wait for the end to be fetched from the
        master. And we continue to queue up more events after the first group,
        so that we can continue to process subsequent parts of the relay log in
        parallel without having to wait for previous long-running events to
        complete.

        But if the worker thread is idle at any point, it may return to the
        idle list or start servicing a different request. So check this, and
        allocate a new thread if the old one is no longer processing for us.
      */
      cur_thread= e->rpl_thread;
      if (cur_thread)
      {
        mysql_mutex_lock(&cur_thread->LOCK_rpl_thread);
        for (;;)
        {
          if (cur_thread->current_entry != e)
          {
            /*
              The worker thread became idle, and returned to the free list and
              possibly was allocated to a different request. This also means
              that everything previously queued has already been executed,
              else the worker thread would not have become idle. So we should
              allocate a new worker thread.
            */
            mysql_mutex_unlock(&cur_thread->LOCK_rpl_thread);
            e->rpl_thread= cur_thread= NULL;
            break;
          }
          else if (cur_thread->queued_size <= opt_slave_parallel_max_queued)
            break;                        // The thread is ready to queue into
          else
          {
            /*
              We have reached the limit of how much memory we are allowed to
              use for queuing events, so wait for the thread to consume some
              of its queue.
            */
            mysql_cond_wait(&cur_thread->COND_rpl_thread,
                            &cur_thread->LOCK_rpl_thread);
          }
        }
      }

      if (!cur_thread)
      {
        /*
          Nothing else is currently running in this domain. We can
          spawn a new thread to do this event group in parallel with
          anything else that might be running in other domains.
        */
        cur_thread= e->rpl_thread= global_rpl_thread_pool.get_thread(e);
        /* get_thread() returns with the LOCK_rpl_thread locked. */
      }
      else
      {
        /*
          We are still executing the previous event group for this replication
          domain, and we have to wait for that to finish before we can start on
          the next one. So just re-use the thread.
        */
      }

      rgi->wait_commit_sub_id= 0;
      rgi->wait_start_sub_id= 0;
      e->prev_groupcommit_sub_id= e->current_sub_id;
    }

    if (gtid_ev->flags2 & Gtid_log_event::FL_GROUP_COMMIT_ID)
    {
      e->last_server_id= gtid_ev->server_id;
      e->last_seq_no= gtid_ev->seq_no;
      e->last_commit_id= gtid_ev->commit_id;
    }
    else
    {
      e->last_server_id= 0;
      e->last_seq_no= 0;
      e->last_commit_id= 0;
    }

    qev->rgi= e->current_group_info= rgi;
    e->current_sub_id= rgi->gtid_sub_id;
    current= rgi->parallel_entry= e;
  }
  else if (!is_group_event || !current)
  {
    my_off_t log_pos;
    int err;
    bool tmp;
    /*
      Events like ROTATE and FORMAT_DESCRIPTION. Do not run in worker thread.
      Same for events not preceeded by GTID (we should not see those normally,
      but they might be from an old master).

      The varuable `current' is NULL for the case where the master did not
      have GTID, like a MariaDB 5.5 or MySQL master.
    */
    qev->rgi= serial_rgi;
    /* Handle master log name change, seen in Rotate_log_event. */
    if (typ == ROTATE_EVENT)
    {
      Rotate_log_event *rev= static_cast<Rotate_log_event *>(qev->ev);
      if ((rev->server_id != global_system_variables.server_id ||
           rli->replicate_same_server_id) &&
          !rev->is_relay_log_event() &&
          !rli->is_in_group())
      {
        memcpy(rli->future_event_master_log_name,
               rev->new_log_ident, rev->ident_len+1);
      }
    }

    tmp= serial_rgi->is_parallel_exec;
    serial_rgi->is_parallel_exec= true;
    err= rpt_handle_event(qev, NULL);
    serial_rgi->is_parallel_exec= tmp;
    log_pos= qev->ev->log_pos;
    delete_or_keep_event_post_apply(serial_rgi, typ, qev->ev);

    if (err)
    {
      my_free(qev);
      return true;
    }
    qev->ev= NULL;
    qev->future_event_master_log_pos= log_pos;
    if (!current)
    {
      handle_queued_pos_update(rli->sql_driver_thd, qev);
      my_free(qev);
      return false;
    }
    /*
      Queue an empty event, so that the position will be updated in a
      reasonable way relative to other events:

       - If the currently executing events are queued serially for a single
         thread, the position will only be updated when everything before has
         completed.

       - If we are executing multiple independent events in parallel, then at
         least the position will not be updated until one of them has reached
         the current point.
    */
    cur_thread= current->rpl_thread;
    if (cur_thread)
    {
      mysql_mutex_lock(&cur_thread->LOCK_rpl_thread);
      if (cur_thread->current_entry != current)
      {
        /* Not ours anymore, we need to grab a new one. */
        mysql_mutex_unlock(&cur_thread->LOCK_rpl_thread);
        cur_thread= NULL;
      }
    }
    if (!cur_thread)
      cur_thread= current->rpl_thread=
        global_rpl_thread_pool.get_thread(current);
  }
  else
  {
    cur_thread= current->rpl_thread;
    if (cur_thread)
    {
      mysql_mutex_lock(&cur_thread->LOCK_rpl_thread);
      if (cur_thread->current_entry != current)
      {
        /* Not ours anymore, we need to grab a new one. */
        mysql_mutex_unlock(&cur_thread->LOCK_rpl_thread);
        cur_thread= NULL;
      }
    }
    if (!cur_thread)
    {
      cur_thread= current->rpl_thread=
        global_rpl_thread_pool.get_thread(current);
    }
    qev->rgi= current->current_group_info;
  }

  /*
    Queue the event for processing.
  */
  rli->event_relay_log_pos= rli->future_event_relay_log_pos;
  cur_thread->enqueue(qev);
  mysql_mutex_unlock(&cur_thread->LOCK_rpl_thread);
  mysql_cond_signal(&cur_thread->COND_rpl_thread);

  return false;
}