1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
|
/*****************************************************************************
Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA
*****************************************************************************/
/**************************************************//**
@file gis0geo.h
The r-tree define from MyISAM
*******************************************************/
#ifndef _gis0geo_h
#define _gis0geo_h
#include "my_global.h"
#include "string.h"
#define SPTYPE HA_KEYTYPE_DOUBLE
#define SPLEN 8
/* Since the mbr could be a point or a linestring, in this case, area of
mbr is 0. So, we define this macro for calculating the area increasing
when we need to enlarge the mbr. */
#define LINE_MBR_WEIGHTS 0.001
/* Types of "well-known binary representation" (wkb) format. */
enum wkbType
{
wkbPoint = 1,
wkbLineString = 2,
wkbPolygon = 3,
wkbMultiPoint = 4,
wkbMultiLineString = 5,
wkbMultiPolygon = 6,
wkbGeometryCollection = 7
};
/* Byte order of "well-known binary representation" (wkb) format. */
enum wkbByteOrder
{
wkbXDR = 0, /* Big Endian */
wkbNDR = 1 /* Little Endian */
};
/** Get the wkb of default POINT value, which represents POINT(0 0)
if it's of dimension 2, etc.
@param[in] n_dims dimensions
@param[out] wkb wkb buffer for default POINT
@param[in] len length of wkb buffer
@return non-0 indicate the length of wkb of the default POINT,
0 if the buffer is too small */
uint
get_wkb_of_default_point(
uint n_dims,
uchar* wkb,
uint len);
/*************************************************************//**
Calculate minimal bounding rectangle (mbr) of the spatial object
stored in "well-known binary representation" (wkb) format.
@return 0 if ok */
int
rtree_mbr_from_wkb(
/*===============*/
uchar* wkb, /*!< in: pointer to wkb. */
uint size, /*!< in: size of wkb. */
uint n_dims, /*!< in: dimensions. */
double* mbr); /*!< in/out: mbr. */
/* Rtree split node structure. */
struct rtr_split_node_t
{
double square; /* square of the mbr.*/
int n_node; /* which group in.*/
uchar* key; /* key. */
double* coords; /* mbr. */
};
/*************************************************************//**
Inline function for reserving coords */
inline
static
double*
reserve_coords(double **d_buffer, /*!< in/out: buffer. */
int n_dim) /*!< in: dimensions. */
/*===========*/
{
double *coords = *d_buffer;
(*d_buffer) += n_dim * 2;
return coords;
}
/*************************************************************//**
Split rtree nodes.
Return which group the first rec is in. */
int
split_rtree_node(
/*=============*/
rtr_split_node_t* node, /*!< in: split nodes.*/
int n_entries, /*!< in: entries number.*/
int all_size, /*!< in: total key's size.*/
int key_size, /*!< in: key's size.*/
int min_size, /*!< in: minimal group size.*/
int size1, /*!< in: size of group.*/
int size2, /*!< in: initial group sizes */
double** d_buffer, /*!< in/out: buffer.*/
int n_dim, /*!< in: dimensions. */
uchar* first_rec); /*!< in: the first rec. */
/*************************************************************//**
Compares two keys a and b depending on nextflag
nextflag can contain these flags:
MBR_INTERSECT(a,b) a overlaps b
MBR_CONTAIN(a,b) a contains b
MBR_DISJOINT(a,b) a disjoint b
MBR_WITHIN(a,b) a within b
MBR_EQUAL(a,b) All coordinates of MBRs are equal
MBR_DATA(a,b) Data reference is the same
Returns 0 on success. */
int
rtree_key_cmp(
/*==========*/
page_cur_mode_t mode, /*!< in: compare method. */
const uchar* b, /*!< in: first key. */
int b_len, /*!< in: first key len. */
const uchar* a, /*!< in: second key. */
int a_len); /*!< in: second key len. */
/*************************************************************//**
Calculates MBR_AREA(a+b) - MBR_AREA(a)
Note: when 'a' and 'b' objects are far from each other,
the area increase can be really big, so this function
can return 'inf' as a result. */
double
rtree_area_increase(
const uchar* a, /*!< in: first mbr. */
const uchar* b, /*!< in: second mbr. */
int a_len, /*!< in: mbr length. */
double* ab_area); /*!< out: increased area. */
/** Calculates overlapping area
@param[in] a mbr a
@param[in] b mbr b
@param[in] mbr_len mbr length
@return overlapping area */
double
rtree_area_overlapping(
const uchar* a,
const uchar* b,
int mbr_len);
#endif
|