summaryrefslogtreecommitdiff
path: root/storage/innobase/trx/trx0i_s.cc
blob: f6360562ae711922e1627908972dccf4330a5921 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
/*****************************************************************************

Copyright (c) 2007, 2012, Oracle and/or its affiliates. All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA

*****************************************************************************/

/**************************************************//**
@file trx/trx0i_s.cc
INFORMATION SCHEMA innodb_trx, innodb_locks and
innodb_lock_waits tables fetch code.

The code below fetches information needed to fill those
3 dynamic tables and uploads it into a "transactions
table cache" for later retrieval.

Created July 17, 2007 Vasil Dimov
*******************************************************/

/* Found during the build of 5.5.3 on Linux 2.4 and early 2.6 kernels:
   The includes "univ.i" -> "my_global.h" cause a different path
   to be taken further down with pthread functions and types,
   so they must come first.
   From the symptoms, this is related to bug#46587 in the MySQL bug DB.
*/
#include "univ.i"

#include <mysql/plugin.h>

#include "buf0buf.h"
#include "dict0dict.h"
#include "ha0storage.h"
#include "ha_prototypes.h"
#include "hash0hash.h"
#include "lock0iter.h"
#include "lock0lock.h"
#include "mem0mem.h"
#include "page0page.h"
#include "rem0rec.h"
#include "row0row.h"
#include "srv0srv.h"
#include "sync0rw.h"
#include "sync0sync.h"
#include "sync0types.h"
#include "trx0i_s.h"
#include "trx0sys.h"
#include "trx0trx.h"
#include "ut0mem.h"
#include "ut0ut.h"

/** Initial number of rows in the table cache */
#define TABLE_CACHE_INITIAL_ROWSNUM	1024

/** @brief The maximum number of chunks to allocate for a table cache.

The rows of a table cache are stored in a set of chunks. When a new
row is added a new chunk is allocated if necessary. Assuming that the
first one is 1024 rows (TABLE_CACHE_INITIAL_ROWSNUM) and each
subsequent is N/2 where N is the number of rows we have allocated till
now, then 39th chunk would accommodate 1677416425 rows and all chunks
would accommodate 3354832851 rows. */
#define MEM_CHUNKS_IN_TABLE_CACHE	39

/** The following are some testing auxiliary macros. Do not enable them
in a production environment. */
/* @{ */

#if 0
/** If this is enabled then lock folds will always be different
resulting in equal rows being put in a different cells of the hash
table. Checking for duplicates will be flawed because different
fold will be calculated when a row is searched in the hash table. */
#define TEST_LOCK_FOLD_ALWAYS_DIFFERENT
#endif

#if 0
/** This effectively kills the search-for-duplicate-before-adding-a-row
function, but searching in the hash is still performed. It will always
be assumed that lock is not present and insertion will be performed in
the hash table. */
#define TEST_NO_LOCKS_ROW_IS_EVER_EQUAL_TO_LOCK_T
#endif

#if 0
/** This aggressively repeats adding each row many times. Depending on
the above settings this may be noop or may result in lots of rows being
added. */
#define TEST_ADD_EACH_LOCKS_ROW_MANY_TIMES
#endif

#if 0
/** Very similar to TEST_NO_LOCKS_ROW_IS_EVER_EQUAL_TO_LOCK_T but hash
table search is not performed at all. */
#define TEST_DO_NOT_CHECK_FOR_DUPLICATE_ROWS
#endif

#if 0
/** Do not insert each row into the hash table, duplicates may appear
if this is enabled, also if this is enabled searching into the hash is
noop because it will be empty. */
#define TEST_DO_NOT_INSERT_INTO_THE_HASH_TABLE
#endif
/* @} */

/** Memory limit passed to ha_storage_put_memlim().
@param cache	hash storage
@return		maximum allowed allocation size */
#define MAX_ALLOWED_FOR_STORAGE(cache)		\
	(TRX_I_S_MEM_LIMIT			\
	 - (cache)->mem_allocd)

/** Memory limit in table_cache_create_empty_row().
@param cache	hash storage
@return		maximum allowed allocation size */
#define MAX_ALLOWED_FOR_ALLOC(cache)		\
	(TRX_I_S_MEM_LIMIT			\
	 - (cache)->mem_allocd			\
	 - ha_storage_get_size((cache)->storage))

/** Memory for each table in the intermediate buffer is allocated in
separate chunks. These chunks are considered to be concatenated to
represent one flat array of rows. */
struct i_s_mem_chunk_t {
	ulint	offset;		/*!< offset, in number of rows */
	ulint	rows_allocd;	/*!< the size of this chunk, in number
				of rows */
	void*	base;		/*!< start of the chunk */
};

/** This represents one table's cache. */
struct i_s_table_cache_t {
	ulint		rows_used;	/*!< number of used rows */
	ulint		rows_allocd;	/*!< number of allocated rows */
	ulint		row_size;	/*!< size of a single row */
	i_s_mem_chunk_t	chunks[MEM_CHUNKS_IN_TABLE_CACHE]; /*!< array of
					memory chunks that stores the
					rows */
};

/** This structure describes the intermediate buffer */
struct trx_i_s_cache_t {
	rw_lock_t	rw_lock;	/*!< read-write lock protecting
					the rest of this structure */
	ullint		last_read;	/*!< last time the cache was read;
					measured in microseconds since
					epoch */
	i_s_table_cache_t innodb_trx;	/*!< innodb_trx table */
	i_s_table_cache_t innodb_locks;	/*!< innodb_locks table */
	i_s_table_cache_t innodb_lock_waits;/*!< innodb_lock_waits table */
/** the hash table size is LOCKS_HASH_CELLS_NUM * sizeof(void*) bytes */
#define LOCKS_HASH_CELLS_NUM		10000
	hash_table_t*	locks_hash;	/*!< hash table used to eliminate
					duplicate entries in the
					innodb_locks table */
/** Initial size of the cache storage */
#define CACHE_STORAGE_INITIAL_SIZE	1024
/** Number of hash cells in the cache storage */
#define CACHE_STORAGE_HASH_CELLS	2048
	ha_storage_t*	storage;	/*!< storage for external volatile
					data that may become unavailable
					when we release
					lock_sys->mutex or trx_sys->mutex */
	ulint		mem_allocd;	/*!< the amount of memory
					allocated with mem_alloc*() */
	ibool		is_truncated;	/*!< this is TRUE if the memory
					limit was hit and thus the data
					in the cache is truncated */
};

/** This is the intermediate buffer where data needed to fill the
INFORMATION SCHEMA tables is fetched and later retrieved by the C++
code in handler/i_s.cc. */
static trx_i_s_cache_t	trx_i_s_cache_static;
/** This is the intermediate buffer where data needed to fill the
INFORMATION SCHEMA tables is fetched and later retrieved by the C++
code in handler/i_s.cc. */
UNIV_INTERN trx_i_s_cache_t*	trx_i_s_cache = &trx_i_s_cache_static;

/* Key to register the lock/mutex with performance schema */
#ifdef UNIV_PFS_RWLOCK
UNIV_INTERN mysql_pfs_key_t	trx_i_s_cache_lock_key;
#endif /* UNIV_PFS_RWLOCK */

#ifdef UNIV_PFS_MUTEX
UNIV_INTERN mysql_pfs_key_t	cache_last_read_mutex_key;
#endif /* UNIV_PFS_MUTEX */

/*******************************************************************//**
For a record lock that is in waiting state retrieves the only bit that
is set, for a table lock returns ULINT_UNDEFINED.
@return	record number within the heap */
static
ulint
wait_lock_get_heap_no(
/*==================*/
	const lock_t*	lock)	/*!< in: lock */
{
	ulint	ret;

	switch (lock_get_type(lock)) {
	case LOCK_REC:
		ret = lock_rec_find_set_bit(lock);
		ut_a(ret != ULINT_UNDEFINED);
		break;
	case LOCK_TABLE:
		ret = ULINT_UNDEFINED;
		break;
	default:
		ut_error;
	}

	return(ret);
}

/*******************************************************************//**
Initializes the members of a table cache. */
static
void
table_cache_init(
/*=============*/
	i_s_table_cache_t*	table_cache,	/*!< out: table cache */
	size_t			row_size)	/*!< in: the size of a
						row */
{
	ulint	i;

	table_cache->rows_used = 0;
	table_cache->rows_allocd = 0;
	table_cache->row_size = row_size;

	for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {

		/* the memory is actually allocated in
		table_cache_create_empty_row() */
		table_cache->chunks[i].base = NULL;
	}
}

/*******************************************************************//**
Frees a table cache. */
static
void
table_cache_free(
/*=============*/
	i_s_table_cache_t*	table_cache)	/*!< in/out: table cache */
{
	ulint	i;

	for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {

		/* the memory is actually allocated in
		table_cache_create_empty_row() */
		if (table_cache->chunks[i].base) {
			mem_free(table_cache->chunks[i].base);
			table_cache->chunks[i].base = NULL;
		}
	}
}

/*******************************************************************//**
Returns an empty row from a table cache. The row is allocated if no more
empty rows are available. The number of used rows is incremented.
If the memory limit is hit then NULL is returned and nothing is
allocated.
@return	empty row, or NULL if out of memory */
static
void*
table_cache_create_empty_row(
/*=========================*/
	i_s_table_cache_t*	table_cache,	/*!< in/out: table cache */
	trx_i_s_cache_t*	cache)		/*!< in/out: cache to record
						how many bytes are
						allocated */
{
	ulint	i;
	void*	row;

	ut_a(table_cache->rows_used <= table_cache->rows_allocd);

	if (table_cache->rows_used == table_cache->rows_allocd) {

		/* rows_used == rows_allocd means that new chunk needs
		to be allocated: either no more empty rows in the
		last allocated chunk or nothing has been allocated yet
		(rows_num == rows_allocd == 0); */

		i_s_mem_chunk_t*	chunk;
		ulint			req_bytes;
		ulint			got_bytes;
		ulint			req_rows;
		ulint			got_rows;

		/* find the first not allocated chunk */
		for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {

			if (table_cache->chunks[i].base == NULL) {

				break;
			}
		}

		/* i == MEM_CHUNKS_IN_TABLE_CACHE means that all chunks
		have been allocated :-X */
		ut_a(i < MEM_CHUNKS_IN_TABLE_CACHE);

		/* allocate the chunk we just found */

		if (i == 0) {

			/* first chunk, nothing is allocated yet */
			req_rows = TABLE_CACHE_INITIAL_ROWSNUM;
		} else {

			/* Memory is increased by the formula
			new = old + old / 2; We are trying not to be
			aggressive here (= using the common new = old * 2)
			because the allocated memory will not be freed
			until InnoDB exit (it is reused). So it is better
			to once allocate the memory in more steps, but
			have less unused/wasted memory than to use less
			steps in allocation (which is done once in a
			lifetime) but end up with lots of unused/wasted
			memory. */
			req_rows = table_cache->rows_allocd / 2;
		}
		req_bytes = req_rows * table_cache->row_size;

		if (req_bytes > MAX_ALLOWED_FOR_ALLOC(cache)) {

			return(NULL);
		}

		chunk = &table_cache->chunks[i];

		chunk->base = mem_alloc2(req_bytes, &got_bytes);

		got_rows = got_bytes / table_cache->row_size;

		cache->mem_allocd += got_bytes;

#if 0
		printf("allocating chunk %d req bytes=%lu, got bytes=%lu, "
		       "row size=%lu, "
		       "req rows=%lu, got rows=%lu\n",
		       i, req_bytes, got_bytes,
		       table_cache->row_size,
		       req_rows, got_rows);
#endif

		chunk->rows_allocd = got_rows;

		table_cache->rows_allocd += got_rows;

		/* adjust the offset of the next chunk */
		if (i < MEM_CHUNKS_IN_TABLE_CACHE - 1) {

			table_cache->chunks[i + 1].offset
				= chunk->offset + chunk->rows_allocd;
		}

		/* return the first empty row in the newly allocated
		chunk */
		row = chunk->base;
	} else {

		char*	chunk_start;
		ulint	offset;

		/* there is an empty row, no need to allocate new
		chunks */

		/* find the first chunk that contains allocated but
		empty/unused rows */
		for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {

			if (table_cache->chunks[i].offset
			    + table_cache->chunks[i].rows_allocd
			    > table_cache->rows_used) {

				break;
			}
		}

		/* i == MEM_CHUNKS_IN_TABLE_CACHE means that all chunks
		are full, but
		table_cache->rows_used != table_cache->rows_allocd means
		exactly the opposite - there are allocated but
		empty/unused rows :-X */
		ut_a(i < MEM_CHUNKS_IN_TABLE_CACHE);

		chunk_start = (char*) table_cache->chunks[i].base;
		offset = table_cache->rows_used
			- table_cache->chunks[i].offset;

		row = chunk_start + offset * table_cache->row_size;
	}

	table_cache->rows_used++;

	return(row);
}

#ifdef UNIV_DEBUG
/*******************************************************************//**
Validates a row in the locks cache.
@return	TRUE if valid */
static
ibool
i_s_locks_row_validate(
/*===================*/
	const i_s_locks_row_t*	row)	/*!< in: row to validate */
{
	ut_ad(row->lock_trx_id != 0);
	ut_ad(row->lock_mode != NULL);
	ut_ad(row->lock_type != NULL);
	ut_ad(row->lock_table != NULL);
	ut_ad(row->lock_table_id != 0);

	if (row->lock_space == ULINT_UNDEFINED) {
		/* table lock */
		ut_ad(!strcmp("TABLE", row->lock_type));
		ut_ad(row->lock_index == NULL);
		ut_ad(row->lock_data == NULL);
		ut_ad(row->lock_page == ULINT_UNDEFINED);
		ut_ad(row->lock_rec == ULINT_UNDEFINED);
	} else {
		/* record lock */
		ut_ad(!strcmp("RECORD", row->lock_type));
		ut_ad(row->lock_index != NULL);
		/* row->lock_data == NULL if buf_page_try_get() == NULL */
		ut_ad(row->lock_page != ULINT_UNDEFINED);
		ut_ad(row->lock_rec != ULINT_UNDEFINED);
	}

	return(TRUE);
}
#endif /* UNIV_DEBUG */

/*******************************************************************//**
Fills i_s_trx_row_t object.
If memory can not be allocated then FALSE is returned.
@return	FALSE if allocation fails */
static
ibool
fill_trx_row(
/*=========*/
	i_s_trx_row_t*		row,		/*!< out: result object
						that's filled */
	const trx_t*		trx,		/*!< in: transaction to
						get data from */
	const i_s_locks_row_t*	requested_lock_row,/*!< in: pointer to the
						corresponding row in
						innodb_locks if trx is
						waiting or NULL if trx
						is not waiting */
	trx_i_s_cache_t*	cache)		/*!< in/out: cache into
						which to copy volatile
						strings */
{
	const char*	stmt;
	size_t		stmt_len;
	const char*	s;

	ut_ad(lock_mutex_own());

	row->trx_id = trx->id;
	row->trx_started = (ib_time_t) trx->start_time;
	row->trx_state = trx_get_que_state_str(trx);
	row->requested_lock_row = requested_lock_row;
	ut_ad(requested_lock_row == NULL
	      || i_s_locks_row_validate(requested_lock_row));

	if (trx->lock.wait_lock != NULL) {

		ut_a(requested_lock_row != NULL);
		row->trx_wait_started = (ib_time_t) trx->lock.wait_started;
	} else {
		ut_a(requested_lock_row == NULL);
		row->trx_wait_started = 0;
	}

	row->trx_weight = (ullint) TRX_WEIGHT(trx);

	if (trx->mysql_thd == NULL) {
		/* For internal transactions e.g., purge and transactions
		being recovered at startup there is no associated MySQL
		thread data structure. */
		row->trx_mysql_thread_id = 0;
		row->trx_query = NULL;
		goto thd_done;
	}

	row->trx_mysql_thread_id = thd_get_thread_id(trx->mysql_thd);

	stmt = innobase_get_stmt(trx->mysql_thd, &stmt_len);

	if (stmt != NULL) {
		char	query[TRX_I_S_TRX_QUERY_MAX_LEN + 1];

		if (stmt_len > TRX_I_S_TRX_QUERY_MAX_LEN) {
			stmt_len = TRX_I_S_TRX_QUERY_MAX_LEN;
		}

		memcpy(query, stmt, stmt_len);
		query[stmt_len] = '\0';

		row->trx_query = static_cast<const char*>(
			ha_storage_put_memlim(
				cache->storage, query, stmt_len + 1,
				MAX_ALLOWED_FOR_STORAGE(cache)));

		row->trx_query_cs = innobase_get_charset(trx->mysql_thd);

		if (row->trx_query == NULL) {

			return(FALSE);
		}
	} else {

		row->trx_query = NULL;
	}

thd_done:
	s = trx->op_info;

	if (s != NULL && s[0] != '\0') {

		TRX_I_S_STRING_COPY(s, row->trx_operation_state,
				    TRX_I_S_TRX_OP_STATE_MAX_LEN, cache);

		if (row->trx_operation_state == NULL) {

			return(FALSE);
		}
	} else {

		row->trx_operation_state = NULL;
	}

	row->trx_tables_in_use = trx->n_mysql_tables_in_use;

	row->trx_tables_locked = trx->mysql_n_tables_locked;

	/* These are protected by both trx->mutex or lock_sys->mutex,
	or just lock_sys->mutex. For reading, it suffices to hold
	lock_sys->mutex. */

	row->trx_lock_structs = UT_LIST_GET_LEN(trx->lock.trx_locks);

	row->trx_lock_memory_bytes = mem_heap_get_size(trx->lock.lock_heap);

	row->trx_rows_locked = lock_number_of_rows_locked(&trx->lock);

	row->trx_rows_modified = trx->undo_no;

	row->trx_concurrency_tickets = trx->n_tickets_to_enter_innodb;

	switch (trx->isolation_level) {
	case TRX_ISO_READ_UNCOMMITTED:
		row->trx_isolation_level = "READ UNCOMMITTED";
		break;
	case TRX_ISO_READ_COMMITTED:
		row->trx_isolation_level = "READ COMMITTED";
		break;
	case TRX_ISO_REPEATABLE_READ:
		row->trx_isolation_level = "REPEATABLE READ";
		break;
	case TRX_ISO_SERIALIZABLE:
		row->trx_isolation_level = "SERIALIZABLE";
		break;
	/* Should not happen as TRX_ISO_READ_COMMITTED is default */
	default:
		row->trx_isolation_level = "UNKNOWN";
	}

	row->trx_unique_checks = (ibool) trx->check_unique_secondary;

	row->trx_foreign_key_checks = (ibool) trx->check_foreigns;

	s = trx->detailed_error;

	if (s != NULL && s[0] != '\0') {

		TRX_I_S_STRING_COPY(s,
				    row->trx_foreign_key_error,
				    TRX_I_S_TRX_FK_ERROR_MAX_LEN, cache);

		if (row->trx_foreign_key_error == NULL) {

			return(FALSE);
		}
	} else {
		row->trx_foreign_key_error = NULL;
	}

	row->trx_has_search_latch = (ibool) trx->has_search_latch;

	row->trx_search_latch_timeout = trx->search_latch_timeout;

	row->trx_is_read_only = trx->read_only;

	row->trx_is_autocommit_non_locking = trx_is_autocommit_non_locking(trx);

	return(TRUE);
}

/*******************************************************************//**
Format the nth field of "rec" and put it in "buf". The result is always
NUL-terminated. Returns the number of bytes that were written to "buf"
(including the terminating NUL).
@return	end of the result */
static
ulint
put_nth_field(
/*==========*/
	char*			buf,	/*!< out: buffer */
	ulint			buf_size,/*!< in: buffer size in bytes */
	ulint			n,	/*!< in: number of field */
	const dict_index_t*	index,	/*!< in: index */
	const rec_t*		rec,	/*!< in: record */
	const ulint*		offsets)/*!< in: record offsets, returned
					by rec_get_offsets() */
{
	const byte*	data;
	ulint		data_len;
	dict_field_t*	dict_field;
	ulint		ret;

	ut_ad(rec_offs_validate(rec, NULL, offsets));

	if (buf_size == 0) {

		return(0);
	}

	ret = 0;

	if (n > 0) {
		/* we must append ", " before the actual data */

		if (buf_size < 3) {

			buf[0] = '\0';
			return(1);
		}

		memcpy(buf, ", ", 3);

		buf += 2;
		buf_size -= 2;
		ret += 2;
	}

	/* now buf_size >= 1 */

	data = rec_get_nth_field(rec, offsets, n, &data_len);

	dict_field = dict_index_get_nth_field(index, n);

	ret += row_raw_format((const char*) data, data_len,
			      dict_field, buf, buf_size);

	return(ret);
}

/*******************************************************************//**
Fills the "lock_data" member of i_s_locks_row_t object.
If memory can not be allocated then FALSE is returned.
@return	FALSE if allocation fails */
static
ibool
fill_lock_data(
/*===========*/
	const char**		lock_data,/*!< out: "lock_data" to fill */
	const lock_t*		lock,	/*!< in: lock used to find the data */
	ulint			heap_no,/*!< in: rec num used to find the data */
	trx_i_s_cache_t*	cache)	/*!< in/out: cache where to store
					volatile data */
{
	mtr_t			mtr;

	const buf_block_t*	block;
	const page_t*		page;
	const rec_t*		rec;

	ut_a(lock_get_type(lock) == LOCK_REC);

	mtr_start(&mtr);

	block = buf_page_try_get(lock_rec_get_space_id(lock),
				 lock_rec_get_page_no(lock),
				 &mtr);

	if (block == NULL) {

		*lock_data = NULL;

		mtr_commit(&mtr);

		return(TRUE);
	}

	page = (const page_t*) buf_block_get_frame(block);

	rec = page_find_rec_with_heap_no(page, heap_no);

	if (page_rec_is_infimum(rec)) {

		*lock_data = ha_storage_put_str_memlim(
			cache->storage, "infimum pseudo-record",
			MAX_ALLOWED_FOR_STORAGE(cache));
	} else if (page_rec_is_supremum(rec)) {

		*lock_data = ha_storage_put_str_memlim(
			cache->storage, "supremum pseudo-record",
			MAX_ALLOWED_FOR_STORAGE(cache));
	} else {

		const dict_index_t*	index;
		ulint			n_fields;
		mem_heap_t*		heap;
		ulint			offsets_onstack[REC_OFFS_NORMAL_SIZE];
		ulint*			offsets;
		char			buf[TRX_I_S_LOCK_DATA_MAX_LEN];
		ulint			buf_used;
		ulint			i;

		rec_offs_init(offsets_onstack);
		offsets = offsets_onstack;

		index = lock_rec_get_index(lock);

		n_fields = dict_index_get_n_unique(index);

		ut_a(n_fields > 0);

		heap = NULL;
		offsets = rec_get_offsets(rec, index, offsets, n_fields,
					  &heap);

		/* format and store the data */

		buf_used = 0;
		for (i = 0; i < n_fields; i++) {

			buf_used += put_nth_field(
				buf + buf_used, sizeof(buf) - buf_used,
				i, index, rec, offsets) - 1;
		}

		*lock_data = (const char*) ha_storage_put_memlim(
			cache->storage, buf, buf_used + 1,
			MAX_ALLOWED_FOR_STORAGE(cache));

		if (UNIV_UNLIKELY(heap != NULL)) {

			/* this means that rec_get_offsets() has created a new
			heap and has stored offsets in it; check that this is
			really the case and free the heap */
			ut_a(offsets != offsets_onstack);
			mem_heap_free(heap);
		}
	}

	mtr_commit(&mtr);

	if (*lock_data == NULL) {

		return(FALSE);
	}

	return(TRUE);
}

/*******************************************************************//**
Fills i_s_locks_row_t object. Returns its first argument.
If memory can not be allocated then FALSE is returned.
@return	FALSE if allocation fails */
static
ibool
fill_locks_row(
/*===========*/
	i_s_locks_row_t* row,	/*!< out: result object that's filled */
	const lock_t*	lock,	/*!< in: lock to get data from */
	ulint		heap_no,/*!< in: lock's record number
				or ULINT_UNDEFINED if the lock
				is a table lock */
	trx_i_s_cache_t* cache)	/*!< in/out: cache into which to copy
				volatile strings */
{
	row->lock_trx_id = lock_get_trx_id(lock);
	row->lock_mode = lock_get_mode_str(lock);
	row->lock_type = lock_get_type_str(lock);

	row->lock_table = ha_storage_put_str_memlim(
		cache->storage, lock_get_table_name(lock),
		MAX_ALLOWED_FOR_STORAGE(cache));

	/* memory could not be allocated */
	if (row->lock_table == NULL) {

		return(FALSE);
	}

	switch (lock_get_type(lock)) {
	case LOCK_REC:
		row->lock_index = ha_storage_put_str_memlim(
			cache->storage, lock_rec_get_index_name(lock),
			MAX_ALLOWED_FOR_STORAGE(cache));

		/* memory could not be allocated */
		if (row->lock_index == NULL) {

			return(FALSE);
		}

		row->lock_space = lock_rec_get_space_id(lock);
		row->lock_page = lock_rec_get_page_no(lock);
		row->lock_rec = heap_no;

		if (!fill_lock_data(&row->lock_data, lock, heap_no, cache)) {

			/* memory could not be allocated */
			return(FALSE);
		}

		break;
	case LOCK_TABLE:
		row->lock_index = NULL;

		row->lock_space = ULINT_UNDEFINED;
		row->lock_page = ULINT_UNDEFINED;
		row->lock_rec = ULINT_UNDEFINED;

		row->lock_data = NULL;

		break;
	default:
		ut_error;
	}

	row->lock_table_id = lock_get_table_id(lock);

	row->hash_chain.value = row;
	ut_ad(i_s_locks_row_validate(row));

	return(TRUE);
}

/*******************************************************************//**
Fills i_s_lock_waits_row_t object. Returns its first argument.
@return	result object that's filled */
static
i_s_lock_waits_row_t*
fill_lock_waits_row(
/*================*/
	i_s_lock_waits_row_t*	row,		/*!< out: result object
						that's filled */
	const i_s_locks_row_t*	requested_lock_row,/*!< in: pointer to the
						relevant requested lock
						row in innodb_locks */
	const i_s_locks_row_t*	blocking_lock_row)/*!< in: pointer to the
						relevant blocking lock
						row in innodb_locks */
{
	ut_ad(i_s_locks_row_validate(requested_lock_row));
	ut_ad(i_s_locks_row_validate(blocking_lock_row));

	row->requested_lock_row = requested_lock_row;
	row->blocking_lock_row = blocking_lock_row;

	return(row);
}

/*******************************************************************//**
Calculates a hash fold for a lock. For a record lock the fold is
calculated from 4 elements, which uniquely identify a lock at a given
point in time: transaction id, space id, page number, record number.
For a table lock the fold is table's id.
@return	fold */
static
ulint
fold_lock(
/*======*/
	const lock_t*	lock,	/*!< in: lock object to fold */
	ulint		heap_no)/*!< in: lock's record number
				or ULINT_UNDEFINED if the lock
				is a table lock */
{
#ifdef TEST_LOCK_FOLD_ALWAYS_DIFFERENT
	static ulint	fold = 0;

	return(fold++);
#else
	ulint	ret;

	switch (lock_get_type(lock)) {
	case LOCK_REC:
		ut_a(heap_no != ULINT_UNDEFINED);

		ret = ut_fold_ulint_pair((ulint) lock_get_trx_id(lock),
					 lock_rec_get_space_id(lock));

		ret = ut_fold_ulint_pair(ret,
					 lock_rec_get_page_no(lock));

		ret = ut_fold_ulint_pair(ret, heap_no);

		break;
	case LOCK_TABLE:
		/* this check is actually not necessary for continuing
		correct operation, but something must have gone wrong if
		it fails. */
		ut_a(heap_no == ULINT_UNDEFINED);

		ret = (ulint) lock_get_table_id(lock);

		break;
	default:
		ut_error;
	}

	return(ret);
#endif
}

/*******************************************************************//**
Checks whether i_s_locks_row_t object represents a lock_t object.
@return	TRUE if they match */
static
ibool
locks_row_eq_lock(
/*==============*/
	const i_s_locks_row_t*	row,	/*!< in: innodb_locks row */
	const lock_t*		lock,	/*!< in: lock object */
	ulint			heap_no)/*!< in: lock's record number
					or ULINT_UNDEFINED if the lock
					is a table lock */
{
	ut_ad(i_s_locks_row_validate(row));
#ifdef TEST_NO_LOCKS_ROW_IS_EVER_EQUAL_TO_LOCK_T
	return(0);
#else
	switch (lock_get_type(lock)) {
	case LOCK_REC:
		ut_a(heap_no != ULINT_UNDEFINED);

		return(row->lock_trx_id == lock_get_trx_id(lock)
		       && row->lock_space == lock_rec_get_space_id(lock)
		       && row->lock_page == lock_rec_get_page_no(lock)
		       && row->lock_rec == heap_no);

	case LOCK_TABLE:
		/* this check is actually not necessary for continuing
		correct operation, but something must have gone wrong if
		it fails. */
		ut_a(heap_no == ULINT_UNDEFINED);

		return(row->lock_trx_id == lock_get_trx_id(lock)
		       && row->lock_table_id == lock_get_table_id(lock));

	default:
		ut_error;
		return(FALSE);
	}
#endif
}

/*******************************************************************//**
Searches for a row in the innodb_locks cache that has a specified id.
This happens in O(1) time since a hash table is used. Returns pointer to
the row or NULL if none is found.
@return	row or NULL */
static
i_s_locks_row_t*
search_innodb_locks(
/*================*/
	trx_i_s_cache_t*	cache,	/*!< in: cache */
	const lock_t*		lock,	/*!< in: lock to search for */
	ulint			heap_no)/*!< in: lock's record number
					or ULINT_UNDEFINED if the lock
					is a table lock */
{
	i_s_hash_chain_t*	hash_chain;

	HASH_SEARCH(
		/* hash_chain->"next" */
		next,
		/* the hash table */
		cache->locks_hash,
		/* fold */
		fold_lock(lock, heap_no),
		/* the type of the next variable */
		i_s_hash_chain_t*,
		/* auxiliary variable */
		hash_chain,
		/* assertion on every traversed item */
		ut_ad(i_s_locks_row_validate(hash_chain->value)),
		/* this determines if we have found the lock */
		locks_row_eq_lock(hash_chain->value, lock, heap_no));

	if (hash_chain == NULL) {

		return(NULL);
	}
	/* else */

	return(hash_chain->value);
}

/*******************************************************************//**
Adds new element to the locks cache, enlarging it if necessary.
Returns a pointer to the added row. If the row is already present then
no row is added and a pointer to the existing row is returned.
If row can not be allocated then NULL is returned.
@return	row */
static
i_s_locks_row_t*
add_lock_to_cache(
/*==============*/
	trx_i_s_cache_t*	cache,	/*!< in/out: cache */
	const lock_t*		lock,	/*!< in: the element to add */
	ulint			heap_no)/*!< in: lock's record number
					or ULINT_UNDEFINED if the lock
					is a table lock */
{
	i_s_locks_row_t*	dst_row;

#ifdef TEST_ADD_EACH_LOCKS_ROW_MANY_TIMES
	ulint	i;
	for (i = 0; i < 10000; i++) {
#endif
#ifndef TEST_DO_NOT_CHECK_FOR_DUPLICATE_ROWS
	/* quit if this lock is already present */
	dst_row = search_innodb_locks(cache, lock, heap_no);
	if (dst_row != NULL) {

		ut_ad(i_s_locks_row_validate(dst_row));
		return(dst_row);
	}
#endif

	dst_row = (i_s_locks_row_t*)
		table_cache_create_empty_row(&cache->innodb_locks, cache);

	/* memory could not be allocated */
	if (dst_row == NULL) {

		return(NULL);
	}

	if (!fill_locks_row(dst_row, lock, heap_no, cache)) {

		/* memory could not be allocated */
		cache->innodb_locks.rows_used--;
		return(NULL);
	}

#ifndef TEST_DO_NOT_INSERT_INTO_THE_HASH_TABLE
	HASH_INSERT(
		/* the type used in the hash chain */
		i_s_hash_chain_t,
		/* hash_chain->"next" */
		next,
		/* the hash table */
		cache->locks_hash,
		/* fold */
		fold_lock(lock, heap_no),
		/* add this data to the hash */
		&dst_row->hash_chain);
#endif
#ifdef TEST_ADD_EACH_LOCKS_ROW_MANY_TIMES
	} /* for()-loop */
#endif

	ut_ad(i_s_locks_row_validate(dst_row));
	return(dst_row);
}

/*******************************************************************//**
Adds new pair of locks to the lock waits cache.
If memory can not be allocated then FALSE is returned.
@return	FALSE if allocation fails */
static
ibool
add_lock_wait_to_cache(
/*===================*/
	trx_i_s_cache_t*	cache,		/*!< in/out: cache */
	const i_s_locks_row_t*	requested_lock_row,/*!< in: pointer to the
						relevant requested lock
						row in innodb_locks */
	const i_s_locks_row_t*	blocking_lock_row)/*!< in: pointer to the
						relevant blocking lock
						row in innodb_locks */
{
	i_s_lock_waits_row_t*	dst_row;

	dst_row = (i_s_lock_waits_row_t*)
		table_cache_create_empty_row(&cache->innodb_lock_waits,
					     cache);

	/* memory could not be allocated */
	if (dst_row == NULL) {

		return(FALSE);
	}

	fill_lock_waits_row(dst_row, requested_lock_row, blocking_lock_row);

	return(TRUE);
}

/*******************************************************************//**
Adds transaction's relevant (important) locks to cache.
If the transaction is waiting, then the wait lock is added to
innodb_locks and a pointer to the added row is returned in
requested_lock_row, otherwise requested_lock_row is set to NULL.
If rows can not be allocated then FALSE is returned and the value of
requested_lock_row is undefined.
@return	FALSE if allocation fails */
static
ibool
add_trx_relevant_locks_to_cache(
/*============================*/
	trx_i_s_cache_t*	cache,	/*!< in/out: cache */
	const trx_t*		trx,	/*!< in: transaction */
	i_s_locks_row_t**	requested_lock_row)/*!< out: pointer to the
					requested lock row, or NULL or
					undefined */
{
	ut_ad(lock_mutex_own());

	/* If transaction is waiting we add the wait lock and all locks
	from another transactions that are blocking the wait lock. */
	if (trx->lock.que_state == TRX_QUE_LOCK_WAIT) {

		const lock_t*		curr_lock;
		ulint			wait_lock_heap_no;
		i_s_locks_row_t*	blocking_lock_row;
		lock_queue_iterator_t	iter;

		ut_a(trx->lock.wait_lock != NULL);

		wait_lock_heap_no
			= wait_lock_get_heap_no(trx->lock.wait_lock);

		/* add the requested lock */
		*requested_lock_row
			= add_lock_to_cache(cache, trx->lock.wait_lock,
					    wait_lock_heap_no);

		/* memory could not be allocated */
		if (*requested_lock_row == NULL) {

			return(FALSE);
		}

		/* then iterate over the locks before the wait lock and
		add the ones that are blocking it */

		lock_queue_iterator_reset(&iter, trx->lock.wait_lock,
					  ULINT_UNDEFINED);

		for (curr_lock = lock_queue_iterator_get_prev(&iter);
		     curr_lock != NULL;
		     curr_lock = lock_queue_iterator_get_prev(&iter)) {

			if (lock_has_to_wait(trx->lock.wait_lock,
					     curr_lock)) {

				/* add the lock that is
				blocking trx->lock.wait_lock */
				blocking_lock_row
					= add_lock_to_cache(
						cache, curr_lock,
						/* heap_no is the same
						for the wait and waited
						locks */
						wait_lock_heap_no);

				/* memory could not be allocated */
				if (blocking_lock_row == NULL) {

					return(FALSE);
				}

				/* add the relation between both locks
				to innodb_lock_waits */
				if (!add_lock_wait_to_cache(
						cache, *requested_lock_row,
						blocking_lock_row)) {

					/* memory could not be allocated */
					return(FALSE);
				}
			}
		}
	} else {

		*requested_lock_row = NULL;
	}

	return(TRUE);
}

/** The minimum time that a cache must not be updated after it has been
read for the last time; measured in microseconds. We use this technique
to ensure that SELECTs which join several INFORMATION SCHEMA tables read
the same version of the cache. */
#define CACHE_MIN_IDLE_TIME_US	100000 /* 0.1 sec */

/*******************************************************************//**
Checks if the cache can safely be updated.
@return	TRUE if can be updated */
static
ibool
can_cache_be_updated(
/*=================*/
	trx_i_s_cache_t*	cache)	/*!< in: cache */
{
	ullint	now;

#ifdef UNIV_SYNC_DEBUG
	ut_a(rw_lock_own(&cache->rw_lock, RW_LOCK_EX));
#endif

	now = ut_time_us(NULL);
	if (now - cache->last_read > CACHE_MIN_IDLE_TIME_US) {

		return(TRUE);
	}

	return(FALSE);
}

/*******************************************************************//**
Declare a cache empty, preparing it to be filled up. Not all resources
are freed because they can be reused. */
static
void
trx_i_s_cache_clear(
/*================*/
	trx_i_s_cache_t*	cache)	/*!< out: cache to clear */
{
	cache->innodb_trx.rows_used = 0;
	cache->innodb_locks.rows_used = 0;
	cache->innodb_lock_waits.rows_used = 0;

	hash_table_clear(cache->locks_hash);

	ha_storage_empty(&cache->storage);
}

/*******************************************************************//**
Fetches the data needed to fill the 3 INFORMATION SCHEMA tables into the
table cache buffer. Cache must be locked for write. */
static
void
fetch_data_into_cache_low(
/*======================*/
	trx_i_s_cache_t*	cache,		/*!< in/out: cache */
	ibool			only_ac_nl,	/*!< in: only select non-locking
						autocommit transactions */
	trx_list_t*		trx_list)	/*!< in: trx list */
{
	const trx_t*		trx;

	ut_ad(trx_list == &trx_sys->rw_trx_list
	      || trx_list == &trx_sys->ro_trx_list
	      || trx_list == &trx_sys->mysql_trx_list);

	ut_ad(only_ac_nl == (trx_list == &trx_sys->mysql_trx_list));

	/* Iterate over the transaction list and add each one
	to innodb_trx's cache. We also add all locks that are relevant
	to each transaction into innodb_locks' and innodb_lock_waits'
	caches. */

	for (trx = UT_LIST_GET_FIRST(*trx_list);
	     trx != NULL;
	     trx =
	     (trx_list == &trx_sys->mysql_trx_list
	      ? UT_LIST_GET_NEXT(mysql_trx_list, trx)
	      : UT_LIST_GET_NEXT(trx_list, trx))) {

		i_s_trx_row_t*		trx_row;
		i_s_locks_row_t*	requested_lock_row;

		if (trx->state == TRX_STATE_NOT_STARTED
		    || (only_ac_nl && !trx_is_autocommit_non_locking(trx))) {

			continue;
		}

		assert_trx_nonlocking_or_in_list(trx);

		ut_ad(trx->in_ro_trx_list
		      == (trx_list == &trx_sys->ro_trx_list));

		ut_ad(trx->in_rw_trx_list
		      == (trx_list == &trx_sys->rw_trx_list));

		if (!add_trx_relevant_locks_to_cache(cache, trx,
						     &requested_lock_row)) {

			cache->is_truncated = TRUE;
			return;
		}

		trx_row = (i_s_trx_row_t*)
			table_cache_create_empty_row(&cache->innodb_trx,
						     cache);

		/* memory could not be allocated */
		if (trx_row == NULL) {

			cache->is_truncated = TRUE;
			return;
		}

		if (!fill_trx_row(trx_row, trx, requested_lock_row, cache)) {

			/* memory could not be allocated */
			cache->innodb_trx.rows_used--;
			cache->is_truncated = TRUE;
			return;
		}
	}
}

/*******************************************************************//**
Fetches the data needed to fill the 3 INFORMATION SCHEMA tables into the
table cache buffer. Cache must be locked for write. */
static
void
fetch_data_into_cache(
/*==================*/
	trx_i_s_cache_t*	cache)	/*!< in/out: cache */
{
	ut_ad(lock_mutex_own());
	ut_ad(mutex_own(&trx_sys->mutex));

	trx_i_s_cache_clear(cache);

	fetch_data_into_cache_low(cache, FALSE, &trx_sys->rw_trx_list);
	fetch_data_into_cache_low(cache, FALSE, &trx_sys->ro_trx_list);

	/* Only select autocommit non-locking selects because they can
	only be on the MySQL transaction list (TRUE). */
	fetch_data_into_cache_low(cache, TRUE, &trx_sys->mysql_trx_list);

	cache->is_truncated = FALSE;
}

/*******************************************************************//**
Update the transactions cache if it has not been read for some time.
Called from handler/i_s.cc.
@return	0 - fetched, 1 - not */
UNIV_INTERN
int
trx_i_s_possibly_fetch_data_into_cache(
/*===================================*/
	trx_i_s_cache_t*	cache)	/*!< in/out: cache */
{
	ullint	now;

#ifdef UNIV_SYNC_DEBUG
	ut_a(rw_lock_own(&cache->rw_lock, RW_LOCK_EX));
#endif

	if (!can_cache_be_updated(cache)) {

		return(1);
	}

	/* We need to read trx_sys and record/table lock queues */

	lock_mutex_enter();

	mutex_enter(&trx_sys->mutex);

	fetch_data_into_cache(cache);

	mutex_exit(&trx_sys->mutex);

	lock_mutex_exit();

	/* update cache last read time */
	now = ut_time_us(NULL);
	cache->last_read = now;

	return(0);
}

/*******************************************************************//**
Returns TRUE if the data in the cache is truncated due to the memory
limit posed by TRX_I_S_MEM_LIMIT.
@return	TRUE if truncated */
UNIV_INTERN
ibool
trx_i_s_cache_is_truncated(
/*=======================*/
	trx_i_s_cache_t*	cache)	/*!< in: cache */
{
	return(cache->is_truncated);
}

/*******************************************************************//**
Initialize INFORMATION SCHEMA trx related cache. */
UNIV_INTERN
void
trx_i_s_cache_init(
/*===============*/
	trx_i_s_cache_t*	cache)	/*!< out: cache to init */
{
	/* The latching is done in the following order:
	acquire trx_i_s_cache_t::rw_lock, X
	acquire lock mutex
	release lock mutex
	release trx_i_s_cache_t::rw_lock
	acquire trx_i_s_cache_t::rw_lock, S
	release trx_i_s_cache_t::rw_lock */

	rw_lock_create(trx_i_s_cache_lock_key, &cache->rw_lock,
		       SYNC_TRX_I_S_RWLOCK);

	cache->last_read = 0;

	table_cache_init(&cache->innodb_trx, sizeof(i_s_trx_row_t));
	table_cache_init(&cache->innodb_locks, sizeof(i_s_locks_row_t));
	table_cache_init(&cache->innodb_lock_waits,
			 sizeof(i_s_lock_waits_row_t));

	cache->locks_hash = hash_create(LOCKS_HASH_CELLS_NUM);

	cache->storage = ha_storage_create(CACHE_STORAGE_INITIAL_SIZE,
					   CACHE_STORAGE_HASH_CELLS);

	cache->mem_allocd = 0;

	cache->is_truncated = FALSE;
}

/*******************************************************************//**
Free the INFORMATION SCHEMA trx related cache. */
UNIV_INTERN
void
trx_i_s_cache_free(
/*===============*/
	trx_i_s_cache_t*	cache)	/*!< in, own: cache to free */
{
	hash_table_free(cache->locks_hash);
	ha_storage_free(cache->storage);
	table_cache_free(&cache->innodb_trx);
	table_cache_free(&cache->innodb_locks);
	table_cache_free(&cache->innodb_lock_waits);
	memset(cache, 0, sizeof *cache);
}

/*******************************************************************//**
Issue a shared/read lock on the tables cache. */
UNIV_INTERN
void
trx_i_s_cache_start_read(
/*=====================*/
	trx_i_s_cache_t*	cache)	/*!< in: cache */
{
	rw_lock_s_lock(&cache->rw_lock);
}

/*******************************************************************//**
Release a shared/read lock on the tables cache. */
UNIV_INTERN
void
trx_i_s_cache_end_read(
/*===================*/
	trx_i_s_cache_t*	cache)	/*!< in: cache */
{
#ifdef UNIV_SYNC_DEBUG
	ut_a(rw_lock_own(&cache->rw_lock, RW_LOCK_SHARED));
#endif

	rw_lock_s_unlock(&cache->rw_lock);
}

/*******************************************************************//**
Issue an exclusive/write lock on the tables cache. */
UNIV_INTERN
void
trx_i_s_cache_start_write(
/*======================*/
	trx_i_s_cache_t*	cache)	/*!< in: cache */
{
	rw_lock_x_lock(&cache->rw_lock);
}

/*******************************************************************//**
Release an exclusive/write lock on the tables cache. */
UNIV_INTERN
void
trx_i_s_cache_end_write(
/*====================*/
	trx_i_s_cache_t*	cache)	/*!< in: cache */
{
#ifdef UNIV_SYNC_DEBUG
	ut_a(rw_lock_own(&cache->rw_lock, RW_LOCK_EX));
#endif

	rw_lock_x_unlock(&cache->rw_lock);
}

/*******************************************************************//**
Selects a INFORMATION SCHEMA table cache from the whole cache.
@return	table cache */
static
i_s_table_cache_t*
cache_select_table(
/*===============*/
	trx_i_s_cache_t*	cache,	/*!< in: whole cache */
	enum i_s_table		table)	/*!< in: which table */
{
	i_s_table_cache_t*	table_cache;

#ifdef UNIV_SYNC_DEBUG
	ut_a(rw_lock_own(&cache->rw_lock, RW_LOCK_SHARED)
	     || rw_lock_own(&cache->rw_lock, RW_LOCK_EX));
#endif

	switch (table) {
	case I_S_INNODB_TRX:
		table_cache = &cache->innodb_trx;
		break;
	case I_S_INNODB_LOCKS:
		table_cache = &cache->innodb_locks;
		break;
	case I_S_INNODB_LOCK_WAITS:
		table_cache = &cache->innodb_lock_waits;
		break;
	default:
		ut_error;
	}

	return(table_cache);
}

/*******************************************************************//**
Retrieves the number of used rows in the cache for a given
INFORMATION SCHEMA table.
@return	number of rows */
UNIV_INTERN
ulint
trx_i_s_cache_get_rows_used(
/*========================*/
	trx_i_s_cache_t*	cache,	/*!< in: cache */
	enum i_s_table		table)	/*!< in: which table */
{
	i_s_table_cache_t*	table_cache;

	table_cache = cache_select_table(cache, table);

	return(table_cache->rows_used);
}

/*******************************************************************//**
Retrieves the nth row (zero-based) in the cache for a given
INFORMATION SCHEMA table.
@return	row */
UNIV_INTERN
void*
trx_i_s_cache_get_nth_row(
/*======================*/
	trx_i_s_cache_t*	cache,	/*!< in: cache */
	enum i_s_table		table,	/*!< in: which table */
	ulint			n)	/*!< in: row number */
{
	i_s_table_cache_t*	table_cache;
	ulint			i;
	void*			row;

	table_cache = cache_select_table(cache, table);

	ut_a(n < table_cache->rows_used);

	row = NULL;

	for (i = 0; i < MEM_CHUNKS_IN_TABLE_CACHE; i++) {

		if (table_cache->chunks[i].offset
		    + table_cache->chunks[i].rows_allocd > n) {

			row = (char*) table_cache->chunks[i].base
				+ (n - table_cache->chunks[i].offset)
				* table_cache->row_size;
			break;
		}
	}

	ut_a(row != NULL);

	return(row);
}

/*******************************************************************//**
Crafts a lock id string from a i_s_locks_row_t object. Returns its
second argument. This function aborts if there is not enough space in
lock_id. Be sure to provide at least TRX_I_S_LOCK_ID_MAX_LEN + 1 if you
want to be 100% sure that it will not abort.
@return	resulting lock id */
UNIV_INTERN
char*
trx_i_s_create_lock_id(
/*===================*/
	const i_s_locks_row_t*	row,	/*!< in: innodb_locks row */
	char*			lock_id,/*!< out: resulting lock_id */
	ulint			lock_id_size)/*!< in: size of the lock id
					buffer */
{
	int	res_len;

	/* please adjust TRX_I_S_LOCK_ID_MAX_LEN if you change this */

	if (row->lock_space != ULINT_UNDEFINED) {
		/* record lock */
		res_len = ut_snprintf(lock_id, lock_id_size,
				      TRX_ID_FMT ":%lu:%lu:%lu",
				      row->lock_trx_id, row->lock_space,
				      row->lock_page, row->lock_rec);
	} else {
		/* table lock */
		res_len = ut_snprintf(lock_id, lock_id_size,
				      TRX_ID_FMT":"UINT64PF,
				      row->lock_trx_id,
				      row->lock_table_id);
	}

	/* the typecast is safe because snprintf(3) never returns
	negative result */
	ut_a(res_len >= 0);
	ut_a((ulint) res_len < lock_id_size);

	return(lock_id);
}