summaryrefslogtreecommitdiff
path: root/storage/tokudb/PerconaFT/ft/cachetable/cachetable.cc
blob: 8e9856b4060d054ac40f7ad0f296d9d99adca393 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.


Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License, version 2,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.

----------------------------------------

    PerconaFT is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License, version 3,
    as published by the Free Software Foundation.

    PerconaFT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with PerconaFT.  If not, see <http://www.gnu.org/licenses/>.
======= */

#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."

#include <string.h>
#include <time.h>
#include <stdarg.h>

#include <portability/memory.h>
#include <portability/toku_race_tools.h>
#include <portability/toku_atomic.h>
#include <portability/toku_pthread.h>
#include <portability/toku_portability.h>
#include <portability/toku_stdlib.h>
#include <portability/toku_time.h>

#include "ft/cachetable/cachetable.h"
#include "ft/cachetable/cachetable-internal.h"
#include "ft/cachetable/checkpoint.h"
#include "ft/logger/log-internal.h"
#include "util/rwlock.h"
#include "util/scoped_malloc.h"
#include "util/status.h"
#include "util/context.h"

toku_instr_key *cachetable_m_mutex_key;
toku_instr_key *cachetable_ev_thread_lock_mutex_key;

toku_instr_key *cachetable_m_list_lock_key;
toku_instr_key *cachetable_m_pending_lock_expensive_key;
toku_instr_key *cachetable_m_pending_lock_cheap_key;
toku_instr_key *cachetable_m_lock_key;

toku_instr_key *cachetable_value_key;
toku_instr_key *cachetable_disk_nb_rwlock_key;

toku_instr_key *cachetable_p_refcount_wait_key;
toku_instr_key *cachetable_m_flow_control_cond_key;
toku_instr_key *cachetable_m_ev_thread_cond_key;

toku_instr_key *cachetable_disk_nb_mutex_key;
toku_instr_key *log_internal_lock_mutex_key;
toku_instr_key *eviction_thread_key;

///////////////////////////////////////////////////////////////////////////////////
// Engine status
//
// Status is intended for display to humans to help understand system behavior.
// It does not need to be perfectly thread-safe.

// These should be in the cachetable object, but we make them file-wide so that gdb can get them easily.
// They were left here after engine status cleanup (#2949, rather than moved into the status struct)
// so they are still easily available to the debugger and to save lots of typing.
static uint64_t cachetable_miss;
static uint64_t cachetable_misstime;     // time spent waiting for disk read
static uint64_t cachetable_prefetches;    // how many times has a block been prefetched into the cachetable?
static uint64_t cachetable_evictions;
static uint64_t cleaner_executions; // number of times the cleaner thread's loop has executed


// Note, toku_cachetable_get_status() is below, after declaration of cachetable.

static void * const zero_value = nullptr;
static PAIR_ATTR const zero_attr = {
    .size = 0, 
    .nonleaf_size = 0, 
    .leaf_size = 0, 
    .rollback_size = 0, 
    .cache_pressure_size = 0,
    .is_valid = true
};


static inline void ctpair_destroy(PAIR p) {
    p->value_rwlock.deinit();
    paranoid_invariant(p->refcount == 0);
    nb_mutex_destroy(&p->disk_nb_mutex);
    toku_cond_destroy(&p->refcount_wait);
    toku_free(p);
}

static inline void pair_lock(PAIR p) {
    toku_mutex_lock(p->mutex);
}

static inline void pair_unlock(PAIR p) {
    toku_mutex_unlock(p->mutex);
}

// adds a reference to the PAIR
// on input and output, PAIR mutex is held
static void pair_add_ref_unlocked(PAIR p) {
    p->refcount++;
}

// releases a reference to the PAIR
// on input and output, PAIR mutex is held
static void pair_release_ref_unlocked(PAIR p) {
    paranoid_invariant(p->refcount > 0);
    p->refcount--;
    if (p->refcount == 0 && p->num_waiting_on_refs > 0) {
        toku_cond_broadcast(&p->refcount_wait);
    }
}

static void pair_wait_for_ref_release_unlocked(PAIR p) {
    p->num_waiting_on_refs++;
    while (p->refcount > 0) {
        toku_cond_wait(&p->refcount_wait, p->mutex);
    }
    p->num_waiting_on_refs--;
}

bool toku_ctpair_is_write_locked(PAIR pair) {
    return pair->value_rwlock.writers() == 1;
}

void
toku_cachetable_get_status(CACHETABLE ct, CACHETABLE_STATUS statp) {
    ct_status.init();
    CT_STATUS_VAL(CT_MISS)                   = cachetable_miss;
    CT_STATUS_VAL(CT_MISSTIME)               = cachetable_misstime;
    CT_STATUS_VAL(CT_PREFETCHES)             = cachetable_prefetches;
    CT_STATUS_VAL(CT_EVICTIONS)              = cachetable_evictions;
    CT_STATUS_VAL(CT_CLEANER_EXECUTIONS)     = cleaner_executions;
    CT_STATUS_VAL(CT_CLEANER_PERIOD)         = toku_get_cleaner_period_unlocked(ct);
    CT_STATUS_VAL(CT_CLEANER_ITERATIONS)     = toku_get_cleaner_iterations_unlocked(ct);
    toku_kibbutz_get_status(ct->client_kibbutz,
                            &CT_STATUS_VAL(CT_POOL_CLIENT_NUM_THREADS),
                            &CT_STATUS_VAL(CT_POOL_CLIENT_NUM_THREADS_ACTIVE),
                            &CT_STATUS_VAL(CT_POOL_CLIENT_QUEUE_SIZE),
                            &CT_STATUS_VAL(CT_POOL_CLIENT_MAX_QUEUE_SIZE),
                            &CT_STATUS_VAL(CT_POOL_CLIENT_TOTAL_ITEMS_PROCESSED),
                            &CT_STATUS_VAL(CT_POOL_CLIENT_TOTAL_EXECUTION_TIME));
    toku_kibbutz_get_status(ct->ct_kibbutz,
                            &CT_STATUS_VAL(CT_POOL_CACHETABLE_NUM_THREADS),
                            &CT_STATUS_VAL(CT_POOL_CACHETABLE_NUM_THREADS_ACTIVE),
                            &CT_STATUS_VAL(CT_POOL_CACHETABLE_QUEUE_SIZE),
                            &CT_STATUS_VAL(CT_POOL_CACHETABLE_MAX_QUEUE_SIZE),
                            &CT_STATUS_VAL(CT_POOL_CACHETABLE_TOTAL_ITEMS_PROCESSED),
                            &CT_STATUS_VAL(CT_POOL_CACHETABLE_TOTAL_EXECUTION_TIME));
    toku_kibbutz_get_status(ct->checkpointing_kibbutz,
                            &CT_STATUS_VAL(CT_POOL_CHECKPOINT_NUM_THREADS),
                            &CT_STATUS_VAL(CT_POOL_CHECKPOINT_NUM_THREADS_ACTIVE),
                            &CT_STATUS_VAL(CT_POOL_CHECKPOINT_QUEUE_SIZE),
                            &CT_STATUS_VAL(CT_POOL_CHECKPOINT_MAX_QUEUE_SIZE),
                            &CT_STATUS_VAL(CT_POOL_CHECKPOINT_TOTAL_ITEMS_PROCESSED),
                            &CT_STATUS_VAL(CT_POOL_CHECKPOINT_TOTAL_EXECUTION_TIME));
    ct->ev.fill_engine_status();
    *statp = ct_status;
}

// FIXME global with no toku prefix
void remove_background_job_from_cf(CACHEFILE cf)
{
    bjm_remove_background_job(cf->bjm);
}

// FIXME global with no toku prefix
void cachefile_kibbutz_enq (CACHEFILE cf, void (*f)(void*), void *extra)
// The function f must call remove_background_job_from_cf when it completes
{
    int r = bjm_add_background_job(cf->bjm);
    // if client is adding a background job, then it must be done
    // at a time when the manager is accepting background jobs, otherwise
    // the client is screwing up
    assert_zero(r); 
    toku_kibbutz_enq(cf->cachetable->client_kibbutz, f, extra);
}

static int
checkpoint_thread (void *checkpointer_v)
// Effect:  If checkpoint_period>0 thn periodically run a checkpoint.
//  If someone changes the checkpoint_period (calling toku_set_checkpoint_period), then the checkpoint will run sooner or later.
//  If someone sets the checkpoint_shutdown boolean , then this thread exits. 
// This thread notices those changes by waiting on a condition variable.
{
    CHECKPOINTER CAST_FROM_VOIDP(cp, checkpointer_v);
    int r = toku_checkpoint(cp, cp->get_logger(), NULL, NULL, NULL, NULL, SCHEDULED_CHECKPOINT);
    invariant_zero(r);
    return r;
}

void toku_set_checkpoint_period (CACHETABLE ct, uint32_t new_period) {
    ct->cp.set_checkpoint_period(new_period);
}

uint32_t toku_get_checkpoint_period_unlocked (CACHETABLE ct) {
    return ct->cp.get_checkpoint_period();
}

void toku_set_cleaner_period (CACHETABLE ct, uint32_t new_period) {
    if(force_recovery) {
        return;
    }
    ct->cl.set_period(new_period);
}

uint32_t toku_get_cleaner_period_unlocked (CACHETABLE ct) {
    return ct->cl.get_period_unlocked();
}

void toku_set_cleaner_iterations (CACHETABLE ct, uint32_t new_iterations) {
    ct->cl.set_iterations(new_iterations);
}

uint32_t toku_get_cleaner_iterations (CACHETABLE ct) {
    return ct->cl.get_iterations();
}

uint32_t toku_get_cleaner_iterations_unlocked (CACHETABLE ct) {
    return ct->cl.get_iterations();
}

void toku_set_enable_partial_eviction (CACHETABLE ct, bool enabled) {
    ct->ev.set_enable_partial_eviction(enabled);
}

bool toku_get_enable_partial_eviction (CACHETABLE ct) {
    return ct->ev.get_enable_partial_eviction();
}

// reserve 25% as "unreservable".  The loader cannot have it.
#define unreservable_memory(size) ((size)/4)

int toku_cachetable_create_ex(CACHETABLE *ct_result, long size_limit,
                           unsigned long client_pool_threads,
                           unsigned long cachetable_pool_threads,
                           unsigned long checkpoint_pool_threads,
                           LSN UU(initial_lsn), TOKULOGGER logger) {
    int result = 0;
    int r;

    if (size_limit == 0) {
        size_limit = 128*1024*1024;
    }

    CACHETABLE XCALLOC(ct);
    ct->list.init();
    ct->cf_list.init();

    int num_processors = toku_os_get_number_active_processors();
    int checkpointing_nworkers = (num_processors/4) ? num_processors/4 : 1;
    r = toku_kibbutz_create(client_pool_threads ? client_pool_threads : num_processors,
                            &ct->client_kibbutz);
    if (r != 0) {
        result = r;
        goto cleanup;
    }
    r = toku_kibbutz_create(cachetable_pool_threads ? cachetable_pool_threads : 2*num_processors,
                            &ct->ct_kibbutz);
    if (r != 0) {
        result = r;
        goto cleanup;
    }
    r = toku_kibbutz_create(checkpoint_pool_threads ? checkpoint_pool_threads : checkpointing_nworkers,
                            &ct->checkpointing_kibbutz);
    if (r != 0) {
        result = r;
        goto cleanup;
    }
    // must be done after creating ct_kibbutz
    r = ct->ev.init(size_limit, &ct->list, &ct->cf_list, ct->ct_kibbutz, EVICTION_PERIOD);
    if (r != 0) {
        result = r;
        goto cleanup;
    }
    r = ct->cp.init(&ct->list, logger, &ct->ev, &ct->cf_list);
    if (r != 0) {
        result = r;
        goto cleanup;
    }
    r = ct->cl.init(1, &ct->list, ct); // by default, start with one iteration
    if (r != 0) {
        result = r;
        goto cleanup;
    }
    ct->env_dir = toku_xstrdup(".");
cleanup:
    if (result == 0) {
        *ct_result = ct;
    } else {
        toku_cachetable_close(&ct);
    }
    return result;
}

// Returns a pointer to the checkpoint contained within
// the given cachetable.
CHECKPOINTER toku_cachetable_get_checkpointer(CACHETABLE ct) {
    return &ct->cp;
}

uint64_t toku_cachetable_reserve_memory(CACHETABLE ct, double fraction, uint64_t upper_bound) {
    uint64_t reserved_memory = ct->ev.reserve_memory(fraction, upper_bound);
    return reserved_memory;
}

void toku_cachetable_release_reserved_memory(CACHETABLE ct, uint64_t reserved_memory) {
    ct->ev.release_reserved_memory(reserved_memory);
}

void
toku_cachetable_set_env_dir(CACHETABLE ct, const char *env_dir) {
    toku_free(ct->env_dir);
    ct->env_dir = toku_xstrdup(env_dir);
}

// What cachefile goes with particular iname (iname relative to env)?
// The transaction that is adding the reference might not have a reference
// to the ft, therefore the cachefile might be closing.
// If closing, we want to return that it is not there, but must wait till after
// the close has finished.
// Once the close has finished, there must not be a cachefile with that name
// in the cachetable.
int toku_cachefile_of_iname_in_env (CACHETABLE ct, const char *iname_in_env, CACHEFILE *cf) {
    return ct->cf_list.cachefile_of_iname_in_env(iname_in_env, cf);
}

// What cachefile goes with particular fd?
// This function can only be called if the ft is still open, so file must 
// still be open
int toku_cachefile_of_filenum (CACHETABLE ct, FILENUM filenum, CACHEFILE *cf) {
    return ct->cf_list.cachefile_of_filenum(filenum, cf);
}

// TEST-ONLY function
// If something goes wrong, close the fd.  After this, the caller shouldn't close the fd, but instead should close the cachefile.
int toku_cachetable_openfd (CACHEFILE *cfptr, CACHETABLE ct, int fd, const char *fname_in_env) {
    FILENUM filenum = toku_cachetable_reserve_filenum(ct);
    bool was_open;
    return toku_cachetable_openfd_with_filenum(cfptr, ct, fd, fname_in_env, filenum, &was_open);
}

// Get a unique filenum from the cachetable
FILENUM
toku_cachetable_reserve_filenum(CACHETABLE ct) {
    return ct->cf_list.reserve_filenum();
}

static void create_new_cachefile(
    CACHETABLE ct,
    FILENUM filenum,
    uint32_t hash_id,
    int fd,
    const char *fname_in_env,
    struct fileid fileid,
    CACHEFILE *cfptr
    ) {
    // File is not open.  Make a new cachefile.
    CACHEFILE newcf = NULL;
    XCALLOC(newcf);
    newcf->cachetable = ct;
    newcf->hash_id = hash_id;
    newcf->fileid = fileid;

    newcf->filenum = filenum;
    newcf->fd = fd;
    newcf->fname_in_env = toku_xstrdup(fname_in_env);
    bjm_init(&newcf->bjm);
    *cfptr = newcf;
}

int toku_cachetable_openfd_with_filenum (CACHEFILE *cfptr, CACHETABLE ct, int fd, 
                                         const char *fname_in_env,
                                         FILENUM filenum, bool* was_open) {
    int r;
    CACHEFILE newcf;
    struct fileid fileid;
    
    assert(filenum.fileid != FILENUM_NONE.fileid);
    r = toku_os_get_unique_file_id(fd, &fileid);
    if (r != 0) { 
        r = get_error_errno();
        close(fd);
        return r;
    }
    ct->cf_list.write_lock();
    CACHEFILE existing_cf = ct->cf_list.find_cachefile_unlocked(&fileid);
    if (existing_cf) {
        *was_open = true;
        // Reuse an existing cachefile and close the caller's fd, whose
        // responsibility has been passed to us.
        r = close(fd);
        assert(r == 0);
        *cfptr = existing_cf;
        r = 0;
        goto exit;        
    }
    *was_open = false;
    ct->cf_list.verify_unused_filenum(filenum);
    // now let's try to find it in the stale cachefiles
    existing_cf = ct->cf_list.find_stale_cachefile_unlocked(&fileid);
    // found the stale file, 
    if (existing_cf) {
        // fix up the fields in the cachefile
        existing_cf->filenum = filenum;
        existing_cf->fd = fd;
        existing_cf->fname_in_env = toku_xstrdup(fname_in_env);
        bjm_init(&existing_cf->bjm);

        // now we need to move all the PAIRs in it back into the cachetable
        ct->list.write_list_lock();
        for (PAIR curr_pair = existing_cf->cf_head; curr_pair; curr_pair = curr_pair->cf_next) {
            pair_lock(curr_pair);
            ct->list.add_to_cachetable_only(curr_pair);
            pair_unlock(curr_pair);
        }
        ct->list.write_list_unlock();
        // move the cachefile back to the list of active cachefiles
        ct->cf_list.remove_stale_cf_unlocked(existing_cf);
        ct->cf_list.add_cf_unlocked(existing_cf);
        *cfptr = existing_cf;
        r = 0;
        goto exit;
    }

    create_new_cachefile(
        ct,
        filenum,
        ct->cf_list.get_new_hash_id_unlocked(),
        fd,
        fname_in_env,
        fileid,
        &newcf
        );

    ct->cf_list.add_cf_unlocked(newcf);

    *cfptr = newcf;
    r = 0;
 exit:
    ct->cf_list.write_unlock();
    return r;
}

static void cachetable_flush_cachefile (CACHETABLE, CACHEFILE cf, bool evict_completely);

//TEST_ONLY_FUNCTION
int toku_cachetable_openf (CACHEFILE *cfptr, CACHETABLE ct, const char *fname_in_env, int flags, mode_t mode) {
    char *fname_in_cwd = toku_construct_full_name(2, ct->env_dir, fname_in_env);
    int fd = open(fname_in_cwd, flags+O_BINARY, mode);
    int r;
    if (fd < 0) {
        r = get_error_errno();
    } else {
        r = toku_cachetable_openfd (cfptr, ct, fd, fname_in_env);
    }
    toku_free(fname_in_cwd);
    return r;
}

char *
toku_cachefile_fname_in_env (CACHEFILE cf) {
    if (cf) {
        return cf->fname_in_env;
    }
    return nullptr;
}

void toku_cachefile_set_fname_in_env(CACHEFILE cf, char *new_fname_in_env) {
    cf->fname_in_env = new_fname_in_env;
}

int 
toku_cachefile_get_fd (CACHEFILE cf) {
    return cf->fd;
}

static void cachefile_destroy(CACHEFILE cf) {
    if (cf->free_userdata) {
        cf->free_userdata(cf, cf->userdata);
    }
    toku_free(cf);
}

void toku_cachefile_close(CACHEFILE *cfp, bool oplsn_valid, LSN oplsn) {
    CACHEFILE cf = *cfp;
    CACHETABLE ct = cf->cachetable;

    bjm_wait_for_jobs_to_finish(cf->bjm);
    
    // Clients should never attempt to close a cachefile that is being
    // checkpointed. We notify clients this is happening in the
    // note_pin_by_checkpoint callback.
    assert(!cf->for_checkpoint);

    // Flush the cachefile and remove all of its pairs from the cachetable,
    // but keep the PAIRs linked in the cachefile. We will store the cachefile
    // away in case it gets opened immedietely
    //
    // if we are unlinking on close, then we want to evict completely,
    // otherwise, we will keep the PAIRs and cachefile around in case
    // a subsequent open comes soon
    cachetable_flush_cachefile(ct, cf, cf->unlink_on_close);

    // Call the close userdata callback to notify the client this cachefile
    // and its underlying file are going to be closed
    if (cf->close_userdata) {
        cf->close_userdata(cf, cf->fd, cf->userdata, oplsn_valid, oplsn);
    }
    // fsync and close the fd. 
    toku_file_fsync_without_accounting(cf->fd);
    int r = close(cf->fd);
    assert(r == 0);
    cf->fd = -1;

    // destroy the parts of the cachefile
    // that do not persist across opens/closes
    bjm_destroy(cf->bjm);
    cf->bjm = NULL;

    // remove the cf from the list of active cachefiles
    ct->cf_list.remove_cf(cf);
    cf->filenum = FILENUM_NONE;

    // Unlink the file if the bit was set
    if (cf->unlink_on_close) {
        char *fname_in_cwd = toku_cachetable_get_fname_in_cwd(cf->cachetable, cf->fname_in_env);
        r = unlink(fname_in_cwd);
        assert_zero(r);
        toku_free(fname_in_cwd);
    }
    toku_free(cf->fname_in_env);
    cf->fname_in_env = NULL;

    // we destroy the cf if the unlink bit was set or if no PAIRs exist
    // if no PAIRs exist, there is no sense in keeping the cachefile around
    bool destroy_cf = cf->unlink_on_close || (cf->cf_head == NULL);
    if (destroy_cf) {
        cachefile_destroy(cf);
    }
    else {
        ct->cf_list.add_stale_cf(cf);
    }
}

// This hash function comes from Jenkins:  http://burtleburtle.net/bob/c/lookup3.c
// The idea here is to mix the bits thoroughly so that we don't have to do modulo by a prime number.
// Instead we can use a bitmask on a table of size power of two.
// This hash function does yield improved performance on ./db-benchmark-test-tokudb and ./scanscan
static inline uint32_t rot(uint32_t x, uint32_t k) {
    return (x<<k) | (x>>(32-k));
}
static inline uint32_t final (uint32_t a, uint32_t b, uint32_t c) {
    c ^= b; c -= rot(b,14);
    a ^= c; a -= rot(c,11);
    b ^= a; b -= rot(a,25);
    c ^= b; c -= rot(b,16);
    a ^= c; a -= rot(c,4); 
    b ^= a; b -= rot(a,14);
    c ^= b; c -= rot(b,24);
    return c;
}

uint32_t toku_cachetable_hash (CACHEFILE cachefile, BLOCKNUM key)
// Effect: Return a 32-bit hash key.  The hash key shall be suitable for using with bitmasking for a table of size power-of-two.
{
    return final(cachefile->hash_id, (uint32_t)(key.b>>32), (uint32_t)key.b);
}

#define CLOCK_SATURATION 15
#define CLOCK_INITIAL_COUNT 3

// Requires pair's mutex to be held
static void pair_touch (PAIR p) {
    p->count = (p->count < CLOCK_SATURATION) ? p->count+1 : CLOCK_SATURATION;
}

// Remove a pair from the cachetable, requires write list lock to be held and p->mutex to be held
// Effects: the pair is removed from the LRU list and from the cachetable's hash table.
// The size of the objects in the cachetable is adjusted by the size of the pair being
// removed.
static void cachetable_remove_pair (pair_list* list, evictor* ev, PAIR p) {
    list->evict_completely(p);
    ev->remove_pair_attr(p->attr);
}

static void cachetable_free_pair(PAIR p) {
    CACHETABLE_FLUSH_CALLBACK flush_callback = p->flush_callback;
    CACHEKEY key = p->key;
    void *value = p->value_data;
    void* disk_data = p->disk_data;
    void *write_extraargs = p->write_extraargs;
    PAIR_ATTR old_attr = p->attr;
    
    cachetable_evictions++;
    PAIR_ATTR new_attr = p->attr;
    // Note that flush_callback is called with write_me false, so the only purpose of this 
    // call is to tell the ft layer to evict the node (keep_me is false).
    // Also, because we have already removed the PAIR from the cachetable in 
    // cachetable_remove_pair, we cannot pass in p->cachefile and p->cachefile->fd
    // for the first two parameters, as these may be invalid (#5171), so, we
    // pass in NULL and -1, dummy values
    flush_callback(NULL, -1, key, value, &disk_data, write_extraargs, old_attr, &new_attr, false, false, true, false);
    
    ctpair_destroy(p);
}

// assumes value_rwlock and disk_nb_mutex held on entry
// responsibility of this function is to only write a locked PAIR to disk
// and NOTHING else. We do not manipulate the state of the PAIR
// of the cachetable here (with the exception of ct->size_current for clones)
//
// No pair_list lock should be held, and the PAIR mutex should not be held
//
static void cachetable_only_write_locked_data(
    evictor* ev,
    PAIR p, 
    bool for_checkpoint,
    PAIR_ATTR* new_attr,
    bool is_clone
    ) 
{    
    CACHETABLE_FLUSH_CALLBACK flush_callback = p->flush_callback;
    CACHEFILE cachefile = p->cachefile;
    CACHEKEY key = p->key;
    void *value = is_clone ? p->cloned_value_data : p->value_data;
    void *disk_data = p->disk_data;
    void *write_extraargs = p->write_extraargs;
    PAIR_ATTR old_attr;
    // we do this for drd. If we are a cloned pair and only 
    // have the disk_nb_mutex, it is a race to access p->attr.
    // Luckily, old_attr here is only used for some test applications,
    // so inaccurate non-size fields are ok.
    if (is_clone) {
        old_attr = make_pair_attr(p->cloned_value_size);
    }
    else {
        old_attr = p->attr;
    }
    bool dowrite = true;
        
    // write callback
    flush_callback(
        cachefile, 
        cachefile->fd, 
        key, 
        value, 
        &disk_data, 
        write_extraargs, 
        old_attr, 
        new_attr, 
        dowrite, 
        is_clone ? false : true, // keep_me (only keep if this is not cloned pointer)
        for_checkpoint, 
        is_clone //is_clone
        );
    p->disk_data = disk_data;
    if (is_clone) {
        p->cloned_value_data = NULL;
        ev->remove_cloned_data_size(p->cloned_value_size);
        p->cloned_value_size = 0;
    }    
}


//
// This function writes a PAIR's value out to disk. Currently, it is called
// by get_and_pin functions that write a PAIR out for checkpoint, by 
// evictor threads that evict dirty PAIRS, and by the checkpoint thread
// that needs to write out a dirty node for checkpoint.
//
// Requires on entry for p->mutex to NOT be held, otherwise 
// calling cachetable_only_write_locked_data will be very expensive
//
static void cachetable_write_locked_pair(
    evictor* ev,
    PAIR p, 
    bool for_checkpoint
    ) 
{
    PAIR_ATTR old_attr = p->attr;
    PAIR_ATTR new_attr = p->attr;
    // grabbing the disk_nb_mutex here ensures that
    // after this point, no one is writing out a cloned value
    // if we grab the disk_nb_mutex inside the if clause,
    // then we may try to evict a PAIR that is in the process
    // of having its clone be written out
    pair_lock(p);
    nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
    pair_unlock(p);
    // make sure that assumption about cloned_value_data is true
    // if we have grabbed the disk_nb_mutex, then that means that
    // there should be no cloned value data
    assert(p->cloned_value_data == NULL);
    if (p->dirty) {
        cachetable_only_write_locked_data(ev, p, for_checkpoint, &new_attr, false);
        //
        // now let's update variables
        //
        if (new_attr.is_valid) {
            p->attr = new_attr;
            ev->change_pair_attr(old_attr, new_attr);
        }
    }
    // the pair is no longer dirty once written
    p->dirty = CACHETABLE_CLEAN;
    pair_lock(p);
    nb_mutex_unlock(&p->disk_nb_mutex);
    pair_unlock(p);    
}

// Worker thread function to writes and evicts  a pair from memory to its cachefile
static void cachetable_evicter(void* extra) {
    PAIR p = (PAIR)extra;
    pair_list* pl = p->list;
    CACHEFILE cf = p->cachefile;
    pl->read_pending_exp_lock();
    bool for_checkpoint = p->checkpoint_pending;
    p->checkpoint_pending = false;
    // per the contract of evictor::evict_pair,
    // the pair's mutex, p->mutex, must be held on entry
    pair_lock(p);
    p->ev->evict_pair(p, for_checkpoint);
    pl->read_pending_exp_unlock();
    bjm_remove_background_job(cf->bjm);
}

static void cachetable_partial_eviction(void* extra) {
    PAIR p = (PAIR)extra;
    CACHEFILE cf = p->cachefile;
    p->ev->do_partial_eviction(p);
    bjm_remove_background_job(cf->bjm);
}

void toku_cachetable_swap_pair_values(PAIR old_pair, PAIR new_pair) {
    void* old_value = old_pair->value_data;
    void* new_value = new_pair->value_data;
    old_pair->value_data = new_value;
    new_pair->value_data = old_value;
}

void toku_cachetable_maybe_flush_some(CACHETABLE ct) {
    // TODO: <CER> Maybe move this...
    ct->ev.signal_eviction_thread();
}

// Initializes a pair's members.
//
void pair_init(PAIR p, 
    CACHEFILE cachefile, 
    CACHEKEY key, 
    void *value,
    PAIR_ATTR attr,
    enum cachetable_dirty dirty,
    uint32_t fullhash,
    CACHETABLE_WRITE_CALLBACK write_callback,
    evictor *ev,
    pair_list *list)
{
    p->cachefile = cachefile;
    p->key = key;
    p->value_data = value;
    p->cloned_value_data = NULL;
    p->cloned_value_size = 0;
    p->disk_data = NULL;
    p->attr = attr;
    p->dirty = dirty;
    p->fullhash = fullhash;

    p->flush_callback = write_callback.flush_callback;
    p->pe_callback = write_callback.pe_callback;
    p->pe_est_callback = write_callback.pe_est_callback;
    p->cleaner_callback = write_callback.cleaner_callback;
    p->clone_callback = write_callback.clone_callback;
    p->checkpoint_complete_callback = write_callback.checkpoint_complete_callback;
    p->write_extraargs = write_callback.write_extraargs;

    p->count = 0;  // <CER> Is zero the correct init value?
    p->refcount = 0;
    p->num_waiting_on_refs = 0;
    toku_cond_init(*cachetable_p_refcount_wait_key, &p->refcount_wait, nullptr);
    p->checkpoint_pending = false;

    p->mutex = list->get_mutex_for_pair(fullhash);
    assert(p->mutex);
    p->value_rwlock.init(p->mutex
#ifdef TOKU_MYSQL_WITH_PFS
                         ,
                         *cachetable_value_key
#endif
                         );
    nb_mutex_init(*cachetable_disk_nb_mutex_key,
                  *cachetable_disk_nb_rwlock_key,
                  &p->disk_nb_mutex);

    p->size_evicting_estimate = 0;  // <CER> Is zero the correct init value?

    p->ev = ev;
    p->list = list;

    p->clock_next = p->clock_prev = NULL;
    p->pending_next = p->pending_prev = NULL;
    p->cf_next = p->cf_prev = NULL;
    p->hash_chain = NULL;
}

// has ct locked on entry
// This function MUST NOT release and reacquire the cachetable lock
// Its callers (toku_cachetable_put_with_dep_pairs) depend on this behavior.
//
// Requires pair list's write lock to be held on entry.
// the pair's mutex must be held as wel
// 
//
static PAIR cachetable_insert_at(CACHETABLE ct,
                                 CACHEFILE cachefile, CACHEKEY key, void *value,
                                 uint32_t fullhash,
                                 PAIR_ATTR attr,
                                 CACHETABLE_WRITE_CALLBACK write_callback,
                                 enum cachetable_dirty dirty) {
    PAIR MALLOC(p);
    assert(p);
    memset(p, 0, sizeof *p);
    pair_init(p,
        cachefile,
        key,
        value,
        attr,
        dirty,
        fullhash,
        write_callback,
        &ct->ev,
        &ct->list
        );

    ct->list.put(p);
    ct->ev.add_pair_attr(attr);
    return p;
}

// on input, the write list lock must be held AND 
// the pair's mutex must be held as wel
static void cachetable_insert_pair_at(CACHETABLE ct, PAIR p, PAIR_ATTR attr) {
    ct->list.put(p);
    ct->ev.add_pair_attr(attr);
}


// has ct locked on entry
// This function MUST NOT release and reacquire the cachetable lock
// Its callers (toku_cachetable_put_with_dep_pairs) depend on this behavior.
//
// Requires pair list's write lock to be held on entry
//
static void cachetable_put_internal(
    CACHEFILE cachefile, 
    PAIR p,
    void *value, 
    PAIR_ATTR attr,
    CACHETABLE_PUT_CALLBACK put_callback
    )
{
    CACHETABLE ct = cachefile->cachetable;
    //
    //
    // TODO: (Zardosht), make code run in debug only 
    //
    //
    //PAIR dummy_p = ct->list.find_pair(cachefile, key, fullhash);
    //invariant_null(dummy_p);
    cachetable_insert_pair_at(ct, p, attr);
    invariant_notnull(put_callback);
    put_callback(p->key, value, p);
}

// Pair mutex (p->mutex) is may or may not be held on entry,
// Holding the pair mutex on entry is not important
// for performance or corrrectness
// Pair is pinned on entry
static void
clone_pair(evictor* ev, PAIR p) {
    PAIR_ATTR old_attr = p->attr;
    PAIR_ATTR new_attr;
    long clone_size = 0;

    // act of cloning should be fast,
    // not sure if we have to release
    // and regrab the cachetable lock,
    // but doing it for now
    p->clone_callback(
        p->value_data,
        &p->cloned_value_data,
        &clone_size,
        &new_attr,
        true,
        p->write_extraargs
        );
    
    // now we need to do the same actions we would do
    // if the PAIR had been written to disk
    //
    // because we hold the value_rwlock,
    // it doesn't matter whether we clear 
    // the pending bit before the clone
    // or after the clone
    p->dirty = CACHETABLE_CLEAN;
    if (new_attr.is_valid) {
        p->attr = new_attr;
        ev->change_pair_attr(old_attr, new_attr);
    }
    p->cloned_value_size = clone_size;
    ev->add_cloned_data_size(p->cloned_value_size);
}

static void checkpoint_cloned_pair(void* extra) {
    PAIR p = (PAIR)extra;
    CACHETABLE ct = p->cachefile->cachetable;
    PAIR_ATTR new_attr;
    // note that pending lock is not needed here because
    // we KNOW we are in the middle of a checkpoint
    // and that a begin_checkpoint cannot happen
    cachetable_only_write_locked_data(
        p->ev,
        p,
        true, //for_checkpoint
        &new_attr,
        true //is_clone
        );
    pair_lock(p);
    nb_mutex_unlock(&p->disk_nb_mutex);
    pair_unlock(p);
    ct->cp.remove_background_job();
}

static void
checkpoint_cloned_pair_on_writer_thread(CACHETABLE ct, PAIR p) {
    toku_kibbutz_enq(ct->checkpointing_kibbutz, checkpoint_cloned_pair, p);
}


//
// Given a PAIR p with the value_rwlock altready held, do the following:
//  - If the PAIR needs to be written out to disk for checkpoint:
//   - If the PAIR is cloneable, clone the PAIR and place the work
//      of writing the PAIR on a background thread.
//   - If the PAIR is not cloneable, write the PAIR to disk for checkpoint
//      on the current thread
//
// On entry, pair's mutex is NOT held
//
static void
write_locked_pair_for_checkpoint(CACHETABLE ct, PAIR p, bool checkpoint_pending)
{
    if (checkpoint_pending && p->checkpoint_complete_callback) {
        p->checkpoint_complete_callback(p->value_data);
    }
    if (p->dirty && checkpoint_pending) {
        if (p->clone_callback) {
            pair_lock(p);
            nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
            pair_unlock(p);
            assert(!p->cloned_value_data);
            clone_pair(&ct->ev, p);
            assert(p->cloned_value_data);
            // place it on the background thread and continue
            // responsibility of writer thread to release disk_nb_mutex
            ct->cp.add_background_job();
            checkpoint_cloned_pair_on_writer_thread(ct, p);
        }
        else {
            // The pair is not cloneable, just write the pair to disk
            // we already have p->value_rwlock and we just do the write in our own thread.            
            cachetable_write_locked_pair(&ct->ev, p, true); // keeps the PAIR's write lock
        }
    }
}

// On entry and exit: hold the pair's mutex (p->mutex)
// Method:   take write lock
//           maybe write out the node
//           Else release write lock
//
static void
write_pair_for_checkpoint_thread (evictor* ev, PAIR p)
{
    // Grab an exclusive lock on the pair.
    // If we grab an expensive lock, then other threads will return
    // TRY_AGAIN rather than waiting.  In production, the only time
    // another thread will check if grabbing a lock is expensive is when
    // we have a clone_callback (FTNODEs), so the act of checkpointing
    // will be cheap.  Also, much of the time we'll just be clearing
    // pending bits and that's definitely cheap. (see #5427)
    p->value_rwlock.write_lock(false);
    if (p->checkpoint_pending && p->checkpoint_complete_callback) {
        p->checkpoint_complete_callback(p->value_data);
    }
    if (p->dirty && p->checkpoint_pending) {
        if (p->clone_callback) {
            nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
            assert(!p->cloned_value_data);
            clone_pair(ev, p);
            assert(p->cloned_value_data);
        }
        else {
            // The pair is not cloneable, just write the pair to disk            
            // we already have p->value_rwlock and we just do the write in our own thread.
            // this will grab and release disk_nb_mutex
            pair_unlock(p);
            cachetable_write_locked_pair(ev, p, true); // keeps the PAIR's write lock
            pair_lock(p);
        }
        p->checkpoint_pending = false;
        
        // now release value_rwlock, before we write the PAIR out
        // so that the PAIR is available to client threads
        p->value_rwlock.write_unlock(); // didn't call cachetable_evict_pair so we have to unlock it ourselves.
        if (p->clone_callback) {
            // note that pending lock is not needed here because
            // we KNOW we are in the middle of a checkpoint
            // and that a begin_checkpoint cannot happen
            PAIR_ATTR attr;
            pair_unlock(p);
            cachetable_only_write_locked_data(
                ev,
                p,
                true, //for_checkpoint
                &attr,
                true //is_clone
                );
            pair_lock(p);
            nb_mutex_unlock(&p->disk_nb_mutex);
        }
    }
    else {
        //
        // we may clear the pending bit here because we have
        // both the cachetable lock and the PAIR lock.
        // The rule, as mentioned in  toku_cachetable_begin_checkpoint, 
        // is that to clear the bit, we must have both the PAIR lock
        // and the pending lock
        //
        p->checkpoint_pending = false;
        p->value_rwlock.write_unlock();
    }
}

//
// For each PAIR associated with these CACHEFILEs and CACHEKEYs
// if the checkpoint_pending bit is set and the PAIR is dirty, write the PAIR
// to disk.
// We assume the PAIRs passed in have been locked by the client that made calls
// into the cachetable that eventually make it here.
//
static void checkpoint_dependent_pairs(
    CACHETABLE ct,
    uint32_t num_dependent_pairs, // number of dependent pairs that we may need to checkpoint
    PAIR* dependent_pairs,
    bool* checkpoint_pending,
    enum cachetable_dirty* dependent_dirty // array stating dirty/cleanness of dependent pairs
    )
{
     for (uint32_t i =0; i < num_dependent_pairs; i++) {
         PAIR curr_dep_pair = dependent_pairs[i];
         // we need to update the dirtyness of the dependent pair,
         // because the client may have dirtied it while holding its lock,
         // and if the pair is pending a checkpoint, it needs to be written out
         if (dependent_dirty[i]) curr_dep_pair->dirty = CACHETABLE_DIRTY;
         if (checkpoint_pending[i]) {
             write_locked_pair_for_checkpoint(ct, curr_dep_pair, checkpoint_pending[i]);
         }
     }
}

void toku_cachetable_put_with_dep_pairs(
    CACHEFILE cachefile,
    CACHETABLE_GET_KEY_AND_FULLHASH get_key_and_fullhash,
    void *value,
    PAIR_ATTR attr,
    CACHETABLE_WRITE_CALLBACK write_callback,
    void *get_key_and_fullhash_extra,
    uint32_t num_dependent_pairs, // number of dependent pairs that we may need to checkpoint
    PAIR* dependent_pairs,
    enum cachetable_dirty* dependent_dirty, // array stating dirty/cleanness of dependent pairs
    CACHEKEY* key,
    uint32_t* fullhash,
    CACHETABLE_PUT_CALLBACK put_callback
    )
{
    //
    // need to get the key and filehash
    //
    CACHETABLE ct = cachefile->cachetable;
    if (ct->ev.should_client_thread_sleep()) {
        ct->ev.wait_for_cache_pressure_to_subside();
    }
    if (ct->ev.should_client_wake_eviction_thread()) {
        ct->ev.signal_eviction_thread();
    }

    PAIR p = NULL;
    XMALLOC(p);
    memset(p, 0, sizeof *p);

    ct->list.write_list_lock();
    get_key_and_fullhash(key, fullhash, get_key_and_fullhash_extra);
    pair_init(
        p, 
        cachefile, 
        *key, 
        value, 
        attr, 
        CACHETABLE_DIRTY, 
        *fullhash,
        write_callback,
        &ct->ev,
        &ct->list
        );
    pair_lock(p);
    p->value_rwlock.write_lock(true);
    cachetable_put_internal(
        cachefile,
        p,
        value,
        attr,
        put_callback
        );
    pair_unlock(p);
    bool checkpoint_pending[num_dependent_pairs];
    ct->list.write_pending_cheap_lock();
    for (uint32_t i = 0; i < num_dependent_pairs; i++) {
        checkpoint_pending[i] = dependent_pairs[i]->checkpoint_pending;
        dependent_pairs[i]->checkpoint_pending = false;
    }
    ct->list.write_pending_cheap_unlock();
    ct->list.write_list_unlock();

    //
    // now that we have inserted the row, let's checkpoint the 
    // dependent nodes, if they need checkpointing
    //
    checkpoint_dependent_pairs(
        ct,
        num_dependent_pairs,
        dependent_pairs,
        checkpoint_pending,
        dependent_dirty
        );
}

void toku_cachetable_put(CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, void*value, PAIR_ATTR attr,
                        CACHETABLE_WRITE_CALLBACK write_callback,
                        CACHETABLE_PUT_CALLBACK put_callback
                        ) {
    CACHETABLE ct = cachefile->cachetable;
    if (ct->ev.should_client_thread_sleep()) {
        ct->ev.wait_for_cache_pressure_to_subside();
    }
    if (ct->ev.should_client_wake_eviction_thread()) {
        ct->ev.signal_eviction_thread();
    }

    PAIR p = NULL;
    XMALLOC(p);
    memset(p, 0, sizeof *p);

    ct->list.write_list_lock();
    pair_init(
        p, 
        cachefile, 
        key, 
        value, 
        attr, 
        CACHETABLE_DIRTY, 
        fullhash,
        write_callback,
        &ct->ev,
        &ct->list
        );
    pair_lock(p);
    p->value_rwlock.write_lock(true);
    cachetable_put_internal(
        cachefile,
        p,
        value,
        attr,
        put_callback
        );
    pair_unlock(p);
    ct->list.write_list_unlock();
}

static uint64_t get_tnow(void) {
    struct timeval tv;
    int r = gettimeofday(&tv, NULL); assert(r == 0);
    return tv.tv_sec * 1000000ULL + tv.tv_usec;
}

//
// cachetable lock and PAIR lock are held on entry
// On exit, cachetable lock is still held, but PAIR lock
// is either released.
//
// No locks are held on entry (besides the rwlock write lock  of the PAIR)
//
static void
do_partial_fetch(
    CACHETABLE ct, 
    CACHEFILE cachefile, 
    PAIR p, 
    CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback, 
    void *read_extraargs,
    bool keep_pair_locked
    )
{
    PAIR_ATTR old_attr = p->attr;
    PAIR_ATTR new_attr = zero_attr;
    // As of Dr. No, only clean PAIRs may have pieces missing,
    // so we do a sanity check here.
    assert(!p->dirty);

    pair_lock(p);
    invariant(p->value_rwlock.writers());
    nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
    pair_unlock(p);
    int r = pf_callback(p->value_data, p->disk_data, read_extraargs, cachefile->fd, &new_attr);
    lazy_assert_zero(r);
    p->attr = new_attr;
    ct->ev.change_pair_attr(old_attr, new_attr);
    pair_lock(p);
    nb_mutex_unlock(&p->disk_nb_mutex);
    if (!keep_pair_locked) {
        p->value_rwlock.write_unlock();
    }
    pair_unlock(p);
}

void toku_cachetable_pf_pinned_pair(
    void* value,
    CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
    void* read_extraargs,
    CACHEFILE cf,
    CACHEKEY key,
    uint32_t fullhash
    ) 
{
    PAIR_ATTR attr;
    PAIR p = NULL;
    CACHETABLE ct = cf->cachetable;
    ct->list.pair_lock_by_fullhash(fullhash);
    p = ct->list.find_pair(cf, key, fullhash);
    assert(p != NULL);
    assert(p->value_data == value);
    assert(p->value_rwlock.writers());
    nb_mutex_lock(&p->disk_nb_mutex, p->mutex);    
    pair_unlock(p);
    
    int fd = cf->fd;
    pf_callback(value, p->disk_data, read_extraargs, fd, &attr);

    pair_lock(p);
    nb_mutex_unlock(&p->disk_nb_mutex);    
    pair_unlock(p);
}

int toku_cachetable_get_and_pin (
    CACHEFILE cachefile, 
    CACHEKEY key, 
    uint32_t fullhash, 
    void**value, 
    CACHETABLE_WRITE_CALLBACK write_callback,
    CACHETABLE_FETCH_CALLBACK fetch_callback, 
    CACHETABLE_PARTIAL_FETCH_REQUIRED_CALLBACK pf_req_callback,
    CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
    bool may_modify_value,
    void* read_extraargs // parameter for fetch_callback, pf_req_callback, and pf_callback
    ) 
{
    pair_lock_type lock_type = may_modify_value ? PL_WRITE_EXPENSIVE : PL_READ;
    // We have separate parameters of read_extraargs and write_extraargs because
    // the lifetime of the two parameters are different. write_extraargs may be used
    // long after this function call (e.g. after a flush to disk), whereas read_extraargs
    // will not be used after this function returns. As a result, the caller may allocate
    // read_extraargs on the stack, whereas write_extraargs must be allocated
    // on the heap.
    return toku_cachetable_get_and_pin_with_dep_pairs (
        cachefile, 
        key, 
        fullhash, 
        value, 
        write_callback,
        fetch_callback, 
        pf_req_callback,
        pf_callback,
        lock_type,
        read_extraargs,
        0, // number of dependent pairs that we may need to checkpoint
        NULL, // array of dependent pairs
        NULL // array stating dirty/cleanness of dependent pairs
        );
}

// Read a pair from a cachefile into memory using the pair's fetch callback
// on entry, pair mutex (p->mutex) is NOT held, but pair is pinned
static void cachetable_fetch_pair(
    CACHETABLE ct, 
    CACHEFILE cf, 
    PAIR p, 
    CACHETABLE_FETCH_CALLBACK fetch_callback, 
    void* read_extraargs,
    bool keep_pair_locked
    ) 
{
    // helgrind
    CACHEKEY key = p->key;
    uint32_t fullhash = p->fullhash;

    void *toku_value = NULL;
    void *disk_data = NULL;
    PAIR_ATTR attr;
    
    // FIXME this should be enum cachetable_dirty, right?
    int dirty = 0;

    pair_lock(p);
    nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
    pair_unlock(p);

    int r;
    r = fetch_callback(cf, p, cf->fd, key, fullhash, &toku_value, &disk_data, &attr, &dirty, read_extraargs);
    if (dirty) {
        p->dirty = CACHETABLE_DIRTY;
    }
    assert(r == 0);

    p->value_data = toku_value;
    p->disk_data = disk_data;
    p->attr = attr;
    ct->ev.add_pair_attr(attr);
    pair_lock(p);
    nb_mutex_unlock(&p->disk_nb_mutex);
    if (!keep_pair_locked) {
        p->value_rwlock.write_unlock();
    }
    pair_unlock(p);
}

static bool get_checkpoint_pending(PAIR p, pair_list* pl) {
    bool checkpoint_pending = false;
    pl->read_pending_cheap_lock();
    checkpoint_pending = p->checkpoint_pending;
    p->checkpoint_pending = false;
    pl->read_pending_cheap_unlock();
    return checkpoint_pending;
}

static void checkpoint_pair_and_dependent_pairs(
    CACHETABLE ct,
    PAIR p,
    bool p_is_pending_checkpoint,
    uint32_t num_dependent_pairs, // number of dependent pairs that we may need to checkpoint
    PAIR* dependent_pairs,
    bool* dependent_pairs_pending_checkpoint,
    enum cachetable_dirty* dependent_dirty // array stating dirty/cleanness of dependent pairs
    )
{
    
    //
    // A checkpoint must not begin while we are checking dependent pairs or pending bits. 
    // Here is why.
    //
    // Now that we have all of the locks on the pairs we 
    // care about, we can take care of the necessary checkpointing.
    // For each pair, we simply need to write the pair if it is 
    // pending a checkpoint. If no pair is pending a checkpoint,
    // then all of this work will be done with the cachetable lock held,
    // so we don't need to worry about a checkpoint beginning 
    // in the middle of any operation below. If some pair
    // is pending a checkpoint, then the checkpoint thread
    // will not complete its current checkpoint until it can
    // successfully grab a lock on the pending pair and 
    // remove it from its list of pairs pending a checkpoint.
    // This cannot be done until we release the lock
    // that we have, which is not done in this function.
    // So, the point is, it is impossible for a checkpoint
    // to begin while we write any of these locked pairs
    // for checkpoint, even though writing a pair releases
    // the cachetable lock.
    //
    write_locked_pair_for_checkpoint(ct, p, p_is_pending_checkpoint);
    
    checkpoint_dependent_pairs(
        ct,
        num_dependent_pairs,
        dependent_pairs,
        dependent_pairs_pending_checkpoint,
        dependent_dirty
        );
}

static void unpin_pair(PAIR p, bool read_lock_grabbed) {
    if (read_lock_grabbed) {
        p->value_rwlock.read_unlock();
    }
    else {
        p->value_rwlock.write_unlock();
    }
}


// on input, the pair's mutex is held,
// on output, the pair's mutex is not held.
// if true, we must try again, and pair is not pinned
// if false, we succeeded, the pair is pinned
static bool try_pin_pair(
    PAIR p,
    CACHETABLE ct,
    CACHEFILE cachefile,
    pair_lock_type lock_type,
    uint32_t num_dependent_pairs,
    PAIR* dependent_pairs,
    enum cachetable_dirty* dependent_dirty,
    CACHETABLE_PARTIAL_FETCH_REQUIRED_CALLBACK pf_req_callback,
    CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
    void* read_extraargs,
    bool already_slept
    )
{
    bool dep_checkpoint_pending[num_dependent_pairs];
    bool try_again = true;
    bool expensive = (lock_type == PL_WRITE_EXPENSIVE);
    if (lock_type != PL_READ) {
        p->value_rwlock.write_lock(expensive);
    }
    else {
        p->value_rwlock.read_lock();
    }
    pair_touch(p);
    pair_unlock(p);

    bool partial_fetch_required = pf_req_callback(p->value_data,read_extraargs);
    
    if (partial_fetch_required) {    
        toku::context pf_ctx(CTX_PARTIAL_FETCH);

        if (ct->ev.should_client_thread_sleep() && !already_slept) {
            pair_lock(p);
            unpin_pair(p, (lock_type == PL_READ));
            pair_unlock(p);
            try_again = true;
            goto exit;
        }
        if (ct->ev.should_client_wake_eviction_thread()) {
            ct->ev.signal_eviction_thread();
        }
        //
        // Just because the PAIR exists does necessarily mean the all the data the caller requires
        // is in memory. A partial fetch may be required, which is evaluated above
        // if the variable is true, a partial fetch is required so we must grab the PAIR's write lock
        // and then call a callback to retrieve what we need
        //
        assert(partial_fetch_required);
        // As of Dr. No, only clean PAIRs may have pieces missing,
        // so we do a sanity check here.
        assert(!p->dirty);

        if (lock_type == PL_READ) {
            pair_lock(p);
            p->value_rwlock.read_unlock();
            p->value_rwlock.write_lock(true);
            pair_unlock(p);
        }
        else if (lock_type == PL_WRITE_CHEAP) {
            pair_lock(p);
            p->value_rwlock.write_unlock();
            p->value_rwlock.write_lock(true);
            pair_unlock(p);
        }
        
        partial_fetch_required = pf_req_callback(p->value_data,read_extraargs);
        if (partial_fetch_required) {
            do_partial_fetch(ct, cachefile, p, pf_callback, read_extraargs, true);
        }
        if (lock_type == PL_READ) {
            //
            // TODO: Zardosht, somehow ensure that a partial eviction cannot happen
            // between these two calls
            //
            pair_lock(p);
            p->value_rwlock.write_unlock();
            p->value_rwlock.read_lock();
            pair_unlock(p);
        }
        else if (lock_type == PL_WRITE_CHEAP) {
            pair_lock(p);
            p->value_rwlock.write_unlock();
            p->value_rwlock.write_lock(false);
            pair_unlock(p);
        }
        // small hack here for #5439,
        // for queries, pf_req_callback does some work for the caller,
        // that information may be out of date after a write_unlock
        // followed by a relock, so we do it again.
        bool pf_required = pf_req_callback(p->value_data,read_extraargs);
        assert(!pf_required);
    }

    if (lock_type != PL_READ) {
        ct->list.read_pending_cheap_lock();
        bool p_checkpoint_pending = p->checkpoint_pending;
        p->checkpoint_pending = false;
        for (uint32_t i = 0; i < num_dependent_pairs; i++) {
            dep_checkpoint_pending[i] = dependent_pairs[i]->checkpoint_pending;
            dependent_pairs[i]->checkpoint_pending = false;
        }
        ct->list.read_pending_cheap_unlock();
        checkpoint_pair_and_dependent_pairs(
            ct,
            p,
            p_checkpoint_pending,
            num_dependent_pairs,
            dependent_pairs,
            dep_checkpoint_pending,
            dependent_dirty
            );
    }

    try_again = false;
exit:
    return try_again;
}

int toku_cachetable_get_and_pin_with_dep_pairs (
    CACHEFILE cachefile,
    CACHEKEY key,
    uint32_t fullhash,
    void**value,
    CACHETABLE_WRITE_CALLBACK write_callback,
    CACHETABLE_FETCH_CALLBACK fetch_callback,
    CACHETABLE_PARTIAL_FETCH_REQUIRED_CALLBACK pf_req_callback,
    CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
    pair_lock_type lock_type,
    void* read_extraargs, // parameter for fetch_callback, pf_req_callback, and pf_callback
    uint32_t num_dependent_pairs, // number of dependent pairs that we may need to checkpoint
    PAIR* dependent_pairs,
    enum cachetable_dirty* dependent_dirty // array stating dirty/cleanness of dependent pairs
    )
// See cachetable/cachetable.h
{
    CACHETABLE ct = cachefile->cachetable;
    bool wait = false;
    bool already_slept = false;
    bool dep_checkpoint_pending[num_dependent_pairs];

    // 
    // If in the process of pinning the node we add data to the cachetable via a partial fetch
    // or a full fetch, we may need to first sleep because there is too much data in the 
    // cachetable. In those cases, we set the bool wait to true and goto try_again, so that
    // we can do our sleep and then restart the function.
    //
beginning:
    if (wait) {
        // We shouldn't be holding the read list lock while
        // waiting for the evictor to remove pairs.
        already_slept = true;
        ct->ev.wait_for_cache_pressure_to_subside();
    }

    ct->list.pair_lock_by_fullhash(fullhash);
    PAIR p = ct->list.find_pair(cachefile, key, fullhash);
    if (p) {
        // on entry, holds p->mutex (which is locked via pair_lock_by_fullhash)
        // on exit, does not hold p->mutex
        bool try_again = try_pin_pair(
            p,
            ct,
            cachefile,
            lock_type,
            num_dependent_pairs,
            dependent_pairs,
            dependent_dirty,
            pf_req_callback,
            pf_callback,
            read_extraargs,
            already_slept
            );
        if (try_again) {
            wait = true;
            goto beginning;
        }
        else {
            goto got_value;
        }
    }
    else {
        toku::context fetch_ctx(CTX_FULL_FETCH);

        ct->list.pair_unlock_by_fullhash(fullhash);
        // we only want to sleep once per call to get_and_pin. If we have already
        // slept and there is still cache pressure, then we might as 
        // well just complete the call, because the sleep did not help
        // By sleeping only once per get_and_pin, we prevent starvation and ensure
        // that we make progress (however slow) on each thread, which allows
        // assumptions of the form 'x will eventually happen'.
        // This happens in extreme scenarios.
        if (ct->ev.should_client_thread_sleep() && !already_slept) {
            wait = true;
            goto beginning;
        }
        if (ct->ev.should_client_wake_eviction_thread()) {
            ct->ev.signal_eviction_thread();
        }
        // Since the pair was not found, we need the write list
        // lock to add it.  So, we have to release the read list lock
        // first.
        ct->list.write_list_lock();
        ct->list.pair_lock_by_fullhash(fullhash);
        p = ct->list.find_pair(cachefile, key, fullhash);
        if (p != NULL) {
            ct->list.write_list_unlock();
            // on entry, holds p->mutex,
            // on exit, does not hold p->mutex
            bool try_again = try_pin_pair(
                p,
                ct,
                cachefile,
                lock_type,
                num_dependent_pairs,
                dependent_pairs,
                dependent_dirty,
                pf_req_callback,
                pf_callback,
                read_extraargs,
                already_slept
                );
            if (try_again) {
                wait = true;
                goto beginning;
            }
            else {
                goto got_value;
            }
        }
        assert(p == NULL);

        // Insert a PAIR into the cachetable
        // NOTE: At this point we still have the write list lock held.
        p = cachetable_insert_at(
            ct,
            cachefile,
            key,
            zero_value,
            fullhash,
            zero_attr,
            write_callback,
            CACHETABLE_CLEAN
            );
        invariant_notnull(p);

        // Pin the pair.
        p->value_rwlock.write_lock(true);
        pair_unlock(p);


        if (lock_type != PL_READ) {
            ct->list.read_pending_cheap_lock();
            invariant(!p->checkpoint_pending);
            for (uint32_t i = 0; i < num_dependent_pairs; i++) {
                dep_checkpoint_pending[i] = dependent_pairs[i]->checkpoint_pending;
                dependent_pairs[i]->checkpoint_pending = false;
            }
            ct->list.read_pending_cheap_unlock();
        }
        // We should release the lock before we perform
        // these expensive operations.
        ct->list.write_list_unlock();

        if (lock_type != PL_READ) {
            checkpoint_dependent_pairs(
                ct,
                num_dependent_pairs,
                dependent_pairs,
                dep_checkpoint_pending,
                dependent_dirty
                );
        }
        uint64_t t0 = get_tnow();

        // Retrieve the value of the PAIR from disk.
        // The pair being fetched will be marked as pending if a checkpoint happens during the
        // fetch because begin_checkpoint will mark as pending any pair that is locked even if it is clean.        
        cachetable_fetch_pair(ct, cachefile, p, fetch_callback, read_extraargs, true);
        cachetable_miss++;
        cachetable_misstime += get_tnow() - t0;

        // If the lock_type requested was a PL_READ, we downgrade to PL_READ,
        // but if the request was for a PL_WRITE_CHEAP, we don't bother 
        // downgrading, because we would have to possibly resolve the 
        // checkpointing again, and that would just make this function even 
        // messier.
        //
        // TODO(yoni): in case of PL_WRITE_CHEAP, write and use
        // p->value_rwlock.write_change_status_to_not_expensive(); (Also name it better)
        // to downgrade from an expensive write lock to a cheap one
        if (lock_type == PL_READ) {
            pair_lock(p);
            p->value_rwlock.write_unlock();
            p->value_rwlock.read_lock();
            pair_unlock(p);
            // small hack here for #5439,
            // for queries, pf_req_callback does some work for the caller,
            // that information may be out of date after a write_unlock
            // followed by a read_lock, so we do it again.
            bool pf_required = pf_req_callback(p->value_data,read_extraargs);
            assert(!pf_required);
        }
        goto got_value;
    }
got_value:
    *value = p->value_data;
    return 0;
}

// Lookup a key in the cachetable.  If it is found and it is not being written, then
// acquire a read lock on the pair, update the LRU list, and return sucess.
//
// However, if the page is clean or has checkpoint pending, don't return success.
// This will minimize the number of dirty nodes.
// Rationale:  maybe_get_and_pin is used when the system has an alternative to modifying a node.
//  In the context of checkpointing, we don't want to gratuituously dirty a page, because it causes an I/O.
//  For example, imagine that we can modify a bit in a dirty parent, or modify a bit in a clean child, then we should modify
//  the dirty parent (which will have to do I/O eventually anyway) rather than incur a full block write to modify one bit.
//  Similarly, if the checkpoint is actually pending, we don't want to block on it.
int toku_cachetable_maybe_get_and_pin (CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, pair_lock_type lock_type, void**value) {
    CACHETABLE ct = cachefile->cachetable;
    int r = -1;
    ct->list.pair_lock_by_fullhash(fullhash);
    PAIR p = ct->list.find_pair(cachefile, key, fullhash);
    if (p) {
        const bool lock_is_expensive = (lock_type == PL_WRITE_EXPENSIVE);
        bool got_lock = false;
        switch (lock_type) {
        case PL_READ:
            if (p->value_rwlock.try_read_lock()) {
                got_lock = p->dirty;

                if (!got_lock) {
                    p->value_rwlock.read_unlock();
                }
            }
            break;
        case PL_WRITE_CHEAP:
        case PL_WRITE_EXPENSIVE:
            if (p->value_rwlock.try_write_lock(lock_is_expensive)) {
                // we got the lock fast, so continue
                ct->list.read_pending_cheap_lock();

                // if pending a checkpoint, then we don't want to return
                // the value to the user, because we are responsible for
                // handling the checkpointing, which we do not want to do,
                // because it is expensive
                got_lock = p->dirty && !p->checkpoint_pending;

                ct->list.read_pending_cheap_unlock();
                if (!got_lock) {
                    p->value_rwlock.write_unlock();
                }
            }
            break;
        }
        if (got_lock) {
            pair_touch(p);
            *value = p->value_data;
            r = 0;
        }
    }
    ct->list.pair_unlock_by_fullhash(fullhash);
    return r;
}

//Used by flusher threads to possibly pin child on client thread if pinning is cheap
//Same as toku_cachetable_maybe_get_and_pin except that we don't care if the node is clean or dirty (return the node regardless).
//All other conditions remain the same.
int toku_cachetable_maybe_get_and_pin_clean (CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, pair_lock_type lock_type, void**value) {
    CACHETABLE ct = cachefile->cachetable;
    int r = -1;
    ct->list.pair_lock_by_fullhash(fullhash);
    PAIR p = ct->list.find_pair(cachefile, key, fullhash);
    if (p) {
        const bool lock_is_expensive = (lock_type == PL_WRITE_EXPENSIVE);
        bool got_lock = false;
        switch (lock_type) {
        case PL_READ:
            if (p->value_rwlock.try_read_lock()) {
                got_lock = true;
            } else if (!p->value_rwlock.read_lock_is_expensive()) {
                p->value_rwlock.write_lock(lock_is_expensive);
                got_lock = true;
            }
            if (got_lock) {
                pair_touch(p);
            }
            pair_unlock(p);
            break;
        case PL_WRITE_CHEAP:
        case PL_WRITE_EXPENSIVE:
            if (p->value_rwlock.try_write_lock(lock_is_expensive)) {
                got_lock = true;
            } else if (!p->value_rwlock.write_lock_is_expensive()) {
                p->value_rwlock.write_lock(lock_is_expensive);
                got_lock = true;
            }
            if (got_lock) {
                pair_touch(p);
            }
            pair_unlock(p);
            if (got_lock) {
                bool checkpoint_pending = get_checkpoint_pending(p, &ct->list);
                write_locked_pair_for_checkpoint(ct, p, checkpoint_pending);
            }
            break;
        }
        if (got_lock) {
            *value = p->value_data;
            r = 0;
        }
    } else {
        ct->list.pair_unlock_by_fullhash(fullhash);
    }
    return r;
}

int toku_cachetable_get_attr (CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, PAIR_ATTR *attr) {
    CACHETABLE ct = cachefile->cachetable;
    int r;
    ct->list.pair_lock_by_fullhash(fullhash);
    PAIR p = ct->list.find_pair(cachefile, key, fullhash);
    if (p) {
        // Assumes pair lock and full hash lock are the same mutex
        *attr = p->attr;
        r = 0;
    } else {
        r = -1;
    }
    ct->list.pair_unlock_by_fullhash(fullhash);
    return r;
}

//
// internal function to unpin a PAIR.
// As of Clayface, this is may be called in two ways:
//  - with flush false
//  - with flush true
// The first is for when this is run during run_unlockers in 
// toku_cachetable_get_and_pin_nonblocking, the second is during
// normal operations. Only during normal operations do we want to possibly
// induce evictions or sleep.
//
static int
cachetable_unpin_internal(
    CACHEFILE cachefile, 
    PAIR p,
    enum cachetable_dirty dirty, 
    PAIR_ATTR attr,
    bool flush
    )
{
    invariant_notnull(p);

    CACHETABLE ct = cachefile->cachetable;
    bool added_data_to_cachetable = false;

    // hack for #3969, only exists in case where we run unlockers
    pair_lock(p);
    PAIR_ATTR old_attr = p->attr;
    PAIR_ATTR new_attr = attr;
    if (dirty) {
        p->dirty = CACHETABLE_DIRTY;
    }
    if (attr.is_valid) {
        p->attr = attr;
    }
    bool read_lock_grabbed = p->value_rwlock.readers() != 0;
    unpin_pair(p, read_lock_grabbed);
    pair_unlock(p);
    
    if (attr.is_valid) {
        if (new_attr.size > old_attr.size) {
            added_data_to_cachetable = true;
        }
        ct->ev.change_pair_attr(old_attr, new_attr);
    }

    // see comments above this function to understand this code
    if (flush && added_data_to_cachetable) {
        if (ct->ev.should_client_thread_sleep()) {
            ct->ev.wait_for_cache_pressure_to_subside();
        }
        if (ct->ev.should_client_wake_eviction_thread()) {
            ct->ev.signal_eviction_thread();
        }
    }
    return 0;
}

int toku_cachetable_unpin(CACHEFILE cachefile, PAIR p, enum cachetable_dirty dirty, PAIR_ATTR attr) {
    return cachetable_unpin_internal(cachefile, p, dirty, attr, true);
}
int toku_cachetable_unpin_ct_prelocked_no_flush(CACHEFILE cachefile, PAIR p, enum cachetable_dirty dirty, PAIR_ATTR attr) {
    return cachetable_unpin_internal(cachefile, p, dirty, attr, false);
}

static void
run_unlockers (UNLOCKERS unlockers) {
    while (unlockers) {
        assert(unlockers->locked);
        unlockers->locked = false;
        unlockers->f(unlockers->extra);
        unlockers=unlockers->next;
    }
}

//
// This function tries to pin the pair without running the unlockers.
// If it can pin the pair cheaply, it does so, and returns 0. 
// If the pin will be expensive, it runs unlockers, 
// pins the pair, then releases the pin,
// and then returns TOKUDB_TRY_AGAIN
//
// on entry, pair mutex is held,
// on exit, pair mutex is NOT held
static int
maybe_pin_pair(
    PAIR p, 
    pair_lock_type lock_type,
    UNLOCKERS unlockers
    )
{
    int retval = 0;
    bool expensive = (lock_type == PL_WRITE_EXPENSIVE);

    // we can pin the PAIR. In each case, we check to see
    // if acquiring the pin is expensive. If so, we run the unlockers, set the
    // retval to TOKUDB_TRY_AGAIN, pin AND release the PAIR.
    // If not, then we pin the PAIR, keep retval at 0, and do not
    // run the unlockers, as we intend to return the value to the user
    if (lock_type == PL_READ) {
        if (p->value_rwlock.read_lock_is_expensive()) {
            pair_add_ref_unlocked(p);
            pair_unlock(p);
            run_unlockers(unlockers);
            retval = TOKUDB_TRY_AGAIN;
            pair_lock(p);
            pair_release_ref_unlocked(p);
        }
        p->value_rwlock.read_lock();
    }
    else if (lock_type == PL_WRITE_EXPENSIVE || lock_type == PL_WRITE_CHEAP){
        if (p->value_rwlock.write_lock_is_expensive()) {
            pair_add_ref_unlocked(p);
            pair_unlock(p);
            run_unlockers(unlockers);
            // change expensive to false because 
            // we will unpin the pair immedietely
            // after pinning it
            expensive = false;
            retval = TOKUDB_TRY_AGAIN;
            pair_lock(p);
            pair_release_ref_unlocked(p);
        }
        p->value_rwlock.write_lock(expensive);
    }
    else {
        abort();
    }

    if (retval == TOKUDB_TRY_AGAIN) {
        unpin_pair(p, (lock_type == PL_READ));
    }    
    pair_touch(p);
    pair_unlock(p);
    return retval;
}

int toku_cachetable_get_and_pin_nonblocking(
    CACHEFILE cf,
    CACHEKEY key,
    uint32_t fullhash,
    void**value,
    CACHETABLE_WRITE_CALLBACK write_callback,
    CACHETABLE_FETCH_CALLBACK fetch_callback,
    CACHETABLE_PARTIAL_FETCH_REQUIRED_CALLBACK pf_req_callback,
    CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
    pair_lock_type lock_type,
    void *read_extraargs,
    UNLOCKERS unlockers
    )
// See cachetable/cachetable.h.
{
    CACHETABLE ct = cf->cachetable;
    assert(lock_type == PL_READ ||
        lock_type == PL_WRITE_CHEAP ||
        lock_type == PL_WRITE_EXPENSIVE
        );
try_again:
    ct->list.pair_lock_by_fullhash(fullhash);
    PAIR p = ct->list.find_pair(cf, key, fullhash);
    if (p == NULL) {
        toku::context fetch_ctx(CTX_FULL_FETCH);

        // Not found
        ct->list.pair_unlock_by_fullhash(fullhash);
        ct->list.write_list_lock();
        ct->list.pair_lock_by_fullhash(fullhash);
        p = ct->list.find_pair(cf, key, fullhash);
        if (p != NULL) {
            // we just did another search with the write list lock and 
            // found the pair this means that in between our 
            // releasing the read list lock and grabbing the write list lock,
            // another thread snuck in and inserted the PAIR into
            // the cachetable. For simplicity, we just return
            // to the top and restart the function
            ct->list.write_list_unlock();
            ct->list.pair_unlock_by_fullhash(fullhash);
            goto try_again;
        }

        p = cachetable_insert_at(
            ct,
            cf,
            key,
            zero_value,
            fullhash,
            zero_attr,
            write_callback,
            CACHETABLE_CLEAN
            );
        assert(p);
        // grab expensive write lock, because we are about to do a fetch
        // off disk
        // No one can access this pair because
        // we hold the write list lock and we just injected
        // the pair into the cachetable. Therefore, this lock acquisition
        // will not block.
        p->value_rwlock.write_lock(true);
        pair_unlock(p);
        run_unlockers(unlockers); // we hold the write list_lock.
        ct->list.write_list_unlock();

        // at this point, only the pair is pinned,
        // and no pair mutex held, and 
        // no list lock is held
        uint64_t t0 = get_tnow();
        cachetable_fetch_pair(ct, cf, p, fetch_callback, read_extraargs, false);
        cachetable_miss++;
        cachetable_misstime += get_tnow() - t0;

        if (ct->ev.should_client_thread_sleep()) {
            ct->ev.wait_for_cache_pressure_to_subside();
        }
        if (ct->ev.should_client_wake_eviction_thread()) {
            ct->ev.signal_eviction_thread();
        }

        return TOKUDB_TRY_AGAIN;
    }
    else {
        int r = maybe_pin_pair(p, lock_type, unlockers);
        if (r == TOKUDB_TRY_AGAIN) {
            return TOKUDB_TRY_AGAIN;
        }
        assert_zero(r);

        if (lock_type != PL_READ) {
            bool checkpoint_pending = get_checkpoint_pending(p, &ct->list);
            write_locked_pair_for_checkpoint(ct, p, checkpoint_pending);
        }

        // At this point, we have pinned the PAIR
        // and resolved its checkpointing. The pair's
        // mutex is not held. The read list lock IS held. Before
        // returning the PAIR to the user, we must
        // still check for partial fetch
        bool partial_fetch_required = pf_req_callback(p->value_data,read_extraargs);
        if (partial_fetch_required) {
            toku::context fetch_ctx(CTX_PARTIAL_FETCH);

            run_unlockers(unlockers);

            // we are now getting an expensive write lock, because we
            // are doing a partial fetch. So, if we previously have 
            // either a read lock or a cheap write lock, we need to 
            // release and reacquire the correct lock type
            if (lock_type == PL_READ) {
                pair_lock(p);
                p->value_rwlock.read_unlock();
                p->value_rwlock.write_lock(true);
                pair_unlock(p);
            }
            else if (lock_type == PL_WRITE_CHEAP) {
                pair_lock(p);
                p->value_rwlock.write_unlock();
                p->value_rwlock.write_lock(true);
                pair_unlock(p);
            }

            // Now wait for the I/O to occur.
            partial_fetch_required = pf_req_callback(p->value_data,read_extraargs);
            if (partial_fetch_required) {
                do_partial_fetch(ct, cf, p, pf_callback, read_extraargs, false);
            }
            else {
                pair_lock(p);
                p->value_rwlock.write_unlock();
                pair_unlock(p);
            }

            if (ct->ev.should_client_thread_sleep()) {
                ct->ev.wait_for_cache_pressure_to_subside();
            }
            if (ct->ev.should_client_wake_eviction_thread()) {
                ct->ev.signal_eviction_thread();
            }

            return TOKUDB_TRY_AGAIN;
        }
        else {
            *value = p->value_data;
            return 0;    
        }
    }
    // We should not get here. Above code should hit a return in all cases.
    abort();
}

struct cachefile_prefetch_args {
    PAIR p;
    CACHETABLE_FETCH_CALLBACK fetch_callback;
    void* read_extraargs;
};

struct cachefile_partial_prefetch_args {
    PAIR p;
    CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback;
    void *read_extraargs;
};

// Worker thread function to read a pair from a cachefile to memory
static void cachetable_reader(void* extra) {
    struct cachefile_prefetch_args* cpargs = (struct cachefile_prefetch_args*)extra;
    CACHEFILE cf = cpargs->p->cachefile;
    CACHETABLE ct = cf->cachetable;
    cachetable_fetch_pair(
        ct,
        cpargs->p->cachefile,
        cpargs->p,
        cpargs->fetch_callback,
        cpargs->read_extraargs,
        false
        );
    bjm_remove_background_job(cf->bjm);
    toku_free(cpargs);
}

static void cachetable_partial_reader(void* extra) {
    struct cachefile_partial_prefetch_args *cpargs = (struct cachefile_partial_prefetch_args*)extra;
    CACHEFILE cf = cpargs->p->cachefile;
    CACHETABLE ct = cf->cachetable;
    do_partial_fetch(ct, cpargs->p->cachefile, cpargs->p, cpargs->pf_callback, cpargs->read_extraargs, false);
    bjm_remove_background_job(cf->bjm);
    toku_free(cpargs);
}

int toku_cachefile_prefetch(CACHEFILE cf, CACHEKEY key, uint32_t fullhash,
                            CACHETABLE_WRITE_CALLBACK write_callback,
                            CACHETABLE_FETCH_CALLBACK fetch_callback,
                            CACHETABLE_PARTIAL_FETCH_REQUIRED_CALLBACK pf_req_callback,
                            CACHETABLE_PARTIAL_FETCH_CALLBACK pf_callback,
                            void *read_extraargs,
                            bool *doing_prefetch)
// Effect: See the documentation for this function in cachetable/cachetable.h
{
    int r = 0;
    PAIR p = NULL;
    if (doing_prefetch) {
        *doing_prefetch = false;
    }
    CACHETABLE ct = cf->cachetable;
    // if cachetable has too much data, don't bother prefetching
    if (ct->ev.should_client_thread_sleep()) {
        goto exit;
    }
    ct->list.pair_lock_by_fullhash(fullhash);
    // lookup
    p = ct->list.find_pair(cf, key, fullhash);
    // if not found then create a pair and fetch it
    if (p == NULL) {
        cachetable_prefetches++;
        ct->list.pair_unlock_by_fullhash(fullhash);
        ct->list.write_list_lock();
        ct->list.pair_lock_by_fullhash(fullhash);
        p = ct->list.find_pair(cf, key, fullhash);
        if (p != NULL) {
            ct->list.write_list_unlock();
            goto found_pair;
        }
        
        r = bjm_add_background_job(cf->bjm);
        assert_zero(r);
        p = cachetable_insert_at(
            ct, 
            cf, 
            key, 
            zero_value, 
            fullhash, 
            zero_attr, 
            write_callback,
            CACHETABLE_CLEAN
            );
        assert(p);
        p->value_rwlock.write_lock(true);
        pair_unlock(p);
        ct->list.write_list_unlock();
        
        struct cachefile_prefetch_args *MALLOC(cpargs);
        cpargs->p = p;
        cpargs->fetch_callback = fetch_callback;
        cpargs->read_extraargs = read_extraargs;
        toku_kibbutz_enq(ct->ct_kibbutz, cachetable_reader, cpargs);
        if (doing_prefetch) {
            *doing_prefetch = true;
        }
        goto exit;
    }

found_pair:
    // at this point, p is found, pair's mutex is grabbed, and
    // no list lock is held
    // TODO(leif): should this also just go ahead and wait if all there
    // are to wait for are readers?
    if (p->value_rwlock.try_write_lock(true)) {
        // nobody else is using the node, so we should go ahead and prefetch
        pair_touch(p);
        pair_unlock(p);
        bool partial_fetch_required = pf_req_callback(p->value_data, read_extraargs);

        if (partial_fetch_required) {
            r = bjm_add_background_job(cf->bjm);
            assert_zero(r);
            struct cachefile_partial_prefetch_args *MALLOC(cpargs);
            cpargs->p = p;
            cpargs->pf_callback = pf_callback;
            cpargs->read_extraargs = read_extraargs;
            toku_kibbutz_enq(ct->ct_kibbutz, cachetable_partial_reader, cpargs);
            if (doing_prefetch) {
                *doing_prefetch = true;
            }
        }
        else {
            pair_lock(p);
            p->value_rwlock.write_unlock();
            pair_unlock(p);
        }
    }
    else {
        // Couldn't get the write lock cheaply
        pair_unlock(p);
    }
exit:
    return 0;
}

void toku_cachefile_verify (CACHEFILE cf) {
    toku_cachetable_verify(cf->cachetable);
}

void toku_cachetable_verify (CACHETABLE ct) {
    ct->list.verify();
}



struct pair_flush_for_close{
    PAIR p;
    BACKGROUND_JOB_MANAGER bjm;
};

static void cachetable_flush_pair_for_close(void* extra) {
    struct pair_flush_for_close *CAST_FROM_VOIDP(args, extra);
    PAIR p = args->p;
    CACHEFILE cf = p->cachefile;
    CACHETABLE ct = cf->cachetable;
    PAIR_ATTR attr;
    cachetable_only_write_locked_data(
        &ct->ev,
        p,
        false, // not for a checkpoint, as we assert above
        &attr,
        false // not a clone
        );            
    p->dirty = CACHETABLE_CLEAN;
    bjm_remove_background_job(args->bjm);
    toku_free(args);
}


static void flush_pair_for_close_on_background_thread(
    PAIR p, 
    BACKGROUND_JOB_MANAGER bjm, 
    CACHETABLE ct
    ) 
{
    pair_lock(p);
    assert(p->value_rwlock.users() == 0);
    assert(nb_mutex_users(&p->disk_nb_mutex) == 0);
    assert(!p->cloned_value_data);
    if (p->dirty == CACHETABLE_DIRTY) {
        int r = bjm_add_background_job(bjm);
        assert_zero(r);
        struct pair_flush_for_close *XMALLOC(args);
        args->p = p;
        args->bjm = bjm;
        toku_kibbutz_enq(ct->ct_kibbutz, cachetable_flush_pair_for_close, args);
    }
    pair_unlock(p);
}

static void remove_pair_for_close(PAIR p, CACHETABLE ct, bool completely) {
    pair_lock(p);
    assert(p->value_rwlock.users() == 0);
    assert(nb_mutex_users(&p->disk_nb_mutex) == 0);
    assert(!p->cloned_value_data);
    assert(p->dirty == CACHETABLE_CLEAN);
    assert(p->refcount == 0);
    if (completely) {
        cachetable_remove_pair(&ct->list, &ct->ev, p);
        pair_unlock(p);
        // TODO: Eventually, we should not hold the write list lock during free
        cachetable_free_pair(p);
    }
    else {
        // if we are not evicting completely,
        // we only want to remove the PAIR from the cachetable,
        // that is, remove from the hashtable and various linked
        // list, but we will keep the PAIRS and the linked list
        // in the cachefile intact, as they will be cached away
        // in case an open comes soon.
        ct->list.evict_from_cachetable(p);
        pair_unlock(p);
    }
}

// helper function for cachetable_flush_cachefile, which happens on a close
// writes out the dirty pairs on background threads and returns when
// the writing is done
static void write_dirty_pairs_for_close(CACHETABLE ct, CACHEFILE cf) {
    BACKGROUND_JOB_MANAGER bjm = NULL;
    bjm_init(&bjm);
    ct->list.write_list_lock(); // TODO: (Zardosht), verify that this lock is unnecessary to take here
    PAIR p = NULL;
    // write out dirty PAIRs
    uint32_t i;
    if (cf) {
        for (i = 0, p = cf->cf_head;
            i < cf->num_pairs;
            i++, p = p->cf_next)
        {
            flush_pair_for_close_on_background_thread(p, bjm, ct);
        }
    }
    else {
        for (i = 0, p = ct->list.m_checkpoint_head;
            i < ct->list.m_n_in_table;
            i++, p = p->clock_next)
        {
            flush_pair_for_close_on_background_thread(p, bjm, ct);
        }
    }
    ct->list.write_list_unlock();
    bjm_wait_for_jobs_to_finish(bjm);
    bjm_destroy(bjm);
}

static void remove_all_pairs_for_close(CACHETABLE ct, CACHEFILE cf, bool evict_completely) {
    ct->list.write_list_lock();
    if (cf) {
        if (evict_completely) {
            // if we are evicting completely, then the PAIRs will
            // be removed from the linked list managed by the
            // cachefile, so this while loop works
            while (cf->num_pairs > 0) {
                PAIR p = cf->cf_head;
                remove_pair_for_close(p, ct, evict_completely);
            }
        }
        else {
            // on the other hand, if we are not evicting completely,
            // then the cachefile's linked list stays intact, and we must
            // iterate like this.
            for (PAIR p = cf->cf_head; p; p = p->cf_next) {
                remove_pair_for_close(p, ct, evict_completely);
            }
        }
    }
    else {
        while (ct->list.m_n_in_table > 0) {
            PAIR p = ct->list.m_checkpoint_head;
            // if there is no cachefile, then we better
            // be evicting completely because we have no
            // cachefile to save the PAIRs to. At least,
            // we have no guarantees that the cachefile
            // will remain good
            invariant(evict_completely);
            remove_pair_for_close(p, ct, true);
        } 
    }
    ct->list.write_list_unlock();
}

static void verify_cachefile_flushed(CACHETABLE ct UU(), CACHEFILE cf UU()) {
#ifdef TOKU_DEBUG_PARANOID
    // assert here that cachefile is flushed by checking
    // pair_list and finding no pairs belonging to this cachefile
    // Make a list of pairs that belong to this cachefile.
    if (cf) {
        ct->list.write_list_lock();
        // assert here that cachefile is flushed by checking
        // pair_list and finding no pairs belonging to this cachefile
        // Make a list of pairs that belong to this cachefile.
        uint32_t i;
        PAIR p = NULL;
        for (i = 0, p = ct->list.m_checkpoint_head; 
             i < ct->list.m_n_in_table; 
             i++, p = p->clock_next) 
         {
             assert(p->cachefile != cf);
         }
         ct->list.write_list_unlock();
    }
#endif
}

// Flush (write to disk) all of the pairs that belong to a cachefile (or all pairs if 
// the cachefile is NULL.
// Must be holding cachetable lock on entry.
// 
// This function assumes that no client thread is accessing or 
// trying to access the cachefile while this function is executing.
// This implies no client thread will be trying to lock any nodes
// belonging to the cachefile.
//
// This function also assumes that the cachefile is not in the process
// of being used by a checkpoint. If a checkpoint is currently happening,
// it does NOT include this cachefile.
//
static void cachetable_flush_cachefile(CACHETABLE ct, CACHEFILE cf, bool evict_completely) {
    //
    // Because work on a kibbutz is always done by the client thread,
    // and this function assumes that no client thread is doing any work
    // on the cachefile, we assume that no client thread will be adding jobs
    // to this cachefile's kibbutz.
    //
    // The caller of this function must ensure that there are 
    // no jobs added to the kibbutz. This implies that the only work other 
    // threads may be doing is work by the writer threads.
    //
    // first write out dirty PAIRs
    write_dirty_pairs_for_close(ct, cf);

    // now that everything is clean, get rid of everything
    remove_all_pairs_for_close(ct, cf, evict_completely);

    verify_cachefile_flushed(ct, cf);
}

/* Requires that no locks be held that are used by the checkpoint logic */
void
toku_cachetable_minicron_shutdown(CACHETABLE ct) {
    int  r = ct->cp.shutdown();
    assert(r==0);
    ct->cl.destroy();
}

void toku_cachetable_prepare_close(CACHETABLE ct UU()) {
    extern bool toku_serialize_in_parallel;
    toku_unsafe_set(&toku_serialize_in_parallel, true);
}

/* Requires that it all be flushed. */
void toku_cachetable_close (CACHETABLE *ctp) {
    CACHETABLE ct = *ctp;
    ct->cp.destroy();
    ct->cl.destroy();
    ct->cf_list.free_stale_data(&ct->ev);
    cachetable_flush_cachefile(ct, NULL, true);
    ct->ev.destroy();
    ct->list.destroy();
    ct->cf_list.destroy();
    
    if (ct->client_kibbutz)
        toku_kibbutz_destroy(ct->client_kibbutz);
    if (ct->ct_kibbutz)
        toku_kibbutz_destroy(ct->ct_kibbutz);
    if (ct->checkpointing_kibbutz)
        toku_kibbutz_destroy(ct->checkpointing_kibbutz);
    toku_free(ct->env_dir);
    toku_free(ct);
    *ctp = 0;
}

static PAIR test_get_pair(CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, bool have_ct_lock) {
    CACHETABLE ct = cachefile->cachetable;

    if (!have_ct_lock) {
        ct->list.read_list_lock();
    }
    
    PAIR p = ct->list.find_pair(cachefile, key, fullhash);
    assert(p != NULL);
    if (!have_ct_lock) {
        ct->list.read_list_unlock();
    }
    return p;
}

//test-only wrapper
int toku_test_cachetable_unpin(CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, enum cachetable_dirty dirty, PAIR_ATTR attr) {
    // By default we don't have the lock
    PAIR p = test_get_pair(cachefile, key, fullhash, false);
    return toku_cachetable_unpin(cachefile, p, dirty, attr); // assume read lock is not grabbed, and that it is a write lock
}

//test-only wrapper
int toku_test_cachetable_unpin_ct_prelocked_no_flush(CACHEFILE cachefile, CACHEKEY key, uint32_t fullhash, enum cachetable_dirty dirty, PAIR_ATTR attr) {
    // We hold the cachetable mutex.
    PAIR p = test_get_pair(cachefile, key, fullhash, true);
    return toku_cachetable_unpin_ct_prelocked_no_flush(cachefile, p, dirty, attr);
}

//test-only wrapper
int toku_test_cachetable_unpin_and_remove (
    CACHEFILE cachefile, 
    CACHEKEY key,
    CACHETABLE_REMOVE_KEY remove_key,
    void* remove_key_extra) 
{
    uint32_t fullhash = toku_cachetable_hash(cachefile, key);
    PAIR p = test_get_pair(cachefile, key, fullhash, false);
    return toku_cachetable_unpin_and_remove(cachefile, p, remove_key, remove_key_extra);
}

int toku_cachetable_unpin_and_remove (
    CACHEFILE cachefile, 
    PAIR p,
    CACHETABLE_REMOVE_KEY remove_key,
    void* remove_key_extra
    ) 
{
    invariant_notnull(p);
    int r = ENOENT;
    CACHETABLE ct = cachefile->cachetable;

    p->dirty = CACHETABLE_CLEAN; // clear the dirty bit.  We're just supposed to remove it.
    // grab disk_nb_mutex to ensure any background thread writing
    // out a cloned value completes
    pair_lock(p);
    assert(p->value_rwlock.writers());
    nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
    pair_unlock(p);
    assert(p->cloned_value_data == NULL);
    
    //
    // take care of key removal
    //
    ct->list.write_list_lock();
    ct->list.read_pending_cheap_lock();
    bool for_checkpoint = p->checkpoint_pending;
    // now let's wipe out the pending bit, because we are
    // removing the PAIR
    p->checkpoint_pending = false;
    
    // For the PAIR to not be picked by the
    // cleaner thread, we mark the cachepressure_size to be 0
    // (This is redundant since we have the write_list_lock)
    // This should not be an issue because we call
    // cachetable_remove_pair before
    // releasing the cachetable lock.
    //
    CACHEKEY key_to_remove = p->key;
    p->attr.cache_pressure_size = 0;
    //
    // callback for removing the key
    // for FTNODEs, this leads to calling
    // toku_free_blocknum
    //
    if (remove_key) {
        remove_key(
            &key_to_remove, 
            for_checkpoint, 
            remove_key_extra
            );
    }    
    ct->list.read_pending_cheap_unlock();

    pair_lock(p);
    p->value_rwlock.write_unlock();
    nb_mutex_unlock(&p->disk_nb_mutex);
    //
    // As of Clayface (6.5), only these threads may be
    // blocked waiting to lock this PAIR:
    //  - the checkpoint thread (because a checkpoint is in progress
    //     and the PAIR was in the list of pending pairs)
    //  - a client thread running get_and_pin_nonblocking, who
    //     ran unlockers, then waited on the PAIR lock.
    //     While waiting on a PAIR lock, another thread comes in,
    //     locks the PAIR, and ends up calling unpin_and_remove,
    //     all while get_and_pin_nonblocking is waiting on the PAIR lock.
    //     We did not realize this at first, which caused bug #4357
    // The following threads CANNOT be blocked waiting on 
    // the PAIR lock:
    //  - a thread trying to run eviction via run_eviction. 
    //     That cannot happen because run_eviction only
    //     attempts to lock PAIRS that are not locked, and this PAIR
    //     is locked.
    //  - cleaner thread, for the same reason as a thread running 
    //     eviction
    //  - client thread doing a normal get_and_pin. The client is smart
    //     enough to not try to lock a PAIR that another client thread
    //     is trying to unpin and remove. Note that this includes work
    //     done on kibbutzes.
    //  - writer thread. Writer threads do not grab PAIR locks. They
    //     get PAIR locks transferred to them by client threads.
    //

    // first thing we do is remove the PAIR from the various
    // cachetable data structures, so no other thread can possibly
    // access it. We do not want to risk some other thread
    // trying to lock this PAIR if we release the write list lock
    // below. If some thread is already waiting on the lock,
    // then we let that thread grab the lock and finish, but
    // we don't want any NEW threads to try to grab the PAIR
    // lock.
    //
    // Because we call cachetable_remove_pair and wait,
    // the threads that may be waiting
    // on this PAIR lock must be careful to do NOTHING with the PAIR 
    // As per our analysis above, we only need
    // to make sure the checkpoint thread and get_and_pin_nonblocking do
    // nothing, and looking at those functions, it is clear they do nothing.
    // 
    cachetable_remove_pair(&ct->list, &ct->ev, p);
    ct->list.write_list_unlock();
    if (p->refcount > 0) {
        pair_wait_for_ref_release_unlocked(p);
    }
    if (p->value_rwlock.users() > 0) {
        // Need to wait for everyone else to leave
        // This write lock will be granted only after all waiting
        // threads are done.
        p->value_rwlock.write_lock(true);
        assert(p->refcount == 0);
        assert(p->value_rwlock.users() == 1);  // us
        assert(!p->checkpoint_pending);
        assert(p->attr.cache_pressure_size == 0);
        p->value_rwlock.write_unlock();
    }
    // just a sanity check
    assert(nb_mutex_users(&p->disk_nb_mutex) == 0);
    assert(p->cloned_value_data == NULL);
    //Remove pair. 
    pair_unlock(p);
    cachetable_free_pair(p);
    r = 0;
    return r;
}

int set_filenum_in_array(const FT &ft, const uint32_t index, FILENUM *const array);
int set_filenum_in_array(const FT &ft, const uint32_t index, FILENUM *const array) {
    array[index] = toku_cachefile_filenum(ft->cf);
    return 0;
}

static int log_open_txn (TOKUTXN txn, void* extra) {
    int r;
    checkpointer* cp = (checkpointer *)extra;
    TOKULOGGER logger = txn->logger;
    FILENUMS open_filenums;
    uint32_t num_filenums = txn->open_fts.size();
    FILENUM array[num_filenums];
    if (toku_txn_is_read_only(txn)) {
        goto cleanup;
    }
    else {
        cp->increment_num_txns();
    }

    open_filenums.num      = num_filenums;
    open_filenums.filenums = array;
    //Fill in open_filenums
    r = txn->open_fts.iterate<FILENUM, set_filenum_in_array>(array);
    invariant(r==0);
    switch (toku_txn_get_state(txn)) {
    case TOKUTXN_LIVE:{
        toku_log_xstillopen(logger, NULL, 0, txn,
                            toku_txn_get_txnid(txn),
                            toku_txn_get_txnid(toku_logger_txn_parent(txn)),
                            txn->roll_info.rollentry_raw_count,
                            open_filenums,
                            txn->force_fsync_on_commit,
                            txn->roll_info.num_rollback_nodes,
                            txn->roll_info.num_rollentries,
                            txn->roll_info.spilled_rollback_head,
                            txn->roll_info.spilled_rollback_tail,
                            txn->roll_info.current_rollback);
        goto cleanup;
    }
    case TOKUTXN_PREPARING: {
        TOKU_XA_XID xa_xid;
        toku_txn_get_prepared_xa_xid(txn, &xa_xid);
        toku_log_xstillopenprepared(logger, NULL, 0, txn,
                                    toku_txn_get_txnid(txn),
                                    &xa_xid,
                                    txn->roll_info.rollentry_raw_count,
                                    open_filenums,
                                    txn->force_fsync_on_commit,
                                    txn->roll_info.num_rollback_nodes,
                                    txn->roll_info.num_rollentries,
                                    txn->roll_info.spilled_rollback_head,
                                    txn->roll_info.spilled_rollback_tail,
                                    txn->roll_info.current_rollback);
        goto cleanup;
    }
    case TOKUTXN_RETIRED:
    case TOKUTXN_COMMITTING:
    case TOKUTXN_ABORTING: {
        assert(0);
    }
    }
    // default is an error
    assert(0);
cleanup:
    return 0;
}

// Requires:   All three checkpoint-relevant locks must be held (see checkpoint.c).
// Algorithm:  Write a checkpoint record to the log, noting the LSN of that record.
//             Use the begin_checkpoint callback to take necessary snapshots (header, btt)
//             Mark every dirty node as "pending."  ("Pending" means that the node must be
//                                                    written to disk before it can be modified.)
void toku_cachetable_begin_checkpoint (CHECKPOINTER cp, TOKULOGGER UU(logger)) {    
    cp->begin_checkpoint();
}


// This is used by the cachetable_race test.  
static volatile int toku_checkpointing_user_data_status = 0;
static void toku_cachetable_set_checkpointing_user_data_status (int v) {
    toku_checkpointing_user_data_status = v;
}
int toku_cachetable_get_checkpointing_user_data_status (void) {
    return toku_checkpointing_user_data_status;
}

// Requires:   The big checkpoint lock must be held (see checkpoint.c).
// Algorithm:  Write all pending nodes to disk
//             Use checkpoint callback to write snapshot information to disk (header, btt)
//             Use end_checkpoint callback to fsync dictionary and log, and to free unused blocks
// Note:       If testcallback is null (for testing purposes only), call it after writing dictionary but before writing log
void toku_cachetable_end_checkpoint(CHECKPOINTER cp, TOKULOGGER UU(logger),
                               void (*testcallback_f)(void*),  void* testextra) {
    cp->end_checkpoint(testcallback_f, testextra);
}

TOKULOGGER toku_cachefile_logger (CACHEFILE cf) {
    return cf->cachetable->cp.get_logger();
}

FILENUM toku_cachefile_filenum (CACHEFILE cf) {
    return cf->filenum;
}

// debug functions

int toku_cachetable_assert_all_unpinned (CACHETABLE ct) {
    uint32_t i;
    int some_pinned=0;
    ct->list.read_list_lock();
    for (i=0; i<ct->list.m_table_size; i++) {
        PAIR p;
        for (p=ct->list.m_table[i]; p; p=p->hash_chain) {
            pair_lock(p);
            if (p->value_rwlock.users()) {
                //printf("%s:%d pinned: %" PRId64 " (%p)\n", __FILE__, __LINE__, p->key.b, p->value_data);
                some_pinned=1;
            }
            pair_unlock(p);
        }
    }
    ct->list.read_list_unlock();
    return some_pinned;
}

int toku_cachefile_count_pinned (CACHEFILE cf, int print_them) {
    assert(cf != NULL);
    int n_pinned=0;
    CACHETABLE ct = cf->cachetable;
    ct->list.read_list_lock();

    // Iterate over all the pairs to find pairs specific to the
    // given cachefile.
    for (uint32_t i = 0; i < ct->list.m_table_size; i++) {
        for (PAIR p = ct->list.m_table[i]; p; p = p->hash_chain) {
            if (p->cachefile == cf) {
                pair_lock(p);
                if (p->value_rwlock.users()) {
                    if (print_them) {
                        printf("%s:%d pinned: %" PRId64 " (%p)\n", 
                                __FILE__,
                                __LINE__,
                                p->key.b,
                                p->value_data);
                    }
                    n_pinned++;
                }                
                pair_unlock(p);
            }
        }
    }

    ct->list.read_list_unlock();
    return n_pinned;
}

void toku_cachetable_print_state (CACHETABLE ct) {
    uint32_t i;
    ct->list.read_list_lock();
    for (i=0; i<ct->list.m_table_size; i++) {
        PAIR p = ct->list.m_table[i];
        if (p != 0) {
            pair_lock(p);
            printf("t[%u]=", i);
            for (p=ct->list.m_table[i]; p; p=p->hash_chain) {
                printf(" {%" PRId64 ", %p, dirty=%d, pin=%d, size=%ld}", p->key.b, p->cachefile, (int) p->dirty, p->value_rwlock.users(), p->attr.size);
            }
            printf("\n");
            pair_unlock(p);
        }
    }
    ct->list.read_list_unlock();
}

void toku_cachetable_get_state (CACHETABLE ct, int *num_entries_ptr, int *hash_size_ptr, long *size_current_ptr, long *size_limit_ptr) {
    ct->list.get_state(num_entries_ptr, hash_size_ptr);
    ct->ev.get_state(size_current_ptr, size_limit_ptr);
}

int toku_cachetable_get_key_state (CACHETABLE ct, CACHEKEY key, CACHEFILE cf, void **value_ptr,
                                   int *dirty_ptr, long long *pin_ptr, long *size_ptr) {
    int r = -1;
    uint32_t fullhash = toku_cachetable_hash(cf, key);
    ct->list.read_list_lock();
    PAIR p = ct->list.find_pair(cf, key, fullhash);
    if (p) {
        pair_lock(p);
        if (value_ptr)
            *value_ptr = p->value_data;
        if (dirty_ptr)
            *dirty_ptr = p->dirty;
        if (pin_ptr)
            *pin_ptr = p->value_rwlock.users();
        if (size_ptr)
            *size_ptr = p->attr.size;
        r = 0;
        pair_unlock(p);
    }
    ct->list.read_list_unlock();
    return r;
}

void
toku_cachefile_set_userdata (CACHEFILE cf,
                             void *userdata,
                             void (*log_fassociate_during_checkpoint)(CACHEFILE, void*),
                             void (*close_userdata)(CACHEFILE, int, void*, bool, LSN),
                             void (*free_userdata)(CACHEFILE, void*),
                             void (*checkpoint_userdata)(CACHEFILE, int, void*),
                             void (*begin_checkpoint_userdata)(LSN, void*),
                             void (*end_checkpoint_userdata)(CACHEFILE, int, void*),
                             void (*note_pin_by_checkpoint)(CACHEFILE, void*),
                             void (*note_unpin_by_checkpoint)(CACHEFILE, void*)) {
    cf->userdata = userdata;
    cf->log_fassociate_during_checkpoint = log_fassociate_during_checkpoint;
    cf->close_userdata = close_userdata;
    cf->free_userdata = free_userdata;
    cf->checkpoint_userdata = checkpoint_userdata;
    cf->begin_checkpoint_userdata = begin_checkpoint_userdata;
    cf->end_checkpoint_userdata = end_checkpoint_userdata;
    cf->note_pin_by_checkpoint = note_pin_by_checkpoint;
    cf->note_unpin_by_checkpoint = note_unpin_by_checkpoint;
}

void *toku_cachefile_get_userdata(CACHEFILE cf) {
    return cf->userdata;
}

CACHETABLE
toku_cachefile_get_cachetable(CACHEFILE cf) {
    return cf->cachetable;
}

CACHEFILE toku_pair_get_cachefile(PAIR pair) {
    return pair->cachefile;
}

//Only called by ft_end_checkpoint
//Must have access to cf->fd (must be protected)
void toku_cachefile_fsync(CACHEFILE cf) {
    toku_file_fsync(cf->fd);
}

// Make it so when the cachefile closes, the underlying file is unlinked
void toku_cachefile_unlink_on_close(CACHEFILE cf) {
    assert(!cf->unlink_on_close);
    cf->unlink_on_close = true;
}

// is this cachefile marked as unlink on close?
bool toku_cachefile_is_unlink_on_close(CACHEFILE cf) {
    return cf->unlink_on_close;
}

void toku_cachefile_skip_log_recover_on_close(CACHEFILE cf) {
    cf->skip_log_recover_on_close = true;
}

void toku_cachefile_do_log_recover_on_close(CACHEFILE cf) {
    cf->skip_log_recover_on_close = false;
}

bool toku_cachefile_is_skip_log_recover_on_close(CACHEFILE cf) {
    return cf->skip_log_recover_on_close;
}

uint64_t toku_cachefile_size(CACHEFILE cf) {
    int64_t file_size;
    int fd = toku_cachefile_get_fd(cf);
    int r = toku_os_get_file_size(fd, &file_size);
    assert_zero(r);
    return file_size;
}

char *
toku_construct_full_name(int count, ...) {
    va_list ap;
    char *name = NULL;
    size_t n = 0;
    int i;
    va_start(ap, count);
    for (i=0; i<count; i++) {
        char *arg = va_arg(ap, char *);
        if (arg) {
            n += 1 + strlen(arg) + 1;
            char *XMALLOC_N(n, newname);
            if (name && !toku_os_is_absolute_name(arg))
                snprintf(newname, n, "%s/%s", name, arg);
            else
                snprintf(newname, n, "%s", arg);
            toku_free(name);
            name = newname;
        }
    }
    va_end(ap);

    return name;
}

char *
toku_cachetable_get_fname_in_cwd(CACHETABLE ct, const char * fname_in_env) {
    return toku_construct_full_name(2, ct->env_dir, fname_in_env);
}

static long
cleaner_thread_rate_pair(PAIR p)
{
    return p->attr.cache_pressure_size;
}

static int const CLEANER_N_TO_CHECK = 8;

int toku_cleaner_thread_for_test (CACHETABLE ct) {
    return ct->cl.run_cleaner();
}

int toku_cleaner_thread (void *cleaner_v) {
    cleaner* cl = (cleaner *) cleaner_v;
    assert(cl);
    return cl->run_cleaner();
}

/////////////////////////////////////////////////////////////////////////
//
// cleaner methods
//
ENSURE_POD(cleaner);

extern uint force_recovery;

int cleaner::init(uint32_t _cleaner_iterations, pair_list* _pl, CACHETABLE _ct) {
    // default is no cleaner, for now
    m_cleaner_cron_init = false;
    if (force_recovery) return 0;
    int r = toku_minicron_setup(&m_cleaner_cron, 0, toku_cleaner_thread, this);
    if (r == 0) {
        m_cleaner_cron_init = true;
    }
    TOKU_VALGRIND_HG_DISABLE_CHECKING(&m_cleaner_iterations, sizeof m_cleaner_iterations);
    m_cleaner_iterations = _cleaner_iterations;
    m_pl = _pl;
    m_ct = _ct;
    m_cleaner_init = true;
    return r;
}

// this function is allowed to be called multiple times
void cleaner::destroy(void) {
    if (!m_cleaner_init) {
        return;
    }
    if (m_cleaner_cron_init && !toku_minicron_has_been_shutdown(&m_cleaner_cron)) {
        // for test code only, production code uses toku_cachetable_minicron_shutdown()
        int r = toku_minicron_shutdown(&m_cleaner_cron);
        assert(r==0);
    }
}

uint32_t cleaner::get_iterations(void) {
    return m_cleaner_iterations;
}

void cleaner::set_iterations(uint32_t new_iterations) {
    m_cleaner_iterations = new_iterations;
}

uint32_t cleaner::get_period_unlocked(void) {
    return toku_minicron_get_period_in_seconds_unlocked(&m_cleaner_cron);
}

//
// Sets how often the cleaner thread will run, in seconds
//
void cleaner::set_period(uint32_t new_period) {
    toku_minicron_change_period(&m_cleaner_cron, new_period*1000);
}

// Effect:  runs a cleaner.
//
// We look through some number of nodes, the first N that we see which are
// unlocked and are not involved in a cachefile flush, pick one, and call
// the cleaner callback.  While we're picking a node, we have the
// cachetable lock the whole time, so we don't need any extra
// synchronization.  Once we have one we want, we lock it and notify the
// cachefile that we're doing some background work (so a flush won't
// start).  At this point, we can safely unlock the cachetable, do the
// work (callback), and unlock/release our claim to the cachefile.
int cleaner::run_cleaner(void) {
    toku::context cleaner_ctx(CTX_CLEANER);

    int r;
    uint32_t num_iterations = this->get_iterations();
    for (uint32_t i = 0; i < num_iterations; ++i) {
        cleaner_executions++;
        m_pl->read_list_lock();
        PAIR best_pair = NULL;
        int n_seen = 0;
        long best_score = 0;
        const PAIR first_pair = m_pl->m_cleaner_head;
        if (first_pair == NULL) {
            // nothing in the cachetable, just get out now
            m_pl->read_list_unlock();
            break;
        }
        // here we select a PAIR for cleaning
        // look at some number of PAIRS, and
        // pick what we think is the best one for cleaning
        //***** IMPORTANT ******
        // we MUST not pick a PAIR whose rating is 0. We have
        // numerous assumptions in other parts of the code that
        // this is the case:
        //  - this is how rollback nodes and leaf nodes are not selected for cleaning
        //  - this is how a thread that is calling unpin_and_remove will prevent
        //     the cleaner thread from picking its PAIR (see comments in that function)
        do {
            //
            // We are already holding onto best_pair, if we run across a pair that
            // has the same mutex due to a collision in the hashtable, we need
            // to be careful.
            //
            if (best_pair && m_pl->m_cleaner_head->mutex == best_pair->mutex) {
                // Advance the cleaner head.
                long score = 0;
                // only bother with this pair if it has no current users
                if (m_pl->m_cleaner_head->value_rwlock.users() == 0) {
                    score = cleaner_thread_rate_pair(m_pl->m_cleaner_head);
                    if (score > best_score) {
                        best_score = score;
                        best_pair = m_pl->m_cleaner_head;
                    }
                }
                m_pl->m_cleaner_head = m_pl->m_cleaner_head->clock_next;
                continue;
            }
            pair_lock(m_pl->m_cleaner_head);
            if (m_pl->m_cleaner_head->value_rwlock.users() > 0) {
                pair_unlock(m_pl->m_cleaner_head);
            }
            else {
                n_seen++;
                long score = 0;
                score = cleaner_thread_rate_pair(m_pl->m_cleaner_head);
                if (score > best_score) {
                    best_score = score;
                    // Since we found a new best pair, we need to
                    // free the old best pair.
                    if (best_pair) {
                        pair_unlock(best_pair);
                    }
                    best_pair = m_pl->m_cleaner_head;
                }
                else {
                    pair_unlock(m_pl->m_cleaner_head);
                }
            }
            // Advance the cleaner head.
            m_pl->m_cleaner_head = m_pl->m_cleaner_head->clock_next;
        } while (m_pl->m_cleaner_head != first_pair && n_seen < CLEANER_N_TO_CHECK);
        m_pl->read_list_unlock();

        //
        // at this point, if we have found a PAIR for cleaning,
        // that is, best_pair != NULL, we do the clean
        //
        // if best_pair !=NULL, then best_pair->mutex is held
        // no list lock is held
        //
        if (best_pair) {
            CACHEFILE cf = best_pair->cachefile;
            // try to add a background job to the manager
            // if we can't, that means the cachefile is flushing, so
            // we simply continue the for loop and this iteration
            // becomes a no-op
            r = bjm_add_background_job(cf->bjm);
            if (r) {
                pair_unlock(best_pair);
                continue;
            }
            best_pair->value_rwlock.write_lock(true);
            pair_unlock(best_pair);
            // verify a key assumption.
            assert(cleaner_thread_rate_pair(best_pair) > 0);
            // check the checkpoint_pending bit
            m_pl->read_pending_cheap_lock();
            bool checkpoint_pending = best_pair->checkpoint_pending;
            best_pair->checkpoint_pending = false;
            m_pl->read_pending_cheap_unlock();
            if (checkpoint_pending) {
                write_locked_pair_for_checkpoint(m_ct, best_pair, true);
            }

            bool cleaner_callback_called = false;

            // it's theoretically possible that after writing a PAIR for checkpoint, the
            // PAIR's heuristic tells us nothing needs to be done. It is not possible
            // in Dr. Noga, but unit tests verify this behavior works properly.
            if (cleaner_thread_rate_pair(best_pair) > 0) {
                r = best_pair->cleaner_callback(best_pair->value_data,
                                                    best_pair->key,
                                                    best_pair->fullhash,
                                                    best_pair->write_extraargs);
                assert_zero(r);
                cleaner_callback_called = true;
            }

            // The cleaner callback must have unlocked the pair, so we
            // don't need to unlock it if the cleaner callback is called.
            if (!cleaner_callback_called) {
                pair_lock(best_pair);
                best_pair->value_rwlock.write_unlock();
                pair_unlock(best_pair);
            }
            // We need to make sure the cachefile sticks around so a close
            // can't come destroy it.  That's the purpose of this
            // "add/remove_background_job" business, which means the
            // cachefile is still valid here, even though the cleaner
            // callback unlocks the pair. 
            bjm_remove_background_job(cf->bjm);
        }
        else {
            // If we didn't find anything this time around the cachetable,
            // we probably won't find anything if we run around again, so
            // just break out from the for-loop now and 
            // we'll try again when the cleaner thread runs again.
            break;
        }
    }
    return 0;
}

static_assert(std::is_pod<pair_list>::value, "pair_list isn't POD");

const uint32_t INITIAL_PAIR_LIST_SIZE = 1<<20;
uint32_t PAIR_LOCK_SIZE = 1<<20;

void toku_pair_list_set_lock_size(uint32_t num_locks) {
    PAIR_LOCK_SIZE = num_locks;
}

static void evict_pair_from_cachefile(PAIR p) {
    CACHEFILE cf = p->cachefile;
    if (p->cf_next) {
        p->cf_next->cf_prev = p->cf_prev;
    }
    if (p->cf_prev) {
        p->cf_prev->cf_next = p->cf_next;
    }
    else if (p->cachefile->cf_head == p) {
        cf->cf_head = p->cf_next;
    }
    p->cf_prev = p->cf_next = NULL;
    cf->num_pairs--;
}

// Allocates the hash table of pairs inside this pair list.
//
void pair_list::init() {
    m_table_size = INITIAL_PAIR_LIST_SIZE;
    m_num_locks = PAIR_LOCK_SIZE;
    m_n_in_table = 0;
    m_clock_head = NULL;
    m_cleaner_head = NULL;
    m_checkpoint_head = NULL;
    m_pending_head = NULL;
    m_table = NULL;
    

    pthread_rwlockattr_t attr;
    pthread_rwlockattr_init(&attr);
#if defined(HAVE_PTHREAD_RWLOCKATTR_SETKIND_NP)
    pthread_rwlockattr_setkind_np(&attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
#else
// TODO: need to figure out how to make writer-preferential rwlocks
// happen on osx
#endif
    toku_pthread_rwlock_init(*cachetable_m_list_lock_key, &m_list_lock, &attr);
    toku_pthread_rwlock_init(*cachetable_m_pending_lock_expensive_key,
                             &m_pending_lock_expensive,
                             &attr);
    toku_pthread_rwlock_init(
        *cachetable_m_pending_lock_cheap_key, &m_pending_lock_cheap, &attr);
    XCALLOC_N(m_table_size, m_table);
    XCALLOC_N(m_num_locks, m_mutexes);
    for (uint64_t i = 0; i < m_num_locks; i++) {
        toku_mutex_init(
#ifdef TOKU_PFS_MUTEX_EXTENDED_CACHETABLEMMUTEX
            *cachetable_m_mutex_key,
#else
            toku_uninstrumented,
#endif
            &m_mutexes[i].aligned_mutex,
            nullptr);
    }
}

// Frees the pair_list hash table.  It is expected to be empty by
// the time this is called.  Returns an error if there are any
// pairs in any of the hash table slots.
void pair_list::destroy() {
    // Check if any entries exist in the hash table.
    for (uint32_t i = 0; i < m_table_size; ++i) {
        invariant_null(m_table[i]);
    }
    for (uint64_t i = 0; i < m_num_locks; i++) {
        toku_mutex_destroy(&m_mutexes[i].aligned_mutex);
    }
    toku_pthread_rwlock_destroy(&m_list_lock);    
    toku_pthread_rwlock_destroy(&m_pending_lock_expensive);    
    toku_pthread_rwlock_destroy(&m_pending_lock_cheap);    
    toku_free(m_table);
    toku_free(m_mutexes);
}

// adds a PAIR to the cachetable's structures,
// but does NOT add it to the list maintained by
// the cachefile
void pair_list::add_to_cachetable_only(PAIR p) {
    // sanity check to make sure that the PAIR does not already exist
    PAIR pp = this->find_pair(p->cachefile, p->key, p->fullhash);
    assert(pp == NULL);

    this->add_to_clock(p);
    this->add_to_hash_chain(p);
    m_n_in_table++;
}

// This places the given pair inside of the pair list.
//
// requires caller to have grabbed write lock on list.
// requires caller to have p->mutex held as well
//
void pair_list::put(PAIR p) {
    this->add_to_cachetable_only(p);
    this->add_to_cf_list(p);
}

// This removes the given pair from completely from the pair list.
//
// requires caller to have grabbed write lock on list, and p->mutex held
//
void pair_list::evict_completely(PAIR p) {
    this->evict_from_cachetable(p);
    this->evict_from_cachefile(p);
}

// Removes the PAIR from the cachetable's lists,
// but does NOT impact the list maintained by the cachefile
void pair_list::evict_from_cachetable(PAIR p) {
    this->pair_remove(p);
    this->pending_pairs_remove(p);
    this->remove_from_hash_chain(p);
    
    assert(m_n_in_table > 0);
    m_n_in_table--;    
}

// Removes the PAIR from the cachefile's list of PAIRs
void pair_list::evict_from_cachefile(PAIR p) {
    evict_pair_from_cachefile(p);
}

// 
// Remove pair from linked list for cleaner/clock
//
//
// requires caller to have grabbed write lock on list.
//
void pair_list::pair_remove (PAIR p) {
    if (p->clock_prev == p) {
        invariant(m_clock_head == p);
        invariant(p->clock_next == p);
        invariant(m_cleaner_head == p);
        invariant(m_checkpoint_head == p);
        m_clock_head = NULL;
        m_cleaner_head = NULL;
        m_checkpoint_head = NULL;
    }
    else {
        if (p == m_clock_head) {
            m_clock_head = m_clock_head->clock_next;
        }
        if (p == m_cleaner_head) {
            m_cleaner_head = m_cleaner_head->clock_next;
        }
        if (p == m_checkpoint_head) {
            m_checkpoint_head = m_checkpoint_head->clock_next;
        }
        p->clock_prev->clock_next = p->clock_next;
        p->clock_next->clock_prev = p->clock_prev;
    }
    p->clock_prev = p->clock_next = NULL;
}

//Remove a pair from the list of pairs that were marked with the
//pending bit for the in-progress checkpoint.
//
// requires that if the caller is the checkpoint thread, then a read lock
// is grabbed on the list. Otherwise, must have write lock on list.
//
void pair_list::pending_pairs_remove (PAIR p) {
    if (p->pending_next) {
        p->pending_next->pending_prev = p->pending_prev;
    }
    if (p->pending_prev) {
        p->pending_prev->pending_next = p->pending_next;
    }
    else if (m_pending_head==p) {
        m_pending_head = p->pending_next;
    }
    p->pending_prev = p->pending_next = NULL;
}

void pair_list::remove_from_hash_chain(PAIR p) {
    // Remove it from the hash chain.
    unsigned int h = p->fullhash&(m_table_size - 1);
    paranoid_invariant(m_table[h] != NULL);
    if (m_table[h] == p) {
        m_table[h] = p->hash_chain;
    }
    else {
        PAIR curr = m_table[h];
        while (curr->hash_chain != p) {
            curr = curr->hash_chain;
        }
        // remove p from the singular linked list
        curr->hash_chain = p->hash_chain;
    }
    p->hash_chain = NULL;
}

// Returns a pair from the pair list, using the given 
// pair.  If the pair cannot be found, null is returned.
//
// requires caller to have grabbed either a read lock on the list or
// bucket's mutex.
//
PAIR pair_list::find_pair(CACHEFILE file, CACHEKEY key, uint32_t fullhash) {
    PAIR found_pair = nullptr;
    for (PAIR p = m_table[fullhash&(m_table_size - 1)]; p; p = p->hash_chain) {
        if (p->key.b == key.b && p->cachefile == file) {
            found_pair = p;
            break;
        }
    }
    return found_pair;
}

// Add PAIR to linked list shared by cleaner thread and clock
//
// requires caller to have grabbed write lock on list.
//
void pair_list::add_to_clock (PAIR p) {
    // requires that p is not currently in the table.
    // inserts p into the clock list at the tail.

    p->count = CLOCK_INITIAL_COUNT;
    //assert either both head and tail are set or they are both NULL
    // tail and head exist
    if (m_clock_head) {
        assert(m_cleaner_head);
        assert(m_checkpoint_head);
        // insert right before the head
        p->clock_next = m_clock_head;
        p->clock_prev = m_clock_head->clock_prev;

        p->clock_prev->clock_next = p;
        p->clock_next->clock_prev = p;

    }
    // this is the first element in the list
    else {
        m_clock_head = p;
        p->clock_next = p->clock_prev = m_clock_head;
        m_cleaner_head = p;
        m_checkpoint_head = p;
    }
}

// add the pair to the linked list that of PAIRs belonging 
// to the same cachefile. This linked list is used
// in cachetable_flush_cachefile.
void pair_list::add_to_cf_list(PAIR p) {
    CACHEFILE cf = p->cachefile;
    if (cf->cf_head) {
        cf->cf_head->cf_prev = p;
    }
    p->cf_next = cf->cf_head;
    p->cf_prev = NULL;
    cf->cf_head = p;
    cf->num_pairs++;
}

// Add PAIR to the hashtable
//
// requires caller to have grabbed write lock on list
// and to have grabbed the p->mutex.
void pair_list::add_to_hash_chain(PAIR p) {
    uint32_t h = p->fullhash & (m_table_size - 1);
    p->hash_chain = m_table[h];
    m_table[h] = p;
}

// test function
//
// grabs and releases write list lock
//
void pair_list::verify() {
    this->write_list_lock();
    uint32_t num_found = 0;

    // First clear all the verify flags by going through the hash chains
    {
        uint32_t i;
        for (i = 0; i < m_table_size; i++) {
            PAIR p;
            for (p = m_table[i]; p; p = p->hash_chain) {
                num_found++;
            }
        }
    }
    assert(num_found == m_n_in_table);
    num_found = 0;
    // Now go through the clock chain, make sure everything in the LRU chain is hashed.
    {
        PAIR p;
        bool is_first = true;
        for (p = m_clock_head; m_clock_head != NULL && (p != m_clock_head || is_first); p=p->clock_next) {
            is_first=false;
            PAIR p2;
            uint32_t fullhash = p->fullhash;
            //assert(fullhash==toku_cachetable_hash(p->cachefile, p->key));
            for (p2 = m_table[fullhash&(m_table_size-1)]; p2; p2=p2->hash_chain) {
                if (p2==p) {
                    /* found it */
                    num_found++;
                    goto next;
                }
            }
            fprintf(stderr, "Something in the clock chain is not hashed\n");
            assert(0);
        next:;
        }
        assert (num_found == m_n_in_table);
    }
    this->write_list_unlock();
}

// If given pointers are not null, assign the hash table size of 
// this pair list and the number of pairs in this pair list.
//
//
// grabs and releases read list lock
//
void pair_list::get_state(int *num_entries, int *hash_size) {
    this->read_list_lock();
    if (num_entries) {
        *num_entries = m_n_in_table;
    }
    if (hash_size) {
        *hash_size = m_table_size;
    }
    this->read_list_unlock();
}

void pair_list::read_list_lock() {
    toku_pthread_rwlock_rdlock(&m_list_lock);
}

void pair_list::read_list_unlock() {
    toku_pthread_rwlock_rdunlock(&m_list_lock);
}

void pair_list::write_list_lock() {
    toku_pthread_rwlock_wrlock(&m_list_lock);
}

void pair_list::write_list_unlock() {
    toku_pthread_rwlock_wrunlock(&m_list_lock);
}

void pair_list::read_pending_exp_lock() {
    toku_pthread_rwlock_rdlock(&m_pending_lock_expensive);
}

void pair_list::read_pending_exp_unlock() {
    toku_pthread_rwlock_rdunlock(&m_pending_lock_expensive);
}

void pair_list::write_pending_exp_lock() {
    toku_pthread_rwlock_wrlock(&m_pending_lock_expensive);
}

void pair_list::write_pending_exp_unlock() {
    toku_pthread_rwlock_wrunlock(&m_pending_lock_expensive);
}

void pair_list::read_pending_cheap_lock() {
    toku_pthread_rwlock_rdlock(&m_pending_lock_cheap);
}

void pair_list::read_pending_cheap_unlock() {
    toku_pthread_rwlock_rdunlock(&m_pending_lock_cheap);
}

void pair_list::write_pending_cheap_lock() {
    toku_pthread_rwlock_wrlock(&m_pending_lock_cheap);
}

void pair_list::write_pending_cheap_unlock() {
    toku_pthread_rwlock_wrunlock(&m_pending_lock_cheap);
}

toku_mutex_t* pair_list::get_mutex_for_pair(uint32_t fullhash) {
    return &m_mutexes[fullhash&(m_num_locks - 1)].aligned_mutex;
}

void pair_list::pair_lock_by_fullhash(uint32_t fullhash) {
    toku_mutex_lock(&m_mutexes[fullhash&(m_num_locks - 1)].aligned_mutex);
}

void pair_list::pair_unlock_by_fullhash(uint32_t fullhash) {
    toku_mutex_unlock(&m_mutexes[fullhash&(m_num_locks - 1)].aligned_mutex);
}


ENSURE_POD(evictor);

//
// This is the function that runs eviction on its own thread.
//
static void *eviction_thread(void *evictor_v) {
    evictor *CAST_FROM_VOIDP(evictor, evictor_v);
    evictor->run_eviction_thread();
    return toku_pthread_done(evictor_v);
}

//
// Starts the eviction thread, assigns external object references,
// and initializes all counters and condition variables.
//
int evictor::init(long _size_limit, pair_list* _pl, cachefile_list* _cf_list, KIBBUTZ _kibbutz, uint32_t eviction_period) {
    TOKU_VALGRIND_HG_DISABLE_CHECKING(&m_ev_thread_is_running, sizeof m_ev_thread_is_running);
    TOKU_VALGRIND_HG_DISABLE_CHECKING(&m_size_evicting, sizeof m_size_evicting);

    // set max difference to around 500MB
    int64_t max_diff = (1 << 29);
    
    m_low_size_watermark = _size_limit;
    // these values are selected kind of arbitrarily right now as 
    // being a percentage more than low_size_watermark, which is provided
    // by the caller.
    m_low_size_hysteresis = (11 * _size_limit)/10; //10% more
    if ((m_low_size_hysteresis - m_low_size_watermark) > max_diff) {
        m_low_size_hysteresis = m_low_size_watermark + max_diff;
    }
    m_high_size_hysteresis = (5 * _size_limit)/4; // 20% more
    if ((m_high_size_hysteresis - m_low_size_hysteresis) > max_diff) {
        m_high_size_hysteresis = m_low_size_hysteresis + max_diff;
    }
    m_high_size_watermark = (3 * _size_limit)/2; // 50% more
    if ((m_high_size_watermark - m_high_size_hysteresis) > max_diff) {
        m_high_size_watermark = m_high_size_hysteresis + max_diff;
    }
    
    m_enable_partial_eviction = true;

    m_size_reserved = unreservable_memory(_size_limit);
    m_size_current = 0;
    m_size_cloned_data = 0;
    m_size_evicting = 0;

    m_size_nonleaf = create_partitioned_counter(); 
    m_size_leaf = create_partitioned_counter();
    m_size_rollback = create_partitioned_counter();
    m_size_cachepressure = create_partitioned_counter();
    m_wait_pressure_count = create_partitioned_counter();
    m_wait_pressure_time = create_partitioned_counter();
    m_long_wait_pressure_count = create_partitioned_counter();
    m_long_wait_pressure_time = create_partitioned_counter();

    m_pl = _pl;
    m_cf_list = _cf_list;
    m_kibbutz = _kibbutz;
    toku_mutex_init(
        *cachetable_ev_thread_lock_mutex_key, &m_ev_thread_lock, nullptr);
    toku_cond_init(
        *cachetable_m_flow_control_cond_key, &m_flow_control_cond, nullptr);
    toku_cond_init(
        *cachetable_m_ev_thread_cond_key, &m_ev_thread_cond, nullptr);
    m_num_sleepers = 0;
    m_ev_thread_is_running = false;
    m_period_in_seconds = eviction_period;

    unsigned int seed = (unsigned int) time(NULL);
    int r = myinitstate_r(seed, m_random_statebuf, sizeof m_random_statebuf, &m_random_data);
    assert_zero(r);

    // start the background thread
    m_run_thread = true;
    m_num_eviction_thread_runs = 0;
    m_ev_thread_init = false;
    r = toku_pthread_create(
        *eviction_thread_key, &m_ev_thread, nullptr, eviction_thread, this);
    if (r == 0) {
        m_ev_thread_init = true;
    }
    m_evictor_init = true;
    return r;
}

//
// This stops the eviction thread and clears the condition variable.
//
// NOTE: This should only be called if there are no evictions in progress.
//
void evictor::destroy() { 
    if (!m_evictor_init) {
        return;
    }
    assert(m_size_evicting == 0);
    //
    // commented out of Ming, because we could not finish
    // #5672. Once #5672 is solved, we should restore this
    //
    //assert(m_size_current == 0);

    // Stop the eviction thread.
    if (m_ev_thread_init) {
        toku_mutex_lock(&m_ev_thread_lock);
        m_run_thread = false;
        this->signal_eviction_thread_locked();
        toku_mutex_unlock(&m_ev_thread_lock);
        void *ret;
        int r = toku_pthread_join(m_ev_thread, &ret); 
        assert_zero(r);
        assert(!m_ev_thread_is_running);
    }
    destroy_partitioned_counter(m_size_nonleaf);
    m_size_nonleaf = NULL;
    destroy_partitioned_counter(m_size_leaf);
    m_size_leaf = NULL;
    destroy_partitioned_counter(m_size_rollback);
    m_size_rollback = NULL;
    destroy_partitioned_counter(m_size_cachepressure);    
    m_size_cachepressure = NULL;

    destroy_partitioned_counter(m_wait_pressure_count); m_wait_pressure_count = NULL;
    destroy_partitioned_counter(m_wait_pressure_time); m_wait_pressure_time = NULL;
    destroy_partitioned_counter(m_long_wait_pressure_count); m_long_wait_pressure_count = NULL;
    destroy_partitioned_counter(m_long_wait_pressure_time); m_long_wait_pressure_time = NULL;

    toku_cond_destroy(&m_flow_control_cond);
    toku_cond_destroy(&m_ev_thread_cond);
    toku_mutex_destroy(&m_ev_thread_lock);
}

//
// Increases status variables and the current size variable
// of the evictor based on the given pair attribute.
//
void evictor::add_pair_attr(PAIR_ATTR attr) {
    assert(attr.is_valid);
    add_to_size_current(attr.size);
    increment_partitioned_counter(m_size_nonleaf, attr.nonleaf_size);
    increment_partitioned_counter(m_size_leaf, attr.leaf_size);
    increment_partitioned_counter(m_size_rollback, attr.rollback_size);
    increment_partitioned_counter(m_size_cachepressure, attr.cache_pressure_size);
}

//
// Decreases status variables and the current size variable
// of the evictor based on the given pair attribute.
//
void evictor::remove_pair_attr(PAIR_ATTR attr) {
    assert(attr.is_valid);
    remove_from_size_current(attr.size);
    increment_partitioned_counter(m_size_nonleaf, 0 - attr.nonleaf_size);
    increment_partitioned_counter(m_size_leaf, 0 - attr.leaf_size);
    increment_partitioned_counter(m_size_rollback, 0 - attr.rollback_size);
    increment_partitioned_counter(m_size_cachepressure, 0 - attr.cache_pressure_size);
}

//
// Updates this evictor's stats to match the "new" pair attribute given
// while also removing the given "old" pair attribute. 
//
void evictor::change_pair_attr(PAIR_ATTR old_attr, PAIR_ATTR new_attr) {
    this->add_pair_attr(new_attr);
    this->remove_pair_attr(old_attr);
}

//
// Adds the given size to the evictor's estimation of 
// the size of the cachetable.
//
void evictor::add_to_size_current(long size) {
    (void) toku_sync_fetch_and_add(&m_size_current, size);
}

//
// Subtracts the given size from the evictor's current
// approximation of the cachetable size.
//
void evictor::remove_from_size_current(long size) {
    (void) toku_sync_fetch_and_sub(&m_size_current, size);
}

//
// Adds the size of cloned data to necessary variables in the evictor
//
void evictor::add_cloned_data_size(long size) {
    (void) toku_sync_fetch_and_add(&m_size_cloned_data, size);
    add_to_size_current(size);
}

//
// Removes  the size of cloned data to necessary variables in the evictor
//
void evictor::remove_cloned_data_size(long size) {
    (void) toku_sync_fetch_and_sub(&m_size_cloned_data, size);
    remove_from_size_current(size);
}

//
// TODO: (Zardosht) comment this function
//
uint64_t evictor::reserve_memory(double fraction, uint64_t upper_bound) {
    toku_mutex_lock(&m_ev_thread_lock);
    uint64_t reserved_memory = fraction * (m_low_size_watermark - m_size_reserved);
    if (0) { // debug
        fprintf(stderr, "%s %" PRIu64 " %" PRIu64 "\n", __PRETTY_FUNCTION__, reserved_memory, upper_bound);
    }
    if (upper_bound > 0 && reserved_memory > upper_bound) {
        reserved_memory = upper_bound;
    }
    m_size_reserved += reserved_memory;
    (void) toku_sync_fetch_and_add(&m_size_current, reserved_memory);
    this->signal_eviction_thread_locked();  
    toku_mutex_unlock(&m_ev_thread_lock);

    if (this->should_client_thread_sleep()) {
        this->wait_for_cache_pressure_to_subside();
    }
    return reserved_memory;
}

//
// TODO: (Zardosht) comment this function
//
void evictor::release_reserved_memory(uint64_t reserved_memory){
    (void) toku_sync_fetch_and_sub(&m_size_current, reserved_memory);
    toku_mutex_lock(&m_ev_thread_lock);    
    m_size_reserved -= reserved_memory;
    // signal the eviction thread in order to possibly wake up sleeping clients
    if (m_num_sleepers  > 0) {
        this->signal_eviction_thread_locked();
    }
    toku_mutex_unlock(&m_ev_thread_lock);
}

//
// This function is the eviction thread. It runs for the lifetime of 
// the evictor. Goes to sleep for period_in_seconds 
// by waiting on m_ev_thread_cond.
//
void evictor::run_eviction_thread(){
    toku_mutex_lock(&m_ev_thread_lock);
    while (m_run_thread) {
        m_num_eviction_thread_runs++; // for test purposes only
        m_ev_thread_is_running = true;
        // responsibility of run_eviction to release and 
        // regrab ev_thread_lock as it sees fit
        this->run_eviction();
        m_ev_thread_is_running = false;

        if (m_run_thread) {
            //
            // sleep until either we are signaled
            // via signal_eviction_thread or 
            // m_period_in_seconds amount of time has passed
            //
            if (m_period_in_seconds) {
                toku_timespec_t wakeup_time;
                struct timeval tv;
                gettimeofday(&tv, 0);
                wakeup_time.tv_sec  = tv.tv_sec;
                wakeup_time.tv_nsec = tv.tv_usec * 1000LL;
                wakeup_time.tv_sec += m_period_in_seconds;
                toku_cond_timedwait(
                    &m_ev_thread_cond, 
                    &m_ev_thread_lock, 
                    &wakeup_time
                    );
            }
            // for test purposes, we have an option of 
            // not waiting on a period, but rather sleeping indefinitely
            else {
                toku_cond_wait(&m_ev_thread_cond, &m_ev_thread_lock);
            }
        }
    }
    toku_mutex_unlock(&m_ev_thread_lock);
}

//
// runs eviction.
// on entry, ev_thread_lock is grabbed, on exit, ev_thread_lock must still be grabbed
// it is the responsibility of this function to release and reacquire ev_thread_lock as it sees fit.
//
void evictor::run_eviction(){
    //
    // These variables will help us detect if everything in the clock is currently being accessed.
    // We must detect this case otherwise we will end up in an infinite loop below.
    //
    bool exited_early = false;
    uint32_t num_pairs_examined_without_evicting = 0;
    
    while (this->eviction_needed()) {
        if (m_num_sleepers > 0 && this->should_sleeping_clients_wakeup()) {
            toku_cond_broadcast(&m_flow_control_cond);
        }
        // release ev_thread_lock so that eviction may run without holding mutex
        toku_mutex_unlock(&m_ev_thread_lock);

        // first try to do an eviction from stale cachefiles
        bool some_eviction_ran = m_cf_list->evict_some_stale_pair(this);
        if (!some_eviction_ran) {
            m_pl->read_list_lock();
            PAIR curr_in_clock = m_pl->m_clock_head;
            // if nothing to evict, we need to exit
            if (!curr_in_clock) {
                m_pl->read_list_unlock();
                toku_mutex_lock(&m_ev_thread_lock);
                exited_early = true;
                goto exit;
            }
            if (num_pairs_examined_without_evicting > m_pl->m_n_in_table) {
                // we have a cycle where everything in the clock is in use
                // do not return an error
                // just let memory be overfull
                m_pl->read_list_unlock();
                toku_mutex_lock(&m_ev_thread_lock);
                exited_early = true;
                goto exit;
            }
            bool eviction_run = run_eviction_on_pair(curr_in_clock);
            if (eviction_run) {
                // reset the count
                num_pairs_examined_without_evicting = 0;
            }
            else {
                num_pairs_examined_without_evicting++;
            }
            // at this point, either curr_in_clock is still in the list because it has not been fully evicted,
            // and we need to move ct->m_clock_head over. Otherwise, curr_in_clock has been fully evicted
            // and we do NOT need to move ct->m_clock_head, as the removal of curr_in_clock
            // modified ct->m_clock_head
            if (m_pl->m_clock_head && (m_pl->m_clock_head == curr_in_clock)) {
                m_pl->m_clock_head = m_pl->m_clock_head->clock_next;
            }
            m_pl->read_list_unlock();
        }
        toku_mutex_lock(&m_ev_thread_lock);
    }

exit:
    if (m_num_sleepers > 0 && (exited_early || this->should_sleeping_clients_wakeup())) {
        toku_cond_broadcast(&m_flow_control_cond);
    }
    return;
}

//
// NOTE: Cachetable lock held on entry.
// Runs eviction on the given PAIR.  This may be a 
// partial eviction or full eviction.
//
// on entry, pair mutex is NOT held, but pair list's read list lock 
// IS held
// on exit, the same conditions must apply
//
bool evictor::run_eviction_on_pair(PAIR curr_in_clock) {
    uint32_t n_in_table;
    int64_t size_current;
    bool ret_val = false;
    // function meant to be called on PAIR that is not being accessed right now
    CACHEFILE cf = curr_in_clock->cachefile;
    int r = bjm_add_background_job(cf->bjm);
    if (r) {
        goto exit;
    }
    pair_lock(curr_in_clock);
    // these are the circumstances under which we don't run eviction on a pair: 
    //  - if other users are waiting on the lock 
    //  - if the PAIR is referenced by users 
    //  - if the PAIR's disk_nb_mutex is in use, implying that it is 
    //    undergoing a checkpoint
    if (curr_in_clock->value_rwlock.users() || 
        curr_in_clock->refcount > 0 || 
        nb_mutex_users(&curr_in_clock->disk_nb_mutex)) 
    {
        pair_unlock(curr_in_clock);
        bjm_remove_background_job(cf->bjm);
        goto exit;
    }

    // extract and use these values so that we don't risk them changing
    // out from underneath us in calculations below.
    n_in_table = m_pl->m_n_in_table;
    size_current = m_size_current; 

    // now that we have the pair mutex we care about, we can
    // release the read list lock and reacquire it at the end of the function
    m_pl->read_list_unlock();
    ret_val = true;
    if (curr_in_clock->count > 0) {
        toku::context pe_ctx(CTX_PARTIAL_EVICTION);

        uint32_t curr_size = curr_in_clock->attr.size;
        // if the size of this PAIR is greater than the average size of PAIRs
        // in the cachetable, then decrement it, otherwise, decrement
        // probabilistically
        if (curr_size*n_in_table >= size_current) {
            curr_in_clock->count--;
        } else {
            // generate a random number between 0 and 2^16
            assert(size_current <= (INT64_MAX / ((1<<16)-1))); // to protect against possible overflows
            int32_t rnd = myrandom_r(&m_random_data) % (1<<16);
            // The if-statement below will be true with probability of
            // curr_size/(average size of PAIR in cachetable)
            // Here is how the math is done:
            //   average_size = size_current/n_in_table
            //   curr_size/average_size = curr_size*n_in_table/size_current
            //   we evaluate if a random number from 0 to 2^16 is less than
            //   than curr_size/average_size * 2^16. So, our if-clause should be
            //    if (2^16*curr_size/average_size > rnd)
            //    this evaluates to:
            //    if (2^16*curr_size*n_in_table/size_current > rnd)
            //    by multiplying each side of the equation by size_current, we get
            //    if (2^16*curr_size*n_in_table > rnd*size_current)
            //    and dividing each side by 2^16,
            //    we get the if-clause below
            //
            if ((((int64_t)curr_size) * n_in_table) >= (((int64_t)rnd) * size_current)>>16) {
                curr_in_clock->count--;
            }
        }

        if (m_enable_partial_eviction) {
            // call the partial eviction callback
            curr_in_clock->value_rwlock.write_lock(true);

            void *value = curr_in_clock->value_data;
            void* disk_data = curr_in_clock->disk_data;
            void *write_extraargs = curr_in_clock->write_extraargs;
            enum partial_eviction_cost cost;
            long bytes_freed_estimate = 0;
            curr_in_clock->pe_est_callback(value, disk_data,
                                           &bytes_freed_estimate, &cost,
                                           write_extraargs);
            if (cost == PE_CHEAP) {
                pair_unlock(curr_in_clock);
                curr_in_clock->size_evicting_estimate = 0;
                this->do_partial_eviction(curr_in_clock);
                bjm_remove_background_job(cf->bjm);
            } else if (cost == PE_EXPENSIVE) {
                // only bother running an expensive partial eviction
                // if it is expected to free space
                if (bytes_freed_estimate > 0) {
                    pair_unlock(curr_in_clock);
                    curr_in_clock->size_evicting_estimate = bytes_freed_estimate;
                    toku_mutex_lock(&m_ev_thread_lock);
                    m_size_evicting += bytes_freed_estimate;
                    toku_mutex_unlock(&m_ev_thread_lock);
                    toku_kibbutz_enq(m_kibbutz, cachetable_partial_eviction,
                                     curr_in_clock);
                } else {
                    curr_in_clock->value_rwlock.write_unlock();
                    pair_unlock(curr_in_clock);
                    bjm_remove_background_job(cf->bjm);
                }
            } else {
                assert(false);
            }
        } else {
            pair_unlock(curr_in_clock);
            bjm_remove_background_job(cf->bjm);
        }
    } else {
        toku::context pe_ctx(CTX_FULL_EVICTION);

        // responsibility of try_evict_pair to eventually remove background job
        // pair's mutex is still grabbed here
        this->try_evict_pair(curr_in_clock);
    }
    // regrab the read list lock, because the caller assumes
    // that it is held. The contract requires this.
    m_pl->read_list_lock();
exit:
    return ret_val;
}

struct pair_unpin_with_new_attr_extra {
    pair_unpin_with_new_attr_extra(evictor *e, PAIR p) :
        ev(e), pair(p) {
    }
    evictor *ev;
    PAIR pair;
};

static void pair_unpin_with_new_attr(PAIR_ATTR new_attr, void *extra) {
    struct pair_unpin_with_new_attr_extra *info =
        reinterpret_cast<struct pair_unpin_with_new_attr_extra *>(extra);
    PAIR p = info->pair;
    evictor *ev = info->ev;

    // change the attr in the evictor, then update the value in the pair
    ev->change_pair_attr(p->attr, new_attr);
    p->attr = new_attr;

    // unpin
    pair_lock(p);
    p->value_rwlock.write_unlock();
    pair_unlock(p);
}

//
// on entry and exit, pair's mutex is not held
// on exit, PAIR is unpinned
//
void evictor::do_partial_eviction(PAIR p) {
    // Copy the old attr
    PAIR_ATTR old_attr = p->attr;
    long long size_evicting_estimate = p->size_evicting_estimate;

    struct pair_unpin_with_new_attr_extra extra(this, p);
    p->pe_callback(p->value_data, old_attr, p->write_extraargs,
                   // passed as the finalize continuation, which allows the
                   // pe_callback to unpin the node before doing expensive cleanup
                   pair_unpin_with_new_attr, &extra);

    // now that the pe_callback (and its pair_unpin_with_new_attr continuation)
    // have finished, we can safely decrease size_evicting
    this->decrease_size_evicting(size_evicting_estimate);
}

//
// CT lock held on entry
// background job has been added for p->cachefile on entry
// responsibility of this function to make sure that background job is removed
//
// on entry, pair's mutex is held, on exit, the pair's mutex is NOT held
//
void evictor::try_evict_pair(PAIR p) {
    CACHEFILE cf = p->cachefile;
    // evictions without a write or unpinned pair's that are clean
    // can be run in the current thread

    // the only caller, run_eviction_on_pair, should call this function
    // only if no one else is trying to use it
    assert(!p->value_rwlock.users());
    p->value_rwlock.write_lock(true);
    // if the PAIR is dirty, the running eviction requires writing the 
    // PAIR out. if the disk_nb_mutex is grabbed, then running 
    // eviction requires waiting for the disk_nb_mutex to become available,
    // which may be expensive. Hence, if either is true, we 
    // do the eviction on a writer thread
    if (!p->dirty && (nb_mutex_writers(&p->disk_nb_mutex) == 0)) {
        p->size_evicting_estimate = 0;
        //
        // This method will unpin PAIR and release PAIR mutex
        //
        // because the PAIR is not dirty, we can safely pass
        // false for the for_checkpoint parameter
        this->evict_pair(p, false);
        bjm_remove_background_job(cf->bjm);
    }
    else {
        pair_unlock(p);
        toku_mutex_lock(&m_ev_thread_lock);
        assert(m_size_evicting >= 0);
        p->size_evicting_estimate = p->attr.size;
        m_size_evicting += p->size_evicting_estimate;
        assert(m_size_evicting >= 0);
        toku_mutex_unlock(&m_ev_thread_lock);
        toku_kibbutz_enq(m_kibbutz, cachetable_evicter, p);
    }
}

//
// Requires: This thread must hold the write lock (nb_mutex) for the pair.
//                The pair's mutex (p->mutex) is also held.
//                on exit, neither is held
//
void evictor::evict_pair(PAIR p, bool for_checkpoint) {
    if (p->dirty) {
        pair_unlock(p);
        cachetable_write_locked_pair(this, p, for_checkpoint);
        pair_lock(p);
    }
    // one thing we can do here is extract the size_evicting estimate,
    // have decrease_size_evicting take the estimate and not the pair,
    // and do this work after we have called 
    // cachetable_maybe_remove_and_free_pair
    this->decrease_size_evicting(p->size_evicting_estimate);
    // if we are to remove this pair, we need the write list lock,
    // to get it in a way that avoids deadlocks, we must first release
    // the pair's mutex, then grab the write list lock, then regrab the 
    // pair's mutex. The pair cannot go anywhere because
    // the pair is still pinned
    nb_mutex_lock(&p->disk_nb_mutex, p->mutex);
    pair_unlock(p);
    m_pl->write_list_lock();
    pair_lock(p);
    p->value_rwlock.write_unlock();
    nb_mutex_unlock(&p->disk_nb_mutex);
    // at this point, we have the pair list's write list lock
    // and we have the pair's mutex (p->mutex) held
    
    // this ensures that a clone running in the background first completes
    bool removed = false;
    if (p->value_rwlock.users() == 0 && p->refcount == 0) {
        // assumption is that if we are about to remove the pair
        // that no one has grabbed the disk_nb_mutex,
        // and that there is no cloned_value_data, because
        // no one is writing a cloned value out.
        assert(nb_mutex_users(&p->disk_nb_mutex) == 0);
        assert(p->cloned_value_data == NULL);
        cachetable_remove_pair(m_pl, this, p);
        removed = true;
    }
    pair_unlock(p);
    m_pl->write_list_unlock();
    // do not want to hold the write list lock while freeing a pair
    if (removed) {
        cachetable_free_pair(p);
    }
}

//
// this function handles the responsibilities for writer threads when they 
// decrease size_evicting. The responsibilities are:
//  - decrease m_size_evicting in a thread safe manner
//  - in some circumstances, signal the eviction thread
//
void evictor::decrease_size_evicting(long size_evicting_estimate) {
    if (size_evicting_estimate > 0) {
        toku_mutex_lock(&m_ev_thread_lock);
        int64_t buffer = m_high_size_hysteresis - m_low_size_watermark;
        // if size_evicting is transitioning from greater than buffer to below buffer, and
        // some client threads are sleeping, we need to wake up the eviction thread.
        // Here is why. In this scenario, we are in one of two cases:
        //  - size_current - size_evicting < low_size_watermark
        //     If this is true, then size_current < high_size_hysteresis, which
        //     means we need to wake up sleeping clients
        //  - size_current - size_evicting > low_size_watermark, 
        //       which means more evictions must be run.
        //  The consequences of both cases are the responsibility 
        //  of the eviction thread. 
        //
        bool need_to_signal_ev_thread = 
            (m_num_sleepers > 0) &&
            !m_ev_thread_is_running &&
            (m_size_evicting > buffer) &&
            ((m_size_evicting - size_evicting_estimate) <= buffer);
        m_size_evicting -= size_evicting_estimate;
        assert(m_size_evicting >= 0);
        if (need_to_signal_ev_thread) {
            this->signal_eviction_thread_locked();
        }
        toku_mutex_unlock(&m_ev_thread_lock);
    }
}

//
// Wait for cache table space to become available 
// size_current is number of bytes currently occupied by data (referred to by pairs)
// size_evicting is number of bytes queued up to be evicted
//
void evictor::wait_for_cache_pressure_to_subside() {
    uint64_t t0 = toku_current_time_microsec();
    toku_mutex_lock(&m_ev_thread_lock);
    m_num_sleepers++;
    this->signal_eviction_thread_locked();
    toku_cond_wait(&m_flow_control_cond, &m_ev_thread_lock);    
    m_num_sleepers--;
    toku_mutex_unlock(&m_ev_thread_lock);
    uint64_t t1 = toku_current_time_microsec();
    increment_partitioned_counter(m_wait_pressure_count, 1);
    uint64_t tdelta = t1 - t0;
    increment_partitioned_counter(m_wait_pressure_time, tdelta);
    if (tdelta > 1000000) {
        increment_partitioned_counter(m_long_wait_pressure_count, 1);
        increment_partitioned_counter(m_long_wait_pressure_time, tdelta);
    }
}

//
// Get the status of the current estimated size of the cachetable,
// and the evictor's set limit. 
//
void evictor::get_state(long *size_current_ptr, long *size_limit_ptr) {
    if (size_current_ptr) {
        *size_current_ptr = m_size_current;
    }
    if (size_limit_ptr) {
        *size_limit_ptr = m_low_size_watermark;
    }
}

//
// Force the eviction thread to do some work.
//
// This function does not require any mutex to be held. 
// As a result, scheduling is not guaranteed, but that is tolerable.
//
void evictor::signal_eviction_thread() {
    toku_mutex_lock(&m_ev_thread_lock);
    toku_cond_signal(&m_ev_thread_cond);
    toku_mutex_unlock(&m_ev_thread_lock);
}

void evictor::signal_eviction_thread_locked() {
    toku_cond_signal(&m_ev_thread_cond);
}

//
// Returns true if the cachetable is so over subscribed, that a client thread should sleep
//
// This function may be called in a thread-unsafe manner. Locks are not
// required to read size_current. The result is that 
// the values may be a little off, but we think that is tolerable.
//
bool evictor::should_client_thread_sleep(){
    return unsafe_read_size_current() > m_high_size_watermark;
}

//
// Returns true if a sleeping client should be woken up because
// the cachetable is not overly subscribed
//
// This function may be called in a thread-unsafe manner. Locks are not
// required to read size_current. The result is that 
// the values may be a little off, but we think that is tolerable.
//
bool evictor::should_sleeping_clients_wakeup() {
    return unsafe_read_size_current() <= m_high_size_hysteresis;
}

// 
// Returns true if a client thread should try to wake up the eviction
// thread because the client thread has noticed too much data taken
// up in the cachetable.
//
// This function may be called in a thread-unsafe manner. Locks are not
// required to read size_current or size_evicting. The result is that 
// the values may be a little off, but we think that is tolerable.
// If the caller wants to ensure that ev_thread_is_running and size_evicting
// are accurate, then the caller must hold ev_thread_lock before
// calling this function.
//
bool evictor::should_client_wake_eviction_thread() {
    return
        !m_ev_thread_is_running &&
        ((unsafe_read_size_current() - m_size_evicting) > m_low_size_hysteresis);
}

//
// Determines if eviction is needed. If the current size of
// the cachetable exceeds the sum of our fixed size limit and
// the amount of data currently being evicted, then eviction is needed
//
bool evictor::eviction_needed() {
    return (m_size_current - m_size_evicting) > m_low_size_watermark;
}

inline int64_t evictor::unsafe_read_size_current(void) const {
    return m_size_current;
}

void evictor::fill_engine_status() {
    CT_STATUS_VAL(CT_SIZE_CURRENT)           = m_size_current;
    CT_STATUS_VAL(CT_SIZE_LIMIT)             = m_low_size_hysteresis;
    CT_STATUS_VAL(CT_SIZE_WRITING)           = m_size_evicting;
    CT_STATUS_VAL(CT_SIZE_NONLEAF) = read_partitioned_counter(m_size_nonleaf);
    CT_STATUS_VAL(CT_SIZE_LEAF) = read_partitioned_counter(m_size_leaf);
    CT_STATUS_VAL(CT_SIZE_ROLLBACK) = read_partitioned_counter(m_size_rollback);
    CT_STATUS_VAL(CT_SIZE_CACHEPRESSURE) = read_partitioned_counter(m_size_cachepressure);
    CT_STATUS_VAL(CT_SIZE_CLONED) = m_size_cloned_data;
    CT_STATUS_VAL(CT_WAIT_PRESSURE_COUNT) = read_partitioned_counter(m_wait_pressure_count);
    CT_STATUS_VAL(CT_WAIT_PRESSURE_TIME) = read_partitioned_counter(m_wait_pressure_time);
    CT_STATUS_VAL(CT_LONG_WAIT_PRESSURE_COUNT) = read_partitioned_counter(m_long_wait_pressure_count);
    CT_STATUS_VAL(CT_LONG_WAIT_PRESSURE_TIME) = read_partitioned_counter(m_long_wait_pressure_time);
}

void evictor::set_enable_partial_eviction(bool enabled) {
    m_enable_partial_eviction = enabled;
}

bool evictor::get_enable_partial_eviction(void) const {
    return m_enable_partial_eviction;
}

////////////////////////////////////////////////////////////////////////////////

ENSURE_POD(checkpointer);

//
// Sets the cachetable reference in this checkpointer class, this is temporary.
//
int checkpointer::init(pair_list *_pl, 
                        TOKULOGGER _logger,
                        evictor *_ev,
                        cachefile_list *files) {
    m_list = _pl;
    m_logger = _logger;
    m_ev = _ev;
    m_cf_list = files;
    bjm_init(&m_checkpoint_clones_bjm);
    
    // Default is no checkpointing.
    m_checkpointer_cron_init = false;
    int r = toku_minicron_setup(&m_checkpointer_cron, 0, checkpoint_thread, this);
    if (r == 0) {
        m_checkpointer_cron_init = true;
    }
    m_checkpointer_init = true;
    return r;
}

void checkpointer::destroy() {
    if (!m_checkpointer_init) {
        return;
    }
    if (m_checkpointer_cron_init && !this->has_been_shutdown()) {
        // for test code only, production code uses toku_cachetable_minicron_shutdown()
        int r = this->shutdown();
        assert(r == 0);
    }
    bjm_destroy(m_checkpoint_clones_bjm);
}

//
// Sets how often the checkpoint thread will run, in seconds
//
void checkpointer::set_checkpoint_period(uint32_t new_period) {
    toku_minicron_change_period(&m_checkpointer_cron, new_period*1000);
}

//
// Sets how often the checkpoint thread will run.
//
uint32_t checkpointer::get_checkpoint_period() {
    return toku_minicron_get_period_in_seconds_unlocked(&m_checkpointer_cron);
}

//
// Stops the checkpoint thread.
//
int checkpointer::shutdown() {
    return toku_minicron_shutdown(&m_checkpointer_cron);
}

//
// If checkpointing is running, this returns false.
//
bool checkpointer::has_been_shutdown() {
    return toku_minicron_has_been_shutdown(&m_checkpointer_cron);
}

TOKULOGGER checkpointer::get_logger() {
    return m_logger;
}

void checkpointer::increment_num_txns() {
    m_checkpoint_num_txns++;
}

struct iterate_begin_checkpoint {
    LSN lsn_of_checkpoint_in_progress;
    iterate_begin_checkpoint(LSN lsn) : lsn_of_checkpoint_in_progress(lsn) { }
    static int fn(const CACHEFILE &cf, const uint32_t UU(idx), struct iterate_begin_checkpoint *info) {
        assert(cf->begin_checkpoint_userdata);
        if (cf->for_checkpoint) {
            cf->begin_checkpoint_userdata(info->lsn_of_checkpoint_in_progress, cf->userdata);
        }
        return 0;
    }
};

//
// Update the user data in any cachefiles in our checkpoint list.
//
void checkpointer::update_cachefiles() {
    struct iterate_begin_checkpoint iterate(m_lsn_of_checkpoint_in_progress);
    int r = m_cf_list->m_active_fileid.iterate<struct iterate_begin_checkpoint,
                                               iterate_begin_checkpoint::fn>(&iterate);
    assert_zero(r);
}

struct iterate_note_pin {
    static int fn(const CACHEFILE &cf, uint32_t UU(idx), void **UU(extra)) {
        assert(cf->note_pin_by_checkpoint);
        cf->note_pin_by_checkpoint(cf, cf->userdata);
        cf->for_checkpoint = true;
        return 0;
    }
};

//
// Sets up and kicks off a checkpoint.
//
void checkpointer::begin_checkpoint() {
    // 1. Initialize the accountability counters.
    m_checkpoint_num_txns = 0;
    
    // 2. Make list of cachefiles to be included in the checkpoint.
    m_cf_list->read_lock();
    m_cf_list->m_active_fileid.iterate<void *, iterate_note_pin::fn>(nullptr);
    m_checkpoint_num_files = m_cf_list->m_active_fileid.size();
    m_cf_list->read_unlock();
    
    // 3. Create log entries for this checkpoint.
    if (m_logger) {
        this->log_begin_checkpoint();
    }

    bjm_reset(m_checkpoint_clones_bjm);

    m_list->write_pending_exp_lock();
    m_list->read_list_lock();
    m_cf_list->read_lock(); // needed for update_cachefiles
    m_list->write_pending_cheap_lock();
    // 4. Turn on all the relevant checkpoint pending bits.
    this->turn_on_pending_bits();
    
    // 5.
    this->update_cachefiles();
    m_list->write_pending_cheap_unlock();
    m_cf_list->read_unlock();
    m_list->read_list_unlock();
    m_list->write_pending_exp_unlock();
}

struct iterate_log_fassociate {
    static int fn(const CACHEFILE &cf, uint32_t UU(idx), void **UU(extra)) {
        assert(cf->log_fassociate_during_checkpoint);
        cf->log_fassociate_during_checkpoint(cf, cf->userdata);
        return 0;
    }
};

//
// Assuming the logger exists, this will write out the folloing 
// information to the log.
//
// 1. Writes the BEGIN_CHECKPOINT to the log.
// 2. Writes the list of open dictionaries to the log.
// 3. Writes the list of open transactions to the log.
// 4. Writes the list of dicionaries that have had rollback logs suppresed.
//
// NOTE: This also has the side effecto of setting the LSN
// of checkpoint in progress.
//
void checkpointer::log_begin_checkpoint() {
    int r = 0;
    
    // Write the BEGIN_CHECKPOINT to the log.
    LSN begin_lsn={ .lsn = (uint64_t) -1 }; // we'll need to store the lsn of the checkpoint begin in all the trees that are checkpointed.
    TXN_MANAGER mgr = toku_logger_get_txn_manager(m_logger);
    TXNID last_xid = toku_txn_manager_get_last_xid(mgr);
    toku_log_begin_checkpoint(m_logger, &begin_lsn, 0, 0, last_xid);
    m_lsn_of_checkpoint_in_progress = begin_lsn;

    // Log the list of open dictionaries.
    m_cf_list->m_active_fileid.iterate<void *, iterate_log_fassociate::fn>(nullptr);

    // Write open transactions to the log.
    r = toku_txn_manager_iter_over_live_txns(
        m_logger->txn_manager,
        log_open_txn,
        this
        );
    assert(r == 0);
}

//
// Sets the pending bits of EVERY PAIR in the cachetable, regardless of
// whether the PAIR is clean or not. It will be the responsibility of
// end_checkpoint or client threads to simply clear the pending bit
// if the PAIR is clean.
//
// On entry and exit , the pair list's read list lock is grabbed, and
// both pending locks are grabbed
//
void checkpointer::turn_on_pending_bits() {
    PAIR p = NULL;
    uint32_t i;
    for (i = 0, p = m_list->m_checkpoint_head; i < m_list->m_n_in_table; i++, p = p->clock_next) {
        assert(!p->checkpoint_pending);
        //Only include pairs belonging to cachefiles in the checkpoint
        if (!p->cachefile->for_checkpoint) {
            continue;
        }
        // Mark everything as pending a checkpoint
        //
        // The rule for the checkpoint_pending bit is as follows:
        //  - begin_checkpoint may set checkpoint_pending to true
        //    even though the pair lock on the node is not held.
        //  - any thread that wants to clear the pending bit must own
        //     the PAIR lock. Otherwise,
        //     we may end up clearing the pending bit before the
        //     current lock is ever released.
        p->checkpoint_pending = true;
        if (m_list->m_pending_head) {
            m_list->m_pending_head->pending_prev = p;
        }
        p->pending_next = m_list->m_pending_head;
        p->pending_prev = NULL;
        m_list->m_pending_head = p;
    }
    invariant(p == m_list->m_checkpoint_head);
}

void checkpointer::add_background_job() {
    int r = bjm_add_background_job(m_checkpoint_clones_bjm);
    assert_zero(r);
}
void checkpointer::remove_background_job() {
    bjm_remove_background_job(m_checkpoint_clones_bjm);
}

void checkpointer::end_checkpoint(void (*testcallback_f)(void*),  void* testextra) {
    toku::scoped_malloc checkpoint_cfs_buf(m_checkpoint_num_files * sizeof(CACHEFILE));
    CACHEFILE *checkpoint_cfs = reinterpret_cast<CACHEFILE *>(checkpoint_cfs_buf.get());

    this->fill_checkpoint_cfs(checkpoint_cfs);    
    this->checkpoint_pending_pairs();
    this->checkpoint_userdata(checkpoint_cfs);
    // For testing purposes only.  Dictionary has been fsync-ed to disk but log has not yet been written.
    if (testcallback_f) {
        testcallback_f(testextra);      
    }
    this->log_end_checkpoint();
    this->end_checkpoint_userdata(checkpoint_cfs);

    // Delete list of cachefiles in the checkpoint,
    this->remove_cachefiles(checkpoint_cfs);
}

struct iterate_checkpoint_cfs {
    CACHEFILE *checkpoint_cfs;
    uint32_t checkpoint_num_files;
    uint32_t curr_index;
    iterate_checkpoint_cfs(CACHEFILE *cfs, uint32_t num_files) :
        checkpoint_cfs(cfs), checkpoint_num_files(num_files), curr_index(0) {
    }
    static int fn(const CACHEFILE &cf, uint32_t UU(idx), struct iterate_checkpoint_cfs *info) {
        if (cf->for_checkpoint) {
            assert(info->curr_index < info->checkpoint_num_files);
            info->checkpoint_cfs[info->curr_index] = cf;
            info->curr_index++;
        }
        return 0;
    }
};

void checkpointer::fill_checkpoint_cfs(CACHEFILE* checkpoint_cfs) {
    struct iterate_checkpoint_cfs iterate(checkpoint_cfs, m_checkpoint_num_files);

    m_cf_list->read_lock();
    m_cf_list->m_active_fileid.iterate<struct iterate_checkpoint_cfs, iterate_checkpoint_cfs::fn>(&iterate);
    assert(iterate.curr_index == m_checkpoint_num_files);
    m_cf_list->read_unlock();
}

void checkpointer::checkpoint_pending_pairs() {
    PAIR p;
    m_list->read_list_lock();
    while ((p = m_list->m_pending_head)!=0) {
        // <CER> TODO: Investigate why we move pending head outisde of the pending_pairs_remove() call.
        m_list->m_pending_head = m_list->m_pending_head->pending_next;
        m_list->pending_pairs_remove(p);
        // if still pending, clear the pending bit and write out the node
        pair_lock(p);
        m_list->read_list_unlock();
        write_pair_for_checkpoint_thread(m_ev, p);
        pair_unlock(p);
        m_list->read_list_lock();
    }
    assert(!m_list->m_pending_head);
    m_list->read_list_unlock();
    bjm_wait_for_jobs_to_finish(m_checkpoint_clones_bjm);
}

void checkpointer::checkpoint_userdata(CACHEFILE* checkpoint_cfs) {
    // have just written data blocks, so next write the translation and header for each open dictionary
    for (uint32_t i = 0; i < m_checkpoint_num_files; i++) {
        CACHEFILE cf = checkpoint_cfs[i];
        assert(cf->for_checkpoint);
        assert(cf->checkpoint_userdata);
        toku_cachetable_set_checkpointing_user_data_status(1);
        cf->checkpoint_userdata(cf, cf->fd, cf->userdata);
        toku_cachetable_set_checkpointing_user_data_status(0);
    }
}

void checkpointer::log_end_checkpoint() {
    if (m_logger) {
        toku_log_end_checkpoint(m_logger, NULL,
                                1, // want the end_checkpoint to be fsync'd
                                m_lsn_of_checkpoint_in_progress, 
                                0,
                                m_checkpoint_num_files,
                                m_checkpoint_num_txns);
        toku_logger_note_checkpoint(m_logger, m_lsn_of_checkpoint_in_progress);
    }
}

void checkpointer::end_checkpoint_userdata(CACHEFILE* checkpoint_cfs) {
    // everything has been written to file and fsynced
    // ... call checkpoint-end function in block translator
    //     to free obsolete blocks on disk used by previous checkpoint
    //cachefiles_in_checkpoint is protected by the checkpoint_safe_lock
    for (uint32_t i = 0; i < m_checkpoint_num_files; i++) {
        CACHEFILE cf = checkpoint_cfs[i];
        assert(cf->for_checkpoint);
        assert(cf->end_checkpoint_userdata);
        cf->end_checkpoint_userdata(cf, cf->fd, cf->userdata);
    }
}

//
// Deletes all the cachefiles in this checkpointers cachefile list. 
//
void checkpointer::remove_cachefiles(CACHEFILE* checkpoint_cfs) {
    // making this a while loop because note_unpin_by_checkpoint may destroy the cachefile
    for (uint32_t i = 0; i < m_checkpoint_num_files; i++) {
        CACHEFILE cf = checkpoint_cfs[i];
        // Checking for function existing so that this function
        // can be called from cachetable tests.
        assert(cf->for_checkpoint);
        cf->for_checkpoint = false;
        assert(cf->note_unpin_by_checkpoint);
        // Clear the bit saying theis file is in the checkpoint.
        cf->note_unpin_by_checkpoint(cf, cf->userdata);
    }
}


////////////////////////////////////////////////////////
//
// cachefiles list
//
static_assert(std::is_pod<cachefile_list>::value, "cachefile_list isn't POD");

void cachefile_list::init() {
    m_next_filenum_to_use.fileid = 0;
    m_next_hash_id_to_use = 0;
    toku_pthread_rwlock_init(*cachetable_m_lock_key, &m_lock, nullptr);
    m_active_filenum.create();
    m_active_fileid.create();
    m_stale_fileid.create();
}

void cachefile_list::destroy() {
    m_active_filenum.destroy();
    m_active_fileid.destroy();
    m_stale_fileid.destroy();
    toku_pthread_rwlock_destroy(&m_lock);
}

void cachefile_list::read_lock() {
    toku_pthread_rwlock_rdlock(&m_lock);
}

void cachefile_list::read_unlock() {
    toku_pthread_rwlock_rdunlock(&m_lock);
}

void cachefile_list::write_lock() {
    toku_pthread_rwlock_wrlock(&m_lock);
}

void cachefile_list::write_unlock() {
    toku_pthread_rwlock_wrunlock(&m_lock);
}

struct iterate_find_iname {
    const char *iname_in_env;
    CACHEFILE found_cf;
    iterate_find_iname(const char *iname) : iname_in_env(iname), found_cf(nullptr) { }
    static int fn(const CACHEFILE &cf, uint32_t UU(idx), struct iterate_find_iname *info) {
        if (cf->fname_in_env && strcmp(cf->fname_in_env, info->iname_in_env) == 0) {
            info->found_cf = cf;
            return -1;
        }
        return 0;
    }
};

int cachefile_list::cachefile_of_iname_in_env(const char *iname_in_env, CACHEFILE *cf) {
    struct iterate_find_iname iterate(iname_in_env);

    read_lock();
    int r = m_active_fileid.iterate<iterate_find_iname, iterate_find_iname::fn>(&iterate);
    if (iterate.found_cf != nullptr) {
        assert(strcmp(iterate.found_cf->fname_in_env, iname_in_env) == 0);
        *cf = iterate.found_cf;
        r = 0;
    } else {
        r = ENOENT;
    }
    read_unlock();
    return r;
}

static int cachefile_find_by_filenum(const CACHEFILE &a_cf, const FILENUM &b) {
    const FILENUM a = a_cf->filenum;
    if (a.fileid < b.fileid) {
        return -1;
    } else if (a.fileid == b.fileid) {
        return 0;
    } else {
        return 1;
    }
}

int cachefile_list::cachefile_of_filenum(FILENUM filenum, CACHEFILE *cf) {
    read_lock();
    int r = m_active_filenum.find_zero<FILENUM, cachefile_find_by_filenum>(filenum, cf, nullptr);
    if (r == DB_NOTFOUND) {
        r = ENOENT;
    } else {
        invariant_zero(r);
    }
    read_unlock();
    return r;
}

static int cachefile_find_by_fileid(const CACHEFILE &a_cf, const struct fileid &b) {
    return toku_fileid_cmp(a_cf->fileid, b);
}

void cachefile_list::add_cf_unlocked(CACHEFILE cf) {
    int r;
    r = m_active_filenum.insert<FILENUM, cachefile_find_by_filenum>(cf, cf->filenum, nullptr);
    assert_zero(r);
    r = m_active_fileid.insert<struct fileid, cachefile_find_by_fileid>(cf, cf->fileid, nullptr);
    assert_zero(r);
}

void cachefile_list::add_stale_cf(CACHEFILE cf) {
    write_lock();
    int r = m_stale_fileid.insert<struct fileid, cachefile_find_by_fileid>(cf, cf->fileid, nullptr);
    assert_zero(r);
    write_unlock();
}

void cachefile_list::remove_cf(CACHEFILE cf) {
    write_lock();

    uint32_t idx;
    int r;
    r = m_active_filenum.find_zero<FILENUM, cachefile_find_by_filenum>(cf->filenum, nullptr, &idx);
    assert_zero(r);
    r = m_active_filenum.delete_at(idx);
    assert_zero(r);

    r = m_active_fileid.find_zero<struct fileid, cachefile_find_by_fileid>(cf->fileid, nullptr, &idx);
    assert_zero(r);
    r = m_active_fileid.delete_at(idx);
    assert_zero(r);

    write_unlock();
}

void cachefile_list::remove_stale_cf_unlocked(CACHEFILE cf) {
    uint32_t idx;
    int r;
    r = m_stale_fileid.find_zero<struct fileid, cachefile_find_by_fileid>(cf->fileid, nullptr, &idx);
    assert_zero(r);
    r = m_stale_fileid.delete_at(idx);
    assert_zero(r);
}

FILENUM cachefile_list::reserve_filenum() {
    // taking a write lock because we are modifying next_filenum_to_use
    FILENUM filenum = FILENUM_NONE;
    write_lock();
    while (1) {
        int r = m_active_filenum.find_zero<FILENUM, cachefile_find_by_filenum>(m_next_filenum_to_use, nullptr, nullptr);
        if (r == 0) {
            m_next_filenum_to_use.fileid++;
            continue;
        }
        assert(r == DB_NOTFOUND);

        // skip the reserved value UINT32_MAX and wrap around to zero
        if (m_next_filenum_to_use.fileid == FILENUM_NONE.fileid) {
            m_next_filenum_to_use.fileid = 0;
            continue;
        }

        filenum = m_next_filenum_to_use;
        m_next_filenum_to_use.fileid++;
        break;
    }
    write_unlock();
    return filenum;
}

uint32_t cachefile_list::get_new_hash_id_unlocked() {
    uint32_t retval = m_next_hash_id_to_use;
    m_next_hash_id_to_use++;
    return retval;
}

CACHEFILE cachefile_list::find_cachefile_unlocked(struct fileid* fileid) {
    CACHEFILE cf = nullptr;
    int r = m_active_fileid.find_zero<struct fileid, cachefile_find_by_fileid>(*fileid, &cf, nullptr);
    if (r == 0) {
        assert(!cf->unlink_on_close);
    }
    return cf;
}

CACHEFILE cachefile_list::find_stale_cachefile_unlocked(struct fileid* fileid) {
    CACHEFILE cf = nullptr;
    int r = m_stale_fileid.find_zero<struct fileid, cachefile_find_by_fileid>(*fileid, &cf, nullptr);
    if (r == 0) {
        assert(!cf->unlink_on_close);
    }
    return cf;
}

void cachefile_list::verify_unused_filenum(FILENUM filenum) {
    int r = m_active_filenum.find_zero<FILENUM, cachefile_find_by_filenum>(filenum, nullptr, nullptr);
    assert(r == DB_NOTFOUND);
}

// returns true if some eviction ran, false otherwise
bool cachefile_list::evict_some_stale_pair(evictor* ev) {
    write_lock();
    if (m_stale_fileid.size() == 0) {
        write_unlock();
        return false;
    }

    CACHEFILE stale_cf = nullptr;
    int r = m_stale_fileid.fetch(0, &stale_cf);
    assert_zero(r);

    // we should not have a cf in the stale list
    // that does not have any pairs
    PAIR p = stale_cf->cf_head;
    paranoid_invariant(p != NULL);
    evict_pair_from_cachefile(p);

    // now that we have evicted something,
    // let's check if the cachefile is needed anymore
    //
    // it is not needed if the latest eviction caused
    // the cf_head for that cf to become null
    bool destroy_cf = stale_cf->cf_head == nullptr;
    if (destroy_cf) {
        remove_stale_cf_unlocked(stale_cf);
    }

    write_unlock();
    
    ev->remove_pair_attr(p->attr);
    cachetable_free_pair(p);
    if (destroy_cf) {
        cachefile_destroy(stale_cf);
    }
    return true;
}

void cachefile_list::free_stale_data(evictor* ev) {
    write_lock();
    while (m_stale_fileid.size() != 0) {
        CACHEFILE stale_cf = nullptr;
        int r = m_stale_fileid.fetch(0, &stale_cf); 
        assert_zero(r);

        // we should not have a cf in the stale list
        // that does not have any pairs
        PAIR p = stale_cf->cf_head;
        paranoid_invariant(p != NULL);
        
        evict_pair_from_cachefile(p);
        ev->remove_pair_attr(p->attr);
        cachetable_free_pair(p);
        
        // now that we have evicted something,
        // let's check if the cachefile is needed anymore
        if (stale_cf->cf_head == NULL) {
            remove_stale_cf_unlocked(stale_cf);
            cachefile_destroy(stale_cf);
        }
    }
    write_unlock();
}

void __attribute__((__constructor__)) toku_cachetable_helgrind_ignore(void);
void
toku_cachetable_helgrind_ignore(void) {
    TOKU_VALGRIND_HG_DISABLE_CHECKING(&cachetable_miss, sizeof cachetable_miss);
    TOKU_VALGRIND_HG_DISABLE_CHECKING(&cachetable_misstime, sizeof cachetable_misstime);
    TOKU_VALGRIND_HG_DISABLE_CHECKING(&cachetable_prefetches, sizeof cachetable_prefetches);
    TOKU_VALGRIND_HG_DISABLE_CHECKING(&cachetable_evictions, sizeof cachetable_evictions);
    TOKU_VALGRIND_HG_DISABLE_CHECKING(&cleaner_executions, sizeof cleaner_executions);
    TOKU_VALGRIND_HG_DISABLE_CHECKING(&ct_status, sizeof ct_status);
}