1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.
Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License, version 3,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
======= */
#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
#include <my_global.h>
#include <toku_portability.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <memory.h>
#include <errno.h>
#include <toku_assert.h>
#include <string.h>
#include <fcntl.h>
#include "ft/ft.h"
#include "ft/ft-internal.h"
#include "ft/leafentry.h"
#include "ft/loader/loader-internal.h"
#include "ft/loader/pqueue.h"
#include "ft/loader/dbufio.h"
#include "ft/logger/log-internal.h"
#include "ft/node.h"
#include "ft/serialize/block_table.h"
#include "ft/serialize/ft-serialize.h"
#include "ft/serialize/ft_node-serialize.h"
#include "ft/serialize/sub_block.h"
#include "util/x1764.h"
toku_instr_key *loader_bl_mutex_key;
toku_instr_key *loader_fi_lock_mutex_key;
toku_instr_key *loader_out_mutex_key;
toku_instr_key *extractor_thread_key;
toku_instr_key *fractal_thread_key;
toku_instr_key *tokudb_file_tmp_key;
toku_instr_key *tokudb_file_load_key;
// 1024 is the right size_factor for production.
// Different values for these sizes may be used for testing.
static uint32_t size_factor = 1024;
static uint32_t default_loader_nodesize = FT_DEFAULT_NODE_SIZE;
static uint32_t default_loader_basementnodesize = FT_DEFAULT_BASEMENT_NODE_SIZE;
void
toku_ft_loader_set_size_factor(uint32_t factor) {
// For test purposes only
size_factor = factor;
default_loader_nodesize = (size_factor==1) ? (1<<15) : FT_DEFAULT_NODE_SIZE;
}
uint64_t
toku_ft_loader_get_rowset_budget_for_testing (void)
// For test purposes only. In production, the rowset size is determined by negotiation with the cachetable for some memory. (See #2613).
{
return 16ULL*size_factor*1024ULL;
}
void ft_loader_lock_init(FTLOADER bl) {
invariant(!bl->mutex_init);
toku_mutex_init(*loader_bl_mutex_key, &bl->mutex, nullptr);
bl->mutex_init = true;
}
void ft_loader_lock_destroy(FTLOADER bl) {
if (bl->mutex_init) {
toku_mutex_destroy(&bl->mutex);
bl->mutex_init = false;
}
}
static void ft_loader_lock(FTLOADER bl) {
invariant(bl->mutex_init);
toku_mutex_lock(&bl->mutex);
}
static void ft_loader_unlock(FTLOADER bl) {
invariant(bl->mutex_init);
toku_mutex_unlock(&bl->mutex);
}
static int add_big_buffer(struct file_info *file) {
int result = 0;
bool newbuffer = false;
if (file->buffer == NULL) {
file->buffer = toku_malloc(file->buffer_size);
if (file->buffer == NULL)
result = get_error_errno();
else
newbuffer = true;
}
if (result == 0) {
int r = setvbuf(file->file->file,
static_cast<char *>(file->buffer),
_IOFBF,
file->buffer_size);
if (r != 0) {
result = get_error_errno();
if (newbuffer) {
toku_free(file->buffer);
file->buffer = NULL;
}
}
}
return result;
}
static void cleanup_big_buffer(struct file_info *file) {
if (file->buffer) {
toku_free(file->buffer);
file->buffer = NULL;
}
}
int ft_loader_init_file_infos(struct file_infos *fi) {
int result = 0;
toku_mutex_init(*loader_fi_lock_mutex_key, &fi->lock, nullptr);
fi->n_files = 0;
fi->n_files_limit = 1;
fi->n_files_open = 0;
fi->n_files_extant = 0;
MALLOC_N(fi->n_files_limit, fi->file_infos);
if (fi->file_infos == NULL)
result = get_error_errno();
return result;
}
void ft_loader_fi_destroy (struct file_infos *fi, bool is_error)
// Effect: Free the resources in the fi.
// If is_error then we close and unlink all the temp files.
// If !is_error then requires that all the temp files have been closed and destroyed
// No error codes are returned. If anything goes wrong with closing and unlinking then it's only in an is_error case, so we don't care.
{
if (fi->file_infos == NULL) {
// ft_loader_init_file_infos guarantees this isn't null, so if it is, we know it hasn't been inited yet and we don't need to destroy it.
return;
}
toku_mutex_destroy(&fi->lock);
if (!is_error) {
invariant(fi->n_files_open==0);
invariant(fi->n_files_extant==0);
}
for (int i=0; i<fi->n_files; i++) {
if (fi->file_infos[i].is_open) {
invariant(is_error);
toku_os_fclose(fi->file_infos[i].file); // don't check for errors, since we are in an error case.
}
if (fi->file_infos[i].is_extant) {
invariant(is_error);
unlink(fi->file_infos[i].fname);
toku_free(fi->file_infos[i].fname);
}
cleanup_big_buffer(&fi->file_infos[i]);
}
toku_free(fi->file_infos);
fi->n_files=0;
fi->n_files_limit=0;
fi->file_infos = NULL;
}
static int open_file_add(struct file_infos *fi,
TOKU_FILE *file,
char *fname,
/* out */ FIDX *idx) {
int result = 0;
toku_mutex_lock(&fi->lock);
if (fi->n_files >= fi->n_files_limit) {
fi->n_files_limit *=2;
XREALLOC_N(fi->n_files_limit, fi->file_infos);
}
invariant(fi->n_files < fi->n_files_limit);
fi->file_infos[fi->n_files].is_open = true;
fi->file_infos[fi->n_files].is_extant = true;
fi->file_infos[fi->n_files].fname = fname;
fi->file_infos[fi->n_files].file = file;
fi->file_infos[fi->n_files].n_rows = 0;
fi->file_infos[fi->n_files].buffer_size = FILE_BUFFER_SIZE;
fi->file_infos[fi->n_files].buffer = NULL;
result = add_big_buffer(&fi->file_infos[fi->n_files]);
if (result == 0) {
idx->idx = fi->n_files;
fi->n_files++;
fi->n_files_extant++;
fi->n_files_open++;
}
toku_mutex_unlock(&fi->lock);
return result;
}
int ft_loader_fi_reopen (struct file_infos *fi, FIDX idx, const char *mode) {
int result = 0;
toku_mutex_lock(&fi->lock);
int i = idx.idx;
invariant(i >= 0 && i < fi->n_files);
invariant(!fi->file_infos[i].is_open);
invariant(fi->file_infos[i].is_extant);
fi->file_infos[i].file =
toku_os_fopen(fi->file_infos[i].fname, mode, *tokudb_file_load_key);
if (fi->file_infos[i].file == NULL) {
result = get_error_errno();
} else {
fi->file_infos[i].is_open = true;
// No longer need the big buffer for reopened files. Don't allocate the space, we need it elsewhere.
//add_big_buffer(&fi->file_infos[i]);
fi->n_files_open++;
}
toku_mutex_unlock(&fi->lock);
return result;
}
int ft_loader_fi_close (struct file_infos *fi, FIDX idx, bool require_open)
{
int result = 0;
toku_mutex_lock(&fi->lock);
invariant(idx.idx >=0 && idx.idx < fi->n_files);
if (fi->file_infos[idx.idx].is_open) {
invariant(fi->n_files_open>0); // loader-cleanup-test failure
fi->n_files_open--;
fi->file_infos[idx.idx].is_open = false;
int r = toku_os_fclose(fi->file_infos[idx.idx].file);
if (r)
result = get_error_errno();
cleanup_big_buffer(&fi->file_infos[idx.idx]);
} else if (require_open)
result = EINVAL;
toku_mutex_unlock(&fi->lock);
return result;
}
int ft_loader_fi_unlink (struct file_infos *fi, FIDX idx) {
int result = 0;
toku_mutex_lock(&fi->lock);
int id = idx.idx;
invariant(id >=0 && id < fi->n_files);
if (fi->file_infos[id].is_extant) { // must still exist
invariant(fi->n_files_extant>0);
fi->n_files_extant--;
invariant(!fi->file_infos[id].is_open); // must be closed before we unlink
fi->file_infos[id].is_extant = false;
int r = unlink(fi->file_infos[id].fname);
if (r != 0)
result = get_error_errno();
toku_free(fi->file_infos[id].fname);
fi->file_infos[id].fname = NULL;
} else
result = EINVAL;
toku_mutex_unlock(&fi->lock);
return result;
}
int
ft_loader_fi_close_all(struct file_infos *fi) {
int rval = 0;
for (int i = 0; i < fi->n_files; i++) {
int r;
FIDX idx = { i };
r = ft_loader_fi_close(fi, idx, false); // ignore files that are already closed
if (rval == 0 && r)
rval = r; // capture first error
}
return rval;
}
int ft_loader_open_temp_file (FTLOADER bl, FIDX *file_idx)
/* Effect: Open a temporary file in read-write mode. Save enough information to close and delete the file later.
* Return value: 0 on success, an error number otherwise.
* On error, *file_idx and *fnamep will be unmodified.
* The open file will be saved in bl->file_infos so that even if errors happen we can free them all.
*/
{
int result = 0;
if (result) // debug hack
return result;
TOKU_FILE *f = NULL;
int fd = -1;
char *fname = toku_strdup(bl->temp_file_template);
if (fname == NULL)
result = get_error_errno();
else {
fd = mkstemp(fname);
if (fd < 0) {
result = get_error_errno();
} else {
f = toku_os_fdopen(fd, "r+", fname, *tokudb_file_tmp_key);
if (f->file == nullptr)
result = get_error_errno();
else
result = open_file_add(&bl->file_infos, f, fname, file_idx);
}
}
if (result != 0) {
if (fd >= 0) {
toku_os_close(fd);
unlink(fname);
}
if (f != NULL)
toku_os_fclose(f); // don't check for error because we're already in an error case
if (fname != NULL)
toku_free(fname);
}
return result;
}
void toku_ft_loader_internal_destroy(FTLOADER bl, bool is_error) {
ft_loader_lock_destroy(bl);
// These frees rely on the fact that if you free a NULL pointer then nothing bad happens.
toku_free(bl->dbs);
toku_free(bl->descriptors);
toku_free(bl->root_xids_that_created);
if (bl->new_fnames_in_env) {
for (int i = 0; i < bl->N; i++)
toku_free((char*)bl->new_fnames_in_env[i]);
toku_free(bl->new_fnames_in_env);
}
toku_free(bl->extracted_datasizes);
toku_free(bl->bt_compare_funs);
toku_free((char*)bl->temp_file_template);
ft_loader_fi_destroy(&bl->file_infos, is_error);
for (int i = 0; i < bl->N; i++)
destroy_rowset(&bl->rows[i]);
toku_free(bl->rows);
for (int i = 0; i < bl->N; i++)
destroy_merge_fileset(&bl->fs[i]);
toku_free(bl->fs);
if (bl->last_key) {
for (int i=0; i < bl->N; i++) {
toku_free(bl->last_key[i].data);
}
toku_free(bl->last_key);
bl->last_key = NULL;
}
destroy_rowset(&bl->primary_rowset);
if (bl->primary_rowset_queue) {
toku_queue_destroy(bl->primary_rowset_queue);
bl->primary_rowset_queue = nullptr;
}
for (int i=0; i<bl->N; i++) {
if ( bl->fractal_queues ) {
invariant(bl->fractal_queues[i]==NULL);
}
}
toku_free(bl->fractal_threads);
toku_free(bl->fractal_queues);
toku_free(bl->fractal_threads_live);
if (bl->did_reserve_memory) {
invariant(bl->cachetable);
toku_cachetable_release_reserved_memory(bl->cachetable, bl->reserved_memory);
}
ft_loader_destroy_error_callback(&bl->error_callback);
ft_loader_destroy_poll_callback(&bl->poll_callback);
//printf("Progress=%d/%d\n", bl->progress, PROGRESS_MAX);
toku_free(bl);
}
static void *extractor_thread (void*);
#define MAX(a,b) (((a)<(b)) ? (b) : (a))
static uint64_t memory_per_rowset_during_extract (FTLOADER bl)
// Return how much memory can be allocated for each rowset.
{
if (size_factor==1) {
return 16*1024;
} else {
// There is a primary rowset being maintained by the foreground thread.
// There could be two more in the queue.
// There is one rowset for each index (bl->N) being filled in.
// Later we may have sort_and_write operations spawning in parallel, and will need to account for that.
int n_copies = (1 // primary rowset
+EXTRACTOR_QUEUE_DEPTH // the number of primaries in the queue
+bl->N // the N rowsets being constructed by the extractor thread.
+bl->N // the N sort buffers
+1 // Give the extractor thread one more so that it can have temporary space for sorting. This is overkill.
);
int64_t extra_reserved_memory = bl->N * FILE_BUFFER_SIZE; // for each index we are writing to a file at any given time.
int64_t tentative_rowset_size = ((int64_t)(bl->reserved_memory - extra_reserved_memory))/(n_copies);
return MAX(tentative_rowset_size, (int64_t)MIN_ROWSET_MEMORY);
}
}
static unsigned ft_loader_get_fractal_workers_count(FTLOADER bl) {
unsigned w = 0;
while (1) {
ft_loader_lock(bl);
w = bl->fractal_workers;
ft_loader_unlock(bl);
if (w != 0)
break;
toku_pthread_yield(); // maybe use a cond var instead
}
return w;
}
static void ft_loader_set_fractal_workers_count(FTLOADER bl) {
ft_loader_lock(bl);
if (bl->fractal_workers == 0)
bl->fractal_workers = 1;
ft_loader_unlock(bl);
}
// To compute a merge, we have a certain amount of memory to work with.
// We perform only one fanin at a time.
// If the fanout is F then we are using
// F merges. Each merge uses
// DBUFIO_DEPTH buffers for double buffering. Each buffer is of size at least MERGE_BUF_SIZE
// so the memory is
// F*MERGE_BUF_SIZE*DBUFIO_DEPTH storage.
// We use some additional space to buffer the outputs.
// That's FILE_BUFFER_SIZE for writing to a merge file if we are writing to a mergefile.
// And we have FRACTAL_WRITER_ROWSETS*MERGE_BUF_SIZE per queue
// And if we are doing a fractal, each worker could have have a fractal tree that it's working on.
//
// DBUFIO_DEPTH*F*MERGE_BUF_SIZE + FRACTAL_WRITER_ROWSETS*MERGE_BUF_SIZE + WORKERS*NODESIZE*2 <= RESERVED_MEMORY
static int64_t memory_avail_during_merge(FTLOADER bl, bool is_fractal_node) {
// avail memory = reserved memory - WORKERS*NODESIZE*2 for the last merge stage only
int64_t avail_memory = bl->reserved_memory;
if (is_fractal_node) {
// reserve space for the fractal writer thread buffers
avail_memory -= (int64_t)ft_loader_get_fractal_workers_count(bl) * (int64_t)default_loader_nodesize * 2; // compressed and uncompressed buffers
}
return avail_memory;
}
static int merge_fanin (FTLOADER bl, bool is_fractal_node) {
// return number of temp files to read in this pass
int64_t memory_avail = memory_avail_during_merge(bl, is_fractal_node);
int64_t nbuffers = memory_avail / (int64_t)TARGET_MERGE_BUF_SIZE;
if (is_fractal_node)
nbuffers -= FRACTAL_WRITER_ROWSETS;
return MAX(nbuffers / (int64_t)DBUFIO_DEPTH, (int)MIN_MERGE_FANIN);
}
static uint64_t memory_per_rowset_during_merge (FTLOADER bl, int merge_factor, bool is_fractal_node // if it is being sent to a q
) {
int64_t memory_avail = memory_avail_during_merge(bl, is_fractal_node);
int64_t nbuffers = DBUFIO_DEPTH * merge_factor;
if (is_fractal_node)
nbuffers += FRACTAL_WRITER_ROWSETS;
return MAX(memory_avail / nbuffers, (int64_t)MIN_MERGE_BUF_SIZE);
}
int toku_ft_loader_internal_init (/* out */ FTLOADER *blp,
CACHETABLE cachetable,
generate_row_for_put_func g,
DB *src_db,
int N, FT_HANDLE fts[/*N*/], DB* dbs[/*N*/],
const char *new_fnames_in_env[/*N*/],
ft_compare_func bt_compare_functions[/*N*/],
const char *temp_file_template,
LSN load_lsn,
TOKUTXN txn,
bool reserve_memory,
uint64_t reserve_memory_size,
bool compress_intermediates,
bool allow_puts)
// Effect: Allocate and initialize a FTLOADER, but do not create the extractor thread.
{
FTLOADER CALLOC(bl); // initialized to all zeros (hence CALLOC)
if (!bl) return get_error_errno();
bl->generate_row_for_put = g;
bl->cachetable = cachetable;
if (reserve_memory && bl->cachetable) {
bl->did_reserve_memory = true;
bl->reserved_memory = toku_cachetable_reserve_memory(bl->cachetable, 2.0/3.0, reserve_memory_size); // allocate 2/3 of the unreserved part (which is 3/4 of the memory to start with).
}
else {
bl->did_reserve_memory = false;
bl->reserved_memory = 512*1024*1024; // if no cache table use 512MB.
}
bl->compress_intermediates = compress_intermediates;
bl->allow_puts = allow_puts;
bl->src_db = src_db;
bl->N = N;
bl->load_lsn = load_lsn;
if (txn) {
bl->load_root_xid = txn->txnid.parent_id64;
}
else {
bl->load_root_xid = TXNID_NONE;
}
ft_loader_init_error_callback(&bl->error_callback);
ft_loader_init_poll_callback(&bl->poll_callback);
#define MY_CALLOC_N(n,v) CALLOC_N(n,v); if (!v) { int r = get_error_errno(); toku_ft_loader_internal_destroy(bl, true); return r; }
#define SET_TO_MY_STRDUP(lval, s) do { char *v = toku_strdup(s); if (!v) { int r = get_error_errno(); toku_ft_loader_internal_destroy(bl, true); return r; } lval = v; } while (0)
MY_CALLOC_N(N, bl->root_xids_that_created);
for (int i=0; i<N; i++) if (fts[i]) bl->root_xids_that_created[i]=fts[i]->ft->h->root_xid_that_created;
MY_CALLOC_N(N, bl->dbs);
for (int i=0; i<N; i++) if (fts[i]) bl->dbs[i]=dbs[i];
MY_CALLOC_N(N, bl->descriptors);
for (int i=0; i<N; i++) if (fts[i]) bl->descriptors[i]=&fts[i]->ft->descriptor;
MY_CALLOC_N(N, bl->new_fnames_in_env);
for (int i=0; i<N; i++) SET_TO_MY_STRDUP(bl->new_fnames_in_env[i], new_fnames_in_env[i]);
MY_CALLOC_N(N, bl->extracted_datasizes); // the calloc_n zeroed everything, which is what we want
MY_CALLOC_N(N, bl->bt_compare_funs);
for (int i=0; i<N; i++) bl->bt_compare_funs[i] = bt_compare_functions[i];
MY_CALLOC_N(N, bl->fractal_queues);
for (int i=0; i<N; i++) bl->fractal_queues[i]=NULL;
MY_CALLOC_N(N, bl->fractal_threads);
MY_CALLOC_N(N, bl->fractal_threads_live);
for (int i=0; i<N; i++) bl->fractal_threads_live[i] = false;
{
int r = ft_loader_init_file_infos(&bl->file_infos);
if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; }
}
SET_TO_MY_STRDUP(bl->temp_file_template, temp_file_template);
bl->n_rows = 0;
bl->progress = 0;
bl->progress_callback_result = 0;
MY_CALLOC_N(N, bl->rows);
MY_CALLOC_N(N, bl->fs);
MY_CALLOC_N(N, bl->last_key);
for(int i=0;i<N;i++) {
{
int r = init_rowset(&bl->rows[i], memory_per_rowset_during_extract(bl));
if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; }
}
init_merge_fileset(&bl->fs[i]);
bl->last_key[i].flags = DB_DBT_REALLOC; // don't really need this, but it's nice to maintain it. We use ulen to keep track of the realloced space.
}
{
int r = init_rowset(&bl->primary_rowset, memory_per_rowset_during_extract(bl));
if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; }
}
{ int r = toku_queue_create(&bl->primary_rowset_queue, EXTRACTOR_QUEUE_DEPTH);
if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; }
}
{
ft_loader_lock_init(bl);
}
*blp = bl;
return 0;
}
int toku_ft_loader_open (FTLOADER *blp, /* out */
CACHETABLE cachetable,
generate_row_for_put_func g,
DB *src_db,
int N, FT_HANDLE fts[/*N*/], DB* dbs[/*N*/],
const char *new_fnames_in_env[/*N*/],
ft_compare_func bt_compare_functions[/*N*/],
const char *temp_file_template,
LSN load_lsn,
TOKUTXN txn,
bool reserve_memory,
uint64_t reserve_memory_size,
bool compress_intermediates,
bool allow_puts) {
// Effect: called by DB_ENV->create_loader to create an ft loader.
// Arguments:
// blp Return a ft loader ("bulk loader") here.
// g The function for generating a row
// src_db The source database. Needed by g. May be NULL if that's ok with g.
// N The number of dbs to create.
// dbs An array of open databases. Used by g. The data will be put in these database.
// new_fnames The file names (these strings are owned by the caller: we make a copy for our own purposes).
// temp_file_template A template suitable for mkstemp()
// reserve_memory Cause the loader to reserve memory for its use from the cache table.
// compress_intermediates Cause the loader to compress intermediate loader files.
// allow_puts Prepare the loader for rows to insert. When puts are disabled, the loader does not run the
// extractor or the fractal tree writer threads.
// Return value: 0 on success, an error number otherwise.
int result = 0;
{
int r = toku_ft_loader_internal_init(blp, cachetable, g, src_db,
N, fts, dbs,
new_fnames_in_env,
bt_compare_functions,
temp_file_template,
load_lsn,
txn,
reserve_memory,
reserve_memory_size,
compress_intermediates,
allow_puts);
if (r!=0) result = r;
}
if (result == 0 && allow_puts) {
FTLOADER bl = *blp;
int r = toku_pthread_create(*extractor_thread_key,
&bl->extractor_thread,
nullptr,
extractor_thread,
static_cast<void *>(bl));
if (r == 0) {
bl->extractor_live = true;
} else {
result = r;
(void) toku_ft_loader_internal_destroy(bl, true);
}
}
return result;
}
static void ft_loader_set_panic(FTLOADER bl, int error, bool callback, int which_db, DBT *key, DBT *val) {
DB *db = nullptr;
if (bl && bl->dbs && which_db >= 0 && which_db < bl->N) {
db = bl->dbs[which_db];
}
int r = ft_loader_set_error(&bl->error_callback, error, db, which_db, key, val);
if (r == 0 && callback)
ft_loader_call_error_function(&bl->error_callback);
}
// One of the tests uses this.
TOKU_FILE *toku_bl_fidx2file(FTLOADER bl, FIDX i) {
toku_mutex_lock(&bl->file_infos.lock);
invariant(i.idx >= 0 && i.idx < bl->file_infos.n_files);
invariant(bl->file_infos.file_infos[i.idx].is_open);
TOKU_FILE *result = bl->file_infos.file_infos[i.idx].file;
toku_mutex_unlock(&bl->file_infos.lock);
return result;
}
static int bl_finish_compressed_write(TOKU_FILE *stream, struct wbuf *wb) {
int r = 0;
char *compressed_buf = NULL;
const size_t data_size = wb->ndone;
invariant(data_size > 0);
invariant(data_size <= MAX_UNCOMPRESSED_BUF);
int n_sub_blocks = 0;
int sub_block_size = 0;
r = choose_sub_block_size(wb->ndone, max_sub_blocks, &sub_block_size, &n_sub_blocks);
invariant(r==0);
invariant(0 < n_sub_blocks && n_sub_blocks <= max_sub_blocks);
invariant(sub_block_size > 0);
struct sub_block sub_block[max_sub_blocks];
// set the initial sub block size for all of the sub blocks
for (int i = 0; i < n_sub_blocks; i++) {
sub_block_init(&sub_block[i]);
}
set_all_sub_block_sizes(data_size, sub_block_size, n_sub_blocks, sub_block);
size_t compressed_len = get_sum_compressed_size_bound(n_sub_blocks, sub_block, TOKU_DEFAULT_COMPRESSION_METHOD);
const size_t sub_block_header_len = sub_block_header_size(n_sub_blocks);
const size_t other_overhead = sizeof(uint32_t); //total_size
const size_t header_len = sub_block_header_len + other_overhead;
MALLOC_N(header_len + compressed_len, compressed_buf);
if (compressed_buf == nullptr) {
return ENOMEM;
}
// compress all of the sub blocks
char *uncompressed_ptr = (char*)wb->buf;
char *compressed_ptr = compressed_buf + header_len;
compressed_len = compress_all_sub_blocks(n_sub_blocks, sub_block, uncompressed_ptr, compressed_ptr,
get_num_cores(), get_ft_pool(), TOKU_DEFAULT_COMPRESSION_METHOD);
//total_size does NOT include itself
uint32_t total_size = compressed_len + sub_block_header_len;
// serialize the sub block header
uint32_t *ptr = (uint32_t *)(compressed_buf);
*ptr++ = toku_htod32(total_size);
*ptr++ = toku_htod32(n_sub_blocks);
for (int i=0; i<n_sub_blocks; i++) {
ptr[0] = toku_htod32(sub_block[i].compressed_size);
ptr[1] = toku_htod32(sub_block[i].uncompressed_size);
ptr[2] = toku_htod32(sub_block[i].xsum);
ptr += 3;
}
// Mark as written
wb->ndone = 0;
size_t size_to_write = total_size + 4; // Includes writing total_size
r = toku_os_fwrite(compressed_buf, 1, size_to_write, stream);
if (compressed_buf) {
toku_free(compressed_buf);
}
return r;
}
static int bl_compressed_write(void *ptr,
size_t nbytes,
TOKU_FILE *stream,
struct wbuf *wb) {
invariant(wb->size <= MAX_UNCOMPRESSED_BUF);
size_t bytes_left = nbytes;
char *buf = (char *)ptr;
while (bytes_left > 0) {
size_t bytes_to_copy = bytes_left;
if (wb->ndone + bytes_to_copy > wb->size) {
bytes_to_copy = wb->size - wb->ndone;
}
wbuf_nocrc_literal_bytes(wb, buf, bytes_to_copy);
if (wb->ndone == wb->size) {
//Compress, write to disk, and empty out wb
int r = bl_finish_compressed_write(stream, wb);
if (r != 0) {
errno = r;
return -1;
}
wb->ndone = 0;
}
bytes_left -= bytes_to_copy;
buf += bytes_to_copy;
}
return 0;
}
static int bl_fwrite(void *ptr,
size_t size,
size_t nmemb,
TOKU_FILE *stream,
struct wbuf *wb,
FTLOADER bl)
/* Effect: this is a wrapper for fwrite that returns 0 on success, otherwise
* returns an error number.
* Arguments:
* ptr the data to be writen.
* size the amount of data to be written.
* nmemb the number of units of size to be written.
* stream write the data here.
* wb where to write uncompressed data (if we're compressing) or ignore if
* NULL
* bl passed so we can panic the ft_loader if something goes wrong
* (recording the error number).
* Return value: 0 on success, an error number otherwise.
*/
{
if (!bl->compress_intermediates || !wb) {
return toku_os_fwrite(ptr, size, nmemb, stream);
} else {
size_t num_bytes = size * nmemb;
int r = bl_compressed_write(ptr, num_bytes, stream, wb);
if (r != 0) {
return r;
}
}
return 0;
}
static int bl_fread(void *ptr, size_t size, size_t nmemb, TOKU_FILE *stream)
/* Effect: this is a wrapper for fread that returns 0 on success, otherwise
* returns an error number.
* Arguments:
* ptr read data into here.
* size size of data element to be read.
* nmemb number of data elements to be read.
* stream where to read the data from.
* Return value: 0 on success, an error number otherwise.
*/
{
return toku_os_fread(ptr, size, nmemb, stream);
}
static int bl_write_dbt(DBT *dbt,
TOKU_FILE *datafile,
uint64_t *dataoff,
struct wbuf *wb,
FTLOADER bl) {
int r;
int dlen = dbt->size;
if ((r=bl_fwrite(&dlen, sizeof(dlen), 1, datafile, wb, bl))) return r;
if ((r=bl_fwrite(dbt->data, 1, dlen, datafile, wb, bl))) return r;
if (dataoff)
*dataoff += dlen + sizeof(dlen);
return 0;
}
static int bl_read_dbt(/*in*/ DBT *dbt, TOKU_FILE *stream) {
int len;
{
int r;
if ((r = bl_fread(&len, sizeof(len), 1, stream))) return r;
invariant(len>=0);
}
if ((int)dbt->ulen<len) { dbt->ulen=len; dbt->data=toku_xrealloc(dbt->data, len); }
{
int r;
if ((r = bl_fread(dbt->data, 1, len, stream))) return r;
}
dbt->size = len;
return 0;
}
static int bl_read_dbt_from_dbufio (/*in*/DBT *dbt, DBUFIO_FILESET bfs, int filenum)
{
int result = 0;
uint32_t len;
{
size_t n_read;
int r = dbufio_fileset_read(bfs, filenum, &len, sizeof(len), &n_read);
if (r!=0) {
result = r;
} else if (n_read<sizeof(len)) {
result = TOKUDB_NO_DATA; // must have run out of data prematurely. This is not EOF, it's a real error.
}
}
if (result==0) {
if (dbt->ulen<len) {
void * data = toku_realloc(dbt->data, len);
if (data==NULL) {
result = get_error_errno();
} else {
dbt->ulen=len;
dbt->data=data;
}
}
}
if (result==0) {
size_t n_read;
int r = dbufio_fileset_read(bfs, filenum, dbt->data, len, &n_read);
if (r!=0) {
result = r;
} else if (n_read<len) {
result = TOKUDB_NO_DATA; // must have run out of data prematurely. This is not EOF, it's a real error.
} else {
dbt->size = len;
}
}
return result;
}
int loader_write_row(DBT *key,
DBT *val,
FIDX data,
TOKU_FILE *dataf,
uint64_t *dataoff,
struct wbuf *wb,
FTLOADER bl)
/* Effect: Given a key and a val (both DBTs), write them to a file. Increment
* *dataoff so that it's up to date.
* Arguments:
* key, val write these.
* data the file to write them to
* dataoff a pointer to a counter that keeps track of the amount of data
* written so far.
* wb a pointer (possibly NULL) to buffer uncompressed output
* bl the ft_loader (passed so we can panic if needed).
* Return value: 0 on success, an error number otherwise.
*/
{
//int klen = key->size;
//int vlen = val->size;
int r;
// we have a chance to handle the errors because when we close we can delete all the files.
if ((r=bl_write_dbt(key, dataf, dataoff, wb, bl))) return r;
if ((r=bl_write_dbt(val, dataf, dataoff, wb, bl))) return r;
toku_mutex_lock(&bl->file_infos.lock);
bl->file_infos.file_infos[data.idx].n_rows++;
toku_mutex_unlock(&bl->file_infos.lock);
return 0;
}
int loader_read_row(TOKU_FILE *f, DBT *key, DBT *val)
/* Effect: Read a key value pair from a file. The DBTs must have DB_DBT_REALLOC
* set.
* Arguments:
* f where to read it from.
* key, val read it into these.
* bl passed so we can panic if needed.
* Return value: 0 on success, an error number otherwise.
* Requires: The DBTs must have DB_DBT_REALLOC
*/
{
{
int r = bl_read_dbt(key, f);
if (r!=0) return r;
}
{
int r = bl_read_dbt(val, f);
if (r!=0) return r;
}
return 0;
}
static int loader_read_row_from_dbufio (DBUFIO_FILESET bfs, int filenum, DBT *key, DBT *val)
/* Effect: Read a key value pair from a file. The DBTs must have DB_DBT_REALLOC set.
* Arguments:
* f where to read it from.
* key, val read it into these.
* bl passed so we can panic if needed.
* Return value: 0 on success, an error number otherwise.
* Requires: The DBTs must have DB_DBT_REALLOC
*/
{
{
int r = bl_read_dbt_from_dbufio(key, bfs, filenum);
if (r!=0) return r;
}
{
int r = bl_read_dbt_from_dbufio(val, bfs, filenum);
if (r!=0) return r;
}
return 0;
}
int init_rowset (struct rowset *rows, uint64_t memory_budget)
/* Effect: Initialize a collection of rows to be empty. */
{
int result = 0;
rows->memory_budget = memory_budget;
rows->rows = NULL;
rows->data = NULL;
rows->n_rows = 0;
rows->n_rows_limit = 100;
MALLOC_N(rows->n_rows_limit, rows->rows);
if (rows->rows == NULL)
result = get_error_errno();
rows->n_bytes = 0;
rows->n_bytes_limit = (size_factor==1) ? 1024*size_factor*16 : memory_budget;
//printf("%s:%d n_bytes_limit=%ld (size_factor based limit=%d)\n", __FILE__, __LINE__, rows->n_bytes_limit, 1024*size_factor*16);
rows->data = (char *) toku_malloc(rows->n_bytes_limit);
if (rows->rows==NULL || rows->data==NULL) {
if (result == 0)
result = get_error_errno();
toku_free(rows->rows);
toku_free(rows->data);
rows->rows = NULL;
rows->data = NULL;
}
return result;
}
static void zero_rowset (struct rowset *rows) {
memset(rows, 0, sizeof(*rows));
}
void destroy_rowset (struct rowset *rows) {
if ( rows ) {
toku_free(rows->data);
toku_free(rows->rows);
zero_rowset(rows);
}
}
static int row_wont_fit (struct rowset *rows, size_t size)
/* Effect: Return nonzero if adding a row of size SIZE would be too big (bigger than the buffer limit) */
{
// Account for the memory used by the data and also the row structures.
size_t memory_in_use = (rows->n_rows*sizeof(struct row)
+ rows->n_bytes);
return (rows->memory_budget < memory_in_use + size);
}
int add_row (struct rowset *rows, DBT *key, DBT *val)
/* Effect: add a row to a collection. */
{
int result = 0;
if (rows->n_rows >= rows->n_rows_limit) {
struct row *old_rows = rows->rows;
size_t old_n_rows_limit = rows->n_rows_limit;
rows->n_rows_limit *= 2;
REALLOC_N(rows->n_rows_limit, rows->rows);
if (rows->rows == NULL) {
result = get_error_errno();
rows->rows = old_rows;
rows->n_rows_limit = old_n_rows_limit;
return result;
}
}
size_t off = rows->n_bytes;
size_t next_off = off + key->size + val->size;
struct row newrow;
memset(&newrow, 0, sizeof newrow); newrow.off = off; newrow.klen = key->size; newrow.vlen = val->size;
rows->rows[rows->n_rows++] = newrow;
if (next_off > rows->n_bytes_limit) {
size_t old_n_bytes_limit = rows->n_bytes_limit;
while (next_off > rows->n_bytes_limit) {
rows->n_bytes_limit = rows->n_bytes_limit*2;
}
invariant(next_off <= rows->n_bytes_limit);
char *old_data = rows->data;
REALLOC_N(rows->n_bytes_limit, rows->data);
if (rows->data == NULL) {
result = get_error_errno();
rows->data = old_data;
rows->n_bytes_limit = old_n_bytes_limit;
return result;
}
}
memcpy(rows->data+off, key->data, key->size);
memcpy(rows->data+off+key->size, val->data, val->size);
rows->n_bytes = next_off;
return result;
}
static int process_primary_rows (FTLOADER bl, struct rowset *primary_rowset);
static int finish_primary_rows_internal (FTLOADER bl)
// now we have been asked to finish up.
// Be sure to destroy the rowsets.
{
int *MALLOC_N(bl->N, ra);
if (ra==NULL) return get_error_errno();
for (int i = 0; i < bl->N; i++) {
//printf("%s:%d extractor finishing index %d with %ld rows\n", __FILE__, __LINE__, i, rows->n_rows);
ra[i] = sort_and_write_rows(bl->rows[i], &(bl->fs[i]), bl, i, bl->dbs[i], bl->bt_compare_funs[i]);
zero_rowset(&bl->rows[i]);
}
// accept any of the error codes (in this case, the last one).
int r = 0;
for (int i = 0; i < bl->N; i++)
if (ra[i] != 0)
r = ra[i];
toku_free(ra);
return r;
}
static int finish_primary_rows (FTLOADER bl) {
return finish_primary_rows_internal (bl);
}
static void* extractor_thread (void *blv) {
FTLOADER bl = (FTLOADER)blv;
int r = 0;
while (1) {
void *item = nullptr;
{
int rq = toku_queue_deq(bl->primary_rowset_queue, &item, NULL, NULL);
if (rq==EOF) break;
invariant(rq==0); // other errors are arbitrarily bad.
}
struct rowset *primary_rowset = (struct rowset *)item;
//printf("%s:%d extractor got %ld rows\n", __FILE__, __LINE__, primary_rowset.n_rows);
// Now we have some rows to output
{
r = process_primary_rows(bl, primary_rowset);
if (r)
ft_loader_set_panic(bl, r, false, 0, nullptr, nullptr);
}
}
//printf("%s:%d extractor finishing\n", __FILE__, __LINE__);
if (r == 0) {
r = finish_primary_rows(bl);
if (r)
ft_loader_set_panic(bl, r, false, 0, nullptr, nullptr);
}
toku_instr_delete_current_thread();
return nullptr;
}
static void enqueue_for_extraction(FTLOADER bl) {
//printf("%s:%d enqueing %ld items\n", __FILE__, __LINE__, bl->primary_rowset.n_rows);
struct rowset *XMALLOC(enqueue_me);
*enqueue_me = bl->primary_rowset;
zero_rowset(&bl->primary_rowset);
int r = toku_queue_enq(bl->primary_rowset_queue, (void*)enqueue_me, 1, NULL);
resource_assert_zero(r);
}
static int loader_do_put(FTLOADER bl,
DBT *pkey,
DBT *pval)
{
int result;
result = add_row(&bl->primary_rowset, pkey, pval);
if (result == 0 && row_wont_fit(&bl->primary_rowset, 0)) {
// queue the rows for further processing by the extractor thread.
//printf("%s:%d please extract %ld\n", __FILE__, __LINE__, bl->primary_rowset.n_rows);
enqueue_for_extraction(bl);
{
int r = init_rowset(&bl->primary_rowset, memory_per_rowset_during_extract(bl));
// bl->primary_rowset will get destroyed by toku_ft_loader_abort
if (r != 0)
result = r;
}
}
return result;
}
static int
finish_extractor (FTLOADER bl) {
//printf("%s:%d now finishing extraction\n", __FILE__, __LINE__);
int rval;
if (bl->primary_rowset.n_rows>0) {
enqueue_for_extraction(bl);
} else {
destroy_rowset(&bl->primary_rowset);
}
//printf("%s:%d please finish extraction\n", __FILE__, __LINE__);
{
int r = toku_queue_eof(bl->primary_rowset_queue);
invariant(r==0);
}
//printf("%s:%d joining\n", __FILE__, __LINE__);
{
void *toku_pthread_retval;
int r = toku_pthread_join(bl->extractor_thread, &toku_pthread_retval);
resource_assert_zero(r);
invariant(toku_pthread_retval == NULL);
bl->extractor_live = false;
}
{
int r = toku_queue_destroy(bl->primary_rowset_queue);
invariant(r==0);
bl->primary_rowset_queue = nullptr;
}
rval = ft_loader_fi_close_all(&bl->file_infos);
//printf("%s:%d joined\n", __FILE__, __LINE__);
return rval;
}
static const DBT zero_dbt = {0,0,0,0};
static DBT make_dbt (void *data, uint32_t size) {
DBT result = zero_dbt;
result.data = data;
result.size = size;
return result;
}
#define inc_error_count() error_count++
static TXNID leafentry_xid(FTLOADER bl, int which_db) {
TXNID le_xid = TXNID_NONE;
if (bl->root_xids_that_created && bl->load_root_xid != bl->root_xids_that_created[which_db])
le_xid = bl->load_root_xid;
return le_xid;
}
size_t ft_loader_leafentry_size(size_t key_size, size_t val_size, TXNID xid) {
size_t s = 0;
if (xid == TXNID_NONE)
s = LE_CLEAN_MEMSIZE(val_size) + key_size + sizeof(uint32_t);
else
s = LE_MVCC_COMMITTED_MEMSIZE(val_size) + key_size + sizeof(uint32_t);
return s;
}
static int process_primary_rows_internal (FTLOADER bl, struct rowset *primary_rowset)
// process the rows in primary_rowset, and then destroy the rowset.
// if FLUSH is true then write all the buffered rows out.
// if primary_rowset is NULL then treat it as empty.
{
int error_count = 0;
int *XMALLOC_N(bl->N, error_codes);
// If we parallelize the first for loop, dest_keys/dest_vals init&cleanup need to move inside
DBT_ARRAY dest_keys;
DBT_ARRAY dest_vals;
toku_dbt_array_init(&dest_keys, 1);
toku_dbt_array_init(&dest_vals, 1);
for (int i = 0; i < bl->N; i++) {
unsigned int klimit,vlimit; // maximum row sizes.
toku_ft_get_maximum_advised_key_value_lengths(&klimit, &vlimit);
error_codes[i] = 0;
struct rowset *rows = &(bl->rows[i]);
struct merge_fileset *fs = &(bl->fs[i]);
ft_compare_func compare = bl->bt_compare_funs[i];
// Don't parallelize this loop, or we have to lock access to add_row() which would be a lot of overehad.
// Also this way we can reuse the DB_DBT_REALLOC'd values inside dest_keys/dest_vals without a race.
for (size_t prownum=0; prownum<primary_rowset->n_rows; prownum++) {
if (error_count) break;
struct row *prow = &primary_rowset->rows[prownum];
DBT pkey = zero_dbt;
DBT pval = zero_dbt;
pkey.data = primary_rowset->data + prow->off;
pkey.size = prow->klen;
pval.data = primary_rowset->data + prow->off + prow->klen;
pval.size = prow->vlen;
DBT_ARRAY key_array;
DBT_ARRAY val_array;
if (bl->dbs[i] != bl->src_db) {
int r = bl->generate_row_for_put(bl->dbs[i], bl->src_db, &dest_keys, &dest_vals, &pkey, &pval);
if (r != 0) {
error_codes[i] = r;
inc_error_count();
break;
}
paranoid_invariant(dest_keys.size <= dest_keys.capacity);
paranoid_invariant(dest_vals.size <= dest_vals.capacity);
paranoid_invariant(dest_keys.size == dest_vals.size);
key_array = dest_keys;
val_array = dest_vals;
} else {
key_array.size = key_array.capacity = 1;
key_array.dbts = &pkey;
val_array.size = val_array.capacity = 1;
val_array.dbts = &pval;
}
for (uint32_t row = 0; row < key_array.size; row++) {
DBT *dest_key = &key_array.dbts[row];
DBT *dest_val = &val_array.dbts[row];
if (dest_key->size > klimit) {
error_codes[i] = EINVAL;
fprintf(stderr, "Key too big (keysize=%d bytes, limit=%d bytes)\n", dest_key->size, klimit);
inc_error_count();
break;
}
if (dest_val->size > vlimit) {
error_codes[i] = EINVAL;
fprintf(stderr, "Row too big (rowsize=%d bytes, limit=%d bytes)\n", dest_val->size, vlimit);
inc_error_count();
break;
}
bl->extracted_datasizes[i] += ft_loader_leafentry_size(dest_key->size, dest_val->size, leafentry_xid(bl, i));
if (row_wont_fit(rows, dest_key->size + dest_val->size)) {
//printf("%s:%d rows.n_rows=%ld rows.n_bytes=%ld\n", __FILE__, __LINE__, rows->n_rows, rows->n_bytes);
int r = sort_and_write_rows(*rows, fs, bl, i, bl->dbs[i], compare); // cannot spawn this because of the race on rows. If we were to create a new rows, and if sort_and_write_rows were to destroy the rows it is passed, we could spawn it, however.
// If we do spawn this, then we must account for the additional storage in the memory_per_rowset() function.
init_rowset(rows, memory_per_rowset_during_extract(bl)); // we passed the contents of rows to sort_and_write_rows.
if (r != 0) {
error_codes[i] = r;
inc_error_count();
break;
}
}
int r = add_row(rows, dest_key, dest_val);
if (r != 0) {
error_codes[i] = r;
inc_error_count();
break;
}
}
}
}
toku_dbt_array_destroy(&dest_keys);
toku_dbt_array_destroy(&dest_vals);
destroy_rowset(primary_rowset);
toku_free(primary_rowset);
int r = 0;
if (error_count > 0) {
for (int i=0; i<bl->N; i++) {
if (error_codes[i]) {
r = error_codes[i];
ft_loader_set_panic(bl, r, false, i, nullptr, nullptr);
}
}
invariant(r); // found the error
}
toku_free(error_codes);
return r;
}
static int process_primary_rows (FTLOADER bl, struct rowset *primary_rowset) {
int r = process_primary_rows_internal (bl, primary_rowset);
return r;
}
int toku_ft_loader_put (FTLOADER bl, DBT *key, DBT *val)
/* Effect: Put a key-value pair into the ft loader. Called by DB_LOADER->put().
* Return value: 0 on success, an error number otherwise.
*/
{
if (!bl->allow_puts || ft_loader_get_error(&bl->error_callback))
return EINVAL; // previous panic
bl->n_rows++;
return loader_do_put(bl, key, val);
}
void toku_ft_loader_set_n_rows(FTLOADER bl, uint64_t n_rows) {
bl->n_rows = n_rows;
}
uint64_t toku_ft_loader_get_n_rows(FTLOADER bl) {
return bl->n_rows;
}
int merge_row_arrays_base (struct row dest[/*an+bn*/], struct row a[/*an*/], int an, struct row b[/*bn*/], int bn,
int which_db, DB *dest_db, ft_compare_func compare,
FTLOADER bl,
struct rowset *rowset)
/* Effect: Given two arrays of rows, a and b, merge them using the comparison function, and write them into dest.
* This function is suitable for use in a mergesort.
* If a pair of duplicate keys is ever noticed, then call the error_callback function (if it exists), and return DB_KEYEXIST.
* Arguments:
* dest write the rows here
* a,b the rows being merged
* an,bn the lenth of a and b respectively.
* dest_db We need the dest_db to run the comparison function.
* compare We need the compare function for the dest_db.
*/
{
while (an>0 && bn>0) {
DBT akey; memset(&akey, 0, sizeof akey); akey.data=rowset->data+a->off; akey.size=a->klen;
DBT bkey; memset(&bkey, 0, sizeof bkey); bkey.data=rowset->data+b->off; bkey.size=b->klen;
int compare_result = compare(dest_db, &akey, &bkey);
if (compare_result==0) {
if (bl->error_callback.error_callback) {
DBT aval; memset(&aval, 0, sizeof aval); aval.data=rowset->data + a->off + a->klen; aval.size = a->vlen;
ft_loader_set_error(&bl->error_callback, DB_KEYEXIST, dest_db, which_db, &akey, &aval);
}
return DB_KEYEXIST;
} else if (compare_result<0) {
// a is smaller
*dest = *a;
dest++; a++; an--;
} else {
*dest = *b;
dest++; b++; bn--;
}
}
while (an>0) {
*dest = *a;
dest++; a++; an--;
}
while (bn>0) {
*dest = *b;
dest++; b++; bn--;
}
return 0;
}
static int binary_search (int *location,
const DBT *key,
struct row a[/*an*/], int an,
int abefore,
int which_db, DB *dest_db, ft_compare_func compare,
FTLOADER bl,
struct rowset *rowset)
// Given a sorted array of rows a, and a dbt key, find the first row in a that is > key.
// If no such row exists, then consider the result to be equal to an.
// On success store abefore+the index into *location
// Return 0 on success.
// Return DB_KEYEXIST if we find a row that is equal to key.
{
if (an==0) {
*location = abefore;
return 0;
} else {
int a2 = an/2;
DBT akey = make_dbt(rowset->data+a[a2].off, a[a2].klen);
int compare_result = compare(dest_db, key, &akey);
if (compare_result==0) {
if (bl->error_callback.error_callback) {
DBT aval = make_dbt(rowset->data + a[a2].off + a[a2].klen, a[a2].vlen);
ft_loader_set_error(&bl->error_callback, DB_KEYEXIST, dest_db, which_db, &akey, &aval);
}
return DB_KEYEXIST;
} else if (compare_result<0) {
// key is before a2
if (an==1) {
*location = abefore;
return 0;
} else {
return binary_search(location, key,
a, a2,
abefore,
which_db, dest_db, compare, bl, rowset);
}
} else {
// key is after a2
if (an==1) {
*location = abefore + 1;
return 0;
} else {
return binary_search(location, key,
a+a2, an-a2,
abefore+a2,
which_db, dest_db, compare, bl, rowset);
}
}
}
}
#define SWAP(typ,x,y) { typ tmp = x; x=y; y=tmp; }
static int merge_row_arrays (struct row dest[/*an+bn*/], struct row a[/*an*/], int an, struct row b[/*bn*/], int bn,
int which_db, DB *dest_db, ft_compare_func compare,
FTLOADER bl,
struct rowset *rowset)
/* Effect: Given two sorted arrays of rows, a and b, merge them using the comparison function, and write them into dest.
* Arguments:
* dest write the rows here
* a,b the rows being merged
* an,bn the lenth of a and b respectively.
* dest_db We need the dest_db to run the comparison function.
* compare We need the compare function for the dest_db.
*/
{
if (an + bn < 10000) {
return merge_row_arrays_base(dest, a, an, b, bn, which_db, dest_db, compare, bl, rowset);
}
if (an < bn) {
SWAP(struct row *,a, b)
SWAP(int ,an,bn)
}
// an >= bn
int a2 = an/2;
DBT akey = make_dbt(rowset->data+a[a2].off, a[a2].klen);
int b2 = 0; // initialize to zero so we can add the answer in.
{
int r = binary_search(&b2, &akey, b, bn, 0, which_db, dest_db, compare, bl, rowset);
if (r!=0) return r; // for example if we found a duplicate, called the error_callback, and now we return an error code.
}
int ra, rb;
ra = merge_row_arrays(dest, a, a2, b, b2, which_db, dest_db, compare, bl, rowset);
rb = merge_row_arrays(dest+a2+b2, a+a2, an-a2, b+b2, bn-b2, which_db, dest_db, compare, bl, rowset);
if (ra!=0) return ra;
else return rb;
}
int mergesort_row_array (struct row rows[/*n*/], int n, int which_db, DB *dest_db, ft_compare_func compare, FTLOADER bl, struct rowset *rowset)
/* Sort an array of rows (using mergesort).
* Arguments:
* rows sort this array of rows.
* n the length of the array.
* dest_db used by the comparison function.
* compare the compare function
*/
{
if (n<=1) return 0; // base case is sorted
int mid = n/2;
int r1, r2;
r1 = mergesort_row_array (rows, mid, which_db, dest_db, compare, bl, rowset);
// Don't spawn this one explicitly
r2 = mergesort_row_array (rows+mid, n-mid, which_db, dest_db, compare, bl, rowset);
if (r1!=0) return r1;
if (r2!=0) return r2;
struct row *MALLOC_N(n, tmp);
if (tmp == NULL) return get_error_errno();
{
int r = merge_row_arrays(tmp, rows, mid, rows+mid, n-mid, which_db, dest_db, compare, bl, rowset);
if (r!=0) {
toku_free(tmp);
return r;
}
}
memcpy(rows, tmp, sizeof(*tmp)*n);
toku_free(tmp);
return 0;
}
// C function for testing mergesort_row_array
int ft_loader_mergesort_row_array (struct row rows[/*n*/], int n, int which_db, DB *dest_db, ft_compare_func compare, FTLOADER bl, struct rowset *rowset) {
return mergesort_row_array (rows, n, which_db, dest_db, compare, bl, rowset);
}
static int sort_rows (struct rowset *rows, int which_db, DB *dest_db, ft_compare_func compare,
FTLOADER bl)
/* Effect: Sort a collection of rows.
* If any duplicates are found, then call the error_callback function and return non zero.
* Otherwise return 0.
* Arguments:
* rowset the */
{
return mergesort_row_array(rows->rows, rows->n_rows, which_db, dest_db, compare, bl, rows);
}
/* filesets Maintain a collection of files. Typically these files are each individually sorted, and we will merge them.
* These files have two parts, one is for the data rows, and the other is a collection of offsets so we an more easily parallelize the manipulation (e.g., by allowing us to find the offset of the ith row quickly). */
void init_merge_fileset (struct merge_fileset *fs)
/* Effect: Initialize a fileset */
{
fs->have_sorted_output = false;
fs->sorted_output = FIDX_NULL;
fs->prev_key = zero_dbt;
fs->prev_key.flags = DB_DBT_REALLOC;
fs->n_temp_files = 0;
fs->n_temp_files_limit = 0;
fs->data_fidxs = NULL;
}
void destroy_merge_fileset (struct merge_fileset *fs)
/* Effect: Destroy a fileset. */
{
if ( fs ) {
toku_destroy_dbt(&fs->prev_key);
fs->n_temp_files = 0;
fs->n_temp_files_limit = 0;
toku_free(fs->data_fidxs);
fs->data_fidxs = NULL;
}
}
static int extend_fileset (FTLOADER bl, struct merge_fileset *fs, FIDX*ffile)
/* Effect: Add two files (one for data and one for idx) to the fileset.
* Arguments:
* bl the ft_loader (needed to panic if anything goes wrong, and also to get the temp_file_template.
* fs the fileset
* ffile the data file (which will be open)
* fidx the index file (which will be open)
*/
{
FIDX sfile;
int r;
r = ft_loader_open_temp_file(bl, &sfile); if (r!=0) return r;
if (fs->n_temp_files+1 > fs->n_temp_files_limit) {
fs->n_temp_files_limit = (fs->n_temp_files+1)*2;
XREALLOC_N(fs->n_temp_files_limit, fs->data_fidxs);
}
fs->data_fidxs[fs->n_temp_files] = sfile;
fs->n_temp_files++;
*ffile = sfile;
return 0;
}
// RFP maybe this should be buried in the ft_loader struct
static toku_mutex_t update_progress_lock = TOKU_MUTEX_INITIALIZER;
static int update_progress (int N,
FTLOADER bl,
const char *UU(message))
{
// Must protect the increment and the call to the poll_function.
toku_mutex_lock(&update_progress_lock);
bl->progress+=N;
int result;
if (bl->progress_callback_result == 0) {
//printf(" %20s: %d ", message, bl->progress);
result = ft_loader_call_poll_function(&bl->poll_callback, (float)bl->progress/(float)PROGRESS_MAX);
if (result!=0) {
bl->progress_callback_result = result;
}
} else {
result = bl->progress_callback_result;
}
toku_mutex_unlock(&update_progress_lock);
return result;
}
static int write_rowset_to_file (FTLOADER bl, FIDX sfile, const struct rowset rows) {
int r = 0;
// Allocate a buffer if we're compressing intermediates.
char *uncompressed_buffer = nullptr;
if (bl->compress_intermediates) {
MALLOC_N(MAX_UNCOMPRESSED_BUF, uncompressed_buffer);
if (uncompressed_buffer == nullptr) {
return ENOMEM;
}
}
struct wbuf wb;
wbuf_init(&wb, uncompressed_buffer, MAX_UNCOMPRESSED_BUF);
TOKU_FILE *sstream = toku_bl_fidx2file(bl, sfile);
for (size_t i = 0; i < rows.n_rows; i++) {
DBT skey = make_dbt(rows.data + rows.rows[i].off, rows.rows[i].klen);
DBT sval = make_dbt(rows.data + rows.rows[i].off + rows.rows[i].klen,
rows.rows[i].vlen);
uint64_t soffset=0; // don't really need this.
r = loader_write_row(&skey, &sval, sfile, sstream, &soffset, &wb, bl);
if (r != 0) {
goto exit;
}
}
if (bl->compress_intermediates && wb.ndone > 0) {
r = bl_finish_compressed_write(sstream, &wb);
if (r != 0) {
goto exit;
}
}
r = 0;
exit:
if (uncompressed_buffer) {
toku_free(uncompressed_buffer);
}
return r;
}
int sort_and_write_rows (struct rowset rows, struct merge_fileset *fs, FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare)
/* Effect: Given a rowset, sort it and write it to a temporary file.
* Note: The loader maintains for each index the most recently written-to file, as well as the DBT for the last key written into that file.
* If this rowset is sorted and all greater than that dbt, then we append to the file (skipping the sort, and reducing the number of temporary files).
* Arguments:
* rows the rowset
* fs the fileset into which the sorted data will be added
* bl the ft_loader
* dest_db the DB, needed for the comparison function.
* compare The comparison function.
* Returns 0 on success, otherwise an error number.
* Destroy the rowset after finishing it.
* Note: There is no sense in trying to calculate progress by this function since it's done concurrently with the loader->put operation.
* Note first time called: invariant: fs->have_sorted_output == false
*/
{
//printf(" sort_and_write use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation);
// TODO: erase the files, and deal with all the cleanup on error paths
//printf("%s:%d sort_rows n_rows=%ld\n", __FILE__, __LINE__, rows->n_rows);
//bl_time_t before_sort = bl_time_now();
int result;
if (rows.n_rows == 0) {
result = 0;
} else {
result = sort_rows(&rows, which_db, dest_db, compare, bl);
//bl_time_t after_sort = bl_time_now();
if (result == 0) {
DBT min_rowset_key = make_dbt(rows.data+rows.rows[0].off, rows.rows[0].klen);
if (fs->have_sorted_output && compare(dest_db, &fs->prev_key, &min_rowset_key) < 0) {
// write everything to the same output if the max key in the temp file (prev_key) is < min of the sorted rowset
result = write_rowset_to_file(bl, fs->sorted_output, rows);
if (result == 0) {
// set the max key in the temp file to the max key in the sorted rowset
result = toku_dbt_set(rows.rows[rows.n_rows-1].klen, rows.data + rows.rows[rows.n_rows-1].off, &fs->prev_key, NULL);
}
} else {
// write the sorted rowset into a new temp file
if (fs->have_sorted_output) {
fs->have_sorted_output = false;
result = ft_loader_fi_close(&bl->file_infos, fs->sorted_output, true);
}
if (result == 0) {
FIDX sfile = FIDX_NULL;
result = extend_fileset(bl, fs, &sfile);
if (result == 0) {
result = write_rowset_to_file(bl, sfile, rows);
if (result == 0) {
fs->have_sorted_output = true; fs->sorted_output = sfile;
// set the max key in the temp file to the max key in the sorted rowset
result = toku_dbt_set(rows.rows[rows.n_rows-1].klen, rows.data + rows.rows[rows.n_rows-1].off, &fs->prev_key, NULL);
}
}
}
// Note: if result == 0 then invariant fs->have_sorted_output == true
}
}
}
destroy_rowset(&rows);
//bl_time_t after_write = bl_time_now();
return result;
}
// C function for testing sort_and_write_rows
int ft_loader_sort_and_write_rows (struct rowset *rows, struct merge_fileset *fs, FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare) {
return sort_and_write_rows (*rows, fs, bl, which_db, dest_db, compare);
}
int toku_merge_some_files_using_dbufio(const bool to_q,
FIDX dest_data,
QUEUE q,
int n_sources,
DBUFIO_FILESET bfs,
FIDX srcs_fidxs[/*n_sources*/],
FTLOADER bl,
int which_db,
DB *dest_db,
ft_compare_func compare,
int progress_allocation)
/* Effect: Given an array of FILE*'s each containing sorted, merge the data and
* write it to an output. All the files remain open after the merge.
* This merge is performed in one pass, so don't pass too many files in. If
* you need a tree of merges do it elsewhere.
* If TO_Q is true then we write rowsets into queue Q. Otherwise we write
* into dest_data.
* Modifies: May modify the arrays of files (but if modified, it must be a
* permutation so the caller can use that array to close everything.)
* Requires: The number of sources is at least one, and each of the input files
* must have at least one row in it.
* Arguments:
* to_q boolean indicating that output is queue (true) or a file
* (false)
* dest_data where to write the sorted data
* q where to write the sorted data
* n_sources how many source files.
* srcs_data the array of source data files.
* bl the ft_loader.
* dest_db the destination DB (used in the comparison function).
* Return value: 0 on success, otherwise an error number.
* The fidxs are not closed by this function.
*/
{
int result = 0;
TOKU_FILE *dest_stream = to_q ? nullptr : toku_bl_fidx2file(bl, dest_data);
// printf(" merge_some_files progress=%d fin at %d\n", bl->progress,
// bl->progress+progress_allocation);
DBT keys[n_sources];
DBT vals[n_sources];
uint64_t dataoff[n_sources];
DBT zero = zero_dbt; zero.flags=DB_DBT_REALLOC;
for (int i=0; i<n_sources; i++) {
keys[i] = vals[i] = zero; // fill these all in with zero so we can delete stuff more reliably.
}
pqueue_t *pq = NULL;
pqueue_node_t *MALLOC_N(n_sources, pq_nodes); // freed in cleanup
if (pq_nodes == NULL) { result = get_error_errno(); }
if (result==0) {
int r = pqueue_init(&pq, n_sources, which_db, dest_db, compare, &bl->error_callback);
if (r!=0) result = r;
}
uint64_t n_rows = 0;
if (result==0) {
// load pqueue with first value from each source
for (int i=0; i<n_sources; i++) {
int r = loader_read_row_from_dbufio(bfs, i, &keys[i], &vals[i]);
if (r==EOF) continue; // if the file is empty, don't initialize the pqueue.
if (r!=0) {
result = r;
break;
}
pq_nodes[i].key = &keys[i];
pq_nodes[i].val = &vals[i];
pq_nodes[i].i = i;
r = pqueue_insert(pq, &pq_nodes[i]);
if (r!=0) {
result = r;
// path tested by loader-dup-test5.tdbrun
// printf("%s:%d returning\n", __FILE__, __LINE__);
break;
}
dataoff[i] = 0;
toku_mutex_lock(&bl->file_infos.lock);
n_rows += bl->file_infos.file_infos[srcs_fidxs[i].idx].n_rows;
toku_mutex_unlock(&bl->file_infos.lock);
}
}
uint64_t n_rows_done = 0;
struct rowset *output_rowset = NULL;
if (result==0 && to_q) {
XMALLOC(output_rowset); // freed in cleanup
int r = init_rowset(output_rowset, memory_per_rowset_during_merge(bl, n_sources, to_q));
if (r!=0) result = r;
}
// Allocate a buffer if we're compressing intermediates.
char *uncompressed_buffer = nullptr;
struct wbuf wb;
if (bl->compress_intermediates && !to_q) {
MALLOC_N(MAX_UNCOMPRESSED_BUF, uncompressed_buffer);
if (uncompressed_buffer == nullptr) {
result = ENOMEM;
}
}
wbuf_init(&wb, uncompressed_buffer, MAX_UNCOMPRESSED_BUF);
//printf(" n_rows=%ld\n", n_rows);
while (result==0 && pqueue_size(pq)>0) {
int mini;
{
// get the minimum
pqueue_node_t *node;
int r = pqueue_pop(pq, &node);
if (r!=0) {
result = r;
invariant(0);
break;
}
mini = node->i;
}
if (to_q) {
if (row_wont_fit(output_rowset, keys[mini].size + vals[mini].size)) {
{
int r = toku_queue_enq(q, (void*)output_rowset, 1, NULL);
if (r!=0) {
result = r;
break;
}
}
XMALLOC(output_rowset); // freed in cleanup
{
int r = init_rowset(output_rowset, memory_per_rowset_during_merge(bl, n_sources, to_q));
if (r!=0) {
result = r;
break;
}
}
}
{
int r = add_row(output_rowset, &keys[mini], &vals[mini]);
if (r!=0) {
result = r;
break;
}
}
} else {
// write it to the dest file
int r = loader_write_row(&keys[mini], &vals[mini], dest_data, dest_stream, &dataoff[mini], &wb, bl);
if (r!=0) {
result = r;
break;
}
}
{
// read next row from file that just sourced min value
int r = loader_read_row_from_dbufio(bfs, mini, &keys[mini], &vals[mini]);
if (r!=0) {
if (r==EOF) {
// on feof, queue size permanently smaller
toku_free(keys[mini].data); keys[mini].data = NULL;
toku_free(vals[mini].data); vals[mini].data = NULL;
} else {
fprintf(stderr, "%s:%d r=%d errno=%d bfs=%p mini=%d\n", __FILE__, __LINE__, r, get_maybe_error_errno(), bfs, mini);
dbufio_print(bfs);
result = r;
break;
}
} else {
// insert value into queue (re-populate queue)
pq_nodes[mini].key = &keys[mini];
r = pqueue_insert(pq, &pq_nodes[mini]);
if (r!=0) {
// Note: This error path tested by loader-dup-test1.tdbrun (and by loader-dup-test4)
result = r;
// printf("%s:%d returning\n", __FILE__, __LINE__);
break;
}
}
}
n_rows_done++;
const uint64_t rows_per_report = size_factor*1024;
if (n_rows_done%rows_per_report==0) {
// need to update the progress.
double fraction_of_remaining_we_just_did = (double)rows_per_report / (double)(n_rows - n_rows_done + rows_per_report);
invariant(0<= fraction_of_remaining_we_just_did && fraction_of_remaining_we_just_did<=1);
int progress_just_done = fraction_of_remaining_we_just_did * progress_allocation;
progress_allocation -= progress_just_done;
// ignore the result from update_progress here, we'll call update_progress again below, which will give us the nonzero result.
int r = update_progress(progress_just_done, bl, "in file merge");
if (0) printf("%s:%d Progress=%d\n", __FILE__, __LINE__, r);
}
}
if (result == 0 && uncompressed_buffer != nullptr && wb.ndone > 0) {
result = bl_finish_compressed_write(dest_stream, &wb);
}
if (result==0 && to_q) {
int r = toku_queue_enq(q, (void*)output_rowset, 1, NULL);
if (r!=0)
result = r;
else
output_rowset = NULL;
}
// cleanup
if (uncompressed_buffer) {
toku_free(uncompressed_buffer);
}
for (int i=0; i<n_sources; i++) {
toku_free(keys[i].data); keys[i].data = NULL;
toku_free(vals[i].data); vals[i].data = NULL;
}
if (output_rowset) {
destroy_rowset(output_rowset);
toku_free(output_rowset);
}
if (pq) { pqueue_free(pq); pq=NULL; }
toku_free(pq_nodes);
{
int r = update_progress(progress_allocation, bl, "end of merge_some_files");
//printf("%s:%d Progress=%d\n", __FILE__, __LINE__, r);
if (r!=0 && result==0) result = r;
}
return result;
}
static int merge_some_files (const bool to_q, FIDX dest_data, QUEUE q, int n_sources, FIDX srcs_fidxs[/*n_sources*/], FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare, int progress_allocation)
{
int result = 0;
DBUFIO_FILESET bfs = NULL;
int *MALLOC_N(n_sources, fds);
if (fds == NULL)
result = get_error_errno();
if (result == 0) {
for (int i = 0; i < n_sources; i++) {
int r = fileno(
toku_bl_fidx2file(bl, srcs_fidxs[i])->file); // we rely on the
// fact that when
// the files are
// closed, the fd
// is also closed.
if (r == -1) {
result = get_error_errno();
break;
}
fds[i] = r;
}
}
if (result==0) {
int r = create_dbufio_fileset(&bfs, n_sources, fds,
memory_per_rowset_during_merge(bl, n_sources, to_q), bl->compress_intermediates);
if (r!=0) { result = r; }
}
if (result==0) {
int r = toku_merge_some_files_using_dbufio (to_q, dest_data, q, n_sources, bfs, srcs_fidxs, bl, which_db, dest_db, compare, progress_allocation);
if (r!=0) { result = r; }
}
if (bfs!=NULL) {
if (result != 0)
(void) panic_dbufio_fileset(bfs, result);
int r = destroy_dbufio_fileset(bfs);
if (r!=0 && result==0) result=r;
bfs = NULL;
}
if (fds!=NULL) {
toku_free(fds);
fds = NULL;
}
return result;
}
static int int_min (int a, int b)
{
if (a<b) return a;
else return b;
}
static int n_passes (int N, int B) {
int result = 0;
while (N>1) {
N = (N+B-1)/B;
result++;
}
return result;
}
int merge_files (struct merge_fileset *fs,
FTLOADER bl,
// These are needed for the comparison function and error callback.
int which_db, DB *dest_db, ft_compare_func compare,
int progress_allocation,
// Write rowsets into this queue.
QUEUE output_q
)
/* Effect: Given a fileset, merge all the files writing all the answers into a queue.
* All the files in fs, and any temporary files will be closed and unlinked (and the fileset will be empty)
* Return value: 0 on success, otherwise an error number.
* On error *fs will contain no open files. All the files (including any temporary files) will be closed and unlinked.
* (however the fs will still need to be deallocated.)
*/
{
//printf(" merge_files %d files\n", fs->n_temp_files);
//printf(" merge_files use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation);
const int final_mergelimit = (size_factor == 1) ? 4 : merge_fanin(bl, true); // try for a merge to the leaf level
const int earlier_mergelimit = (size_factor == 1) ? 4 : merge_fanin(bl, false); // try for a merge at nonleaf.
int n_passes_left = (fs->n_temp_files<=final_mergelimit)
? 1
: 1+n_passes((fs->n_temp_files+final_mergelimit-1)/final_mergelimit, earlier_mergelimit);
// printf("%d files, %d on last pass, %d on earlier passes, %d passes\n", fs->n_temp_files, final_mergelimit, earlier_mergelimit, n_passes_left);
int result = 0;
while (fs->n_temp_files > 0) {
int progress_allocation_for_this_pass = progress_allocation/n_passes_left;
progress_allocation -= progress_allocation_for_this_pass;
//printf("%s:%d n_passes_left=%d progress_allocation_for_this_pass=%d\n", __FILE__, __LINE__, n_passes_left, progress_allocation_for_this_pass);
invariant(fs->n_temp_files>0);
struct merge_fileset next_file_set;
bool to_queue = (bool)(fs->n_temp_files <= final_mergelimit);
init_merge_fileset(&next_file_set);
while (fs->n_temp_files>0) {
// grab some files and merge them.
int n_to_merge = int_min(to_queue?final_mergelimit:earlier_mergelimit, fs->n_temp_files);
// We are about to do n_to_merge/n_temp_files of the remaining for this pass.
int progress_allocation_for_this_subpass = progress_allocation_for_this_pass * (double)n_to_merge / (double)fs->n_temp_files;
// printf("%s:%d progress_allocation_for_this_subpass=%d n_temp_files=%d b=%llu\n", __FILE__, __LINE__, progress_allocation_for_this_subpass, fs->n_temp_files, (long long unsigned) memory_per_rowset_during_merge(bl, n_to_merge, to_queue));
progress_allocation_for_this_pass -= progress_allocation_for_this_subpass;
//printf("%s:%d merging\n", __FILE__, __LINE__);
FIDX merged_data = FIDX_NULL;
FIDX *XMALLOC_N(n_to_merge, data_fidxs);
for (int i=0; i<n_to_merge; i++) {
data_fidxs[i] = FIDX_NULL;
}
for (int i=0; i<n_to_merge; i++) {
int idx = fs->n_temp_files -1 -i;
FIDX fidx = fs->data_fidxs[idx];
result = ft_loader_fi_reopen(&bl->file_infos, fidx, "r");
if (result) break;
data_fidxs[i] = fidx;
}
if (result==0 && !to_queue) {
result = extend_fileset(bl, &next_file_set, &merged_data);
}
if (result==0) {
result = merge_some_files(to_queue, merged_data, output_q, n_to_merge, data_fidxs, bl, which_db, dest_db, compare, progress_allocation_for_this_subpass);
// if result!=0, fall through
if (result==0) {
/*nothing*/;// this is gratuitous, but we need something to give code coverage tools to help us know that it's important to distinguish between result==0 and result!=0
}
}
//printf("%s:%d merged\n", __FILE__, __LINE__);
for (int i=0; i<n_to_merge; i++) {
if (!fidx_is_null(data_fidxs[i])) {
{
int r = ft_loader_fi_close(&bl->file_infos, data_fidxs[i], true);
if (r!=0 && result==0) result = r;
}
{
int r = ft_loader_fi_unlink(&bl->file_infos, data_fidxs[i]);
if (r!=0 && result==0) result = r;
}
data_fidxs[i] = FIDX_NULL;
}
}
fs->n_temp_files -= n_to_merge;
if (!to_queue && !fidx_is_null(merged_data)) {
int r = ft_loader_fi_close(&bl->file_infos, merged_data, true);
if (r!=0 && result==0) result = r;
}
toku_free(data_fidxs);
if (result!=0) break;
}
destroy_merge_fileset(fs);
*fs = next_file_set;
// Update the progress
n_passes_left--;
if (result==0) { invariant(progress_allocation_for_this_pass==0); }
if (result!=0) break;
}
if (result) ft_loader_set_panic(bl, result, true, which_db, nullptr, nullptr);
{
int r = toku_queue_eof(output_q);
if (r!=0 && result==0) result = r;
}
// It's conceivable that the progress_allocation could be nonzero (for example if bl->N==0)
{
int r = update_progress(progress_allocation, bl, "did merge_files");
if (r!=0 && result==0) result = r;
}
return result;
}
struct subtree_info {
int64_t block;
};
struct subtrees_info {
int64_t next_free_block;
int64_t n_subtrees; // was n_blocks
int64_t n_subtrees_limit;
struct subtree_info *subtrees;
};
static void subtrees_info_init(struct subtrees_info *p) {
p->next_free_block = p->n_subtrees = p->n_subtrees_limit = 0;
p->subtrees = NULL;
}
static void subtrees_info_destroy(struct subtrees_info *p) {
toku_free(p->subtrees);
p->subtrees = NULL;
}
static void allocate_node (struct subtrees_info *sts, int64_t b) {
if (sts->n_subtrees >= sts->n_subtrees_limit) {
sts->n_subtrees_limit *= 2;
XREALLOC_N(sts->n_subtrees_limit, sts->subtrees);
}
sts->subtrees[sts->n_subtrees].block = b;
sts->n_subtrees++;
}
// dbuf will always contained 512-byte aligned buffer, but the length might not be a multiple of 512 bytes. If that's what you want, then pad it.
struct dbuf {
unsigned char *buf;
int buflen;
int off;
int error;
};
struct leaf_buf {
BLOCKNUM blocknum;
TXNID xid;
uint64_t nkeys, ndata, dsize;
FTNODE node;
XIDS xids;
uint64_t off;
};
struct translation {
int64_t off, size;
};
struct dbout {
int fd;
toku_off_t current_off;
int64_t n_translations;
int64_t n_translations_limit;
struct translation *translation;
toku_mutex_t mutex;
FT ft;
};
static inline void dbout_init(struct dbout *out, FT ft) {
out->fd = -1;
out->current_off = 0;
out->n_translations = out->n_translations_limit = 0;
out->translation = NULL;
toku_mutex_init(*loader_out_mutex_key, &out->mutex, nullptr);
out->ft = ft;
}
static inline void dbout_destroy(struct dbout *out) {
if (out->fd >= 0) {
toku_os_close(out->fd);
out->fd = -1;
}
toku_free(out->translation);
out->translation = NULL;
toku_mutex_destroy(&out->mutex);
}
static inline void dbout_lock(struct dbout *out) {
toku_mutex_lock(&out->mutex);
}
static inline void dbout_unlock(struct dbout *out) {
toku_mutex_unlock(&out->mutex);
}
static void seek_align_locked(struct dbout *out) {
toku_off_t old_current_off = out->current_off;
int alignment = 4096;
out->current_off += alignment-1;
out->current_off &= ~(alignment-1);
toku_off_t r = lseek(out->fd, out->current_off, SEEK_SET);
invariant(r==out->current_off);
invariant(out->current_off >= old_current_off);
invariant(out->current_off < old_current_off+alignment);
invariant(out->current_off % alignment == 0);
}
static void seek_align(struct dbout *out) {
dbout_lock(out);
seek_align_locked(out);
dbout_unlock(out);
}
static void dbuf_init (struct dbuf *dbuf) {
dbuf->buf = 0;
dbuf->buflen = 0;
dbuf->off = 0;
dbuf->error = 0;
}
static void dbuf_destroy (struct dbuf *dbuf) {
toku_free(dbuf->buf); dbuf->buf = NULL;
}
static int allocate_block (struct dbout *out, int64_t *ret_block_number)
// Return the new block number
{
int result = 0;
dbout_lock(out);
int64_t block_number = out->n_translations;
if (block_number >= out->n_translations_limit) {
int64_t old_n_translations_limit = out->n_translations_limit;
struct translation *old_translation = out->translation;
if (out->n_translations_limit==0) {
out->n_translations_limit = 1;
} else {
out->n_translations_limit *= 2;
}
REALLOC_N(out->n_translations_limit, out->translation);
if (out->translation == NULL) {
result = get_error_errno();
invariant(result);
out->n_translations_limit = old_n_translations_limit;
out->translation = old_translation;
goto cleanup;
}
}
out->n_translations++;
*ret_block_number = block_number;
cleanup:
dbout_unlock(out);
return result;
}
static void putbuf_bytes (struct dbuf *dbuf, const void *bytes, int nbytes) {
if (!dbuf->error && dbuf->off + nbytes > dbuf->buflen) {
unsigned char *oldbuf = dbuf->buf;
int oldbuflen = dbuf->buflen;
dbuf->buflen += dbuf->off + nbytes;
dbuf->buflen *= 2;
REALLOC_N_ALIGNED(512, dbuf->buflen, dbuf->buf);
if (dbuf->buf == NULL) {
dbuf->error = get_error_errno();
dbuf->buf = oldbuf;
dbuf->buflen = oldbuflen;
}
}
if (!dbuf->error) {
memcpy(dbuf->buf + dbuf->off, bytes, nbytes);
dbuf->off += nbytes;
}
}
static void putbuf_int32 (struct dbuf *dbuf, int v) {
putbuf_bytes(dbuf, &v, 4);
}
static void putbuf_int64 (struct dbuf *dbuf, long long v) {
putbuf_int32(dbuf, v>>32);
putbuf_int32(dbuf, v&0xFFFFFFFF);
}
static struct leaf_buf *start_leaf (struct dbout *out, const DESCRIPTOR UU(desc), int64_t lblocknum, TXNID xid, uint32_t UU(target_nodesize)) {
invariant(lblocknum < out->n_translations_limit);
struct leaf_buf *XMALLOC(lbuf);
lbuf->blocknum.b = lblocknum;
lbuf->xid = xid;
lbuf->nkeys = lbuf->ndata = lbuf->dsize = 0;
lbuf->off = 0;
lbuf->xids = toku_xids_get_root_xids();
if (xid != TXNID_NONE) {
XIDS new_xids = NULL;
int r = toku_xids_create_child(lbuf->xids, &new_xids, xid);
assert(r == 0 && new_xids);
toku_xids_destroy(&lbuf->xids);
lbuf->xids = new_xids;
}
FTNODE XMALLOC(node);
toku_initialize_empty_ftnode(node, lbuf->blocknum, 0 /*height*/, 1 /*basement nodes*/, FT_LAYOUT_VERSION, 0);
BP_STATE(node, 0) = PT_AVAIL;
lbuf->node = node;
return lbuf;
}
static void finish_leafnode(
struct dbout* out,
struct leaf_buf* lbuf,
int progress_allocation,
FTLOADER bl,
uint32_t target_basementnodesize,
enum toku_compression_method target_compression_method);
static int write_nonleaves(
FTLOADER bl,
FIDX pivots_fidx,
struct dbout* out,
struct subtrees_info* sts,
const DESCRIPTOR descriptor,
uint32_t target_nodesize,
uint32_t target_basementnodesize,
enum toku_compression_method target_compression_method);
static void add_pair_to_leafnode(
struct leaf_buf* lbuf,
unsigned char* key,
int keylen,
unsigned char* val,
int vallen,
int this_leafentry_size,
STAT64INFO stats_to_update,
int64_t* logical_rows_delta);
static int write_translation_table(
struct dbout* out,
long long* off_of_translation_p);
static int write_header(
struct dbout* out,
long long translation_location_on_disk,
long long translation_size_on_disk);
static void drain_writer_q(QUEUE q) {
void *item;
while (1) {
int r = toku_queue_deq(q, &item, NULL, NULL);
if (r == EOF)
break;
invariant(r == 0);
struct rowset *rowset = (struct rowset *) item;
destroy_rowset(rowset);
toku_free(rowset);
}
}
static void cleanup_maxkey(DBT *maxkey) {
if (maxkey->flags == DB_DBT_REALLOC) {
toku_free(maxkey->data);
maxkey->data = NULL;
maxkey->flags = 0;
}
}
static void update_maxkey(DBT *maxkey, DBT *key) {
cleanup_maxkey(maxkey);
*maxkey = *key;
}
static int copy_maxkey(DBT *maxkey) {
DBT newkey;
toku_init_dbt_flags(&newkey, DB_DBT_REALLOC);
int r = toku_dbt_set(maxkey->size, maxkey->data, &newkey, NULL);
if (r == 0)
update_maxkey(maxkey, &newkey);
return r;
}
static int toku_loader_write_ft_from_q (FTLOADER bl,
const DESCRIPTOR descriptor,
int fd, // write to here
int progress_allocation,
QUEUE q,
uint64_t total_disksize_estimate,
int which_db,
uint32_t target_nodesize,
uint32_t target_basementnodesize,
enum toku_compression_method target_compression_method,
uint32_t target_fanout)
// Effect: Consume a sequence of rowsets work from a queue, creating a fractal tree. Closes fd.
{
// set the number of fractal tree writer threads so that we can partition memory in the merger
ft_loader_set_fractal_workers_count(bl);
int result = 0;
int r;
// The pivots file will contain all the pivot strings (in the form <size(32bits)> <data>)
// The pivots_fname is the name of the pivots file.
// Note that the pivots file will have one extra pivot in it (the last key in the dictionary) which will not appear in the tree.
int64_t n_pivots=0; // number of pivots in pivots_file
FIDX pivots_file; // the file
r = ft_loader_open_temp_file (bl, &pivots_file);
if (r) {
result = r;
drain_writer_q(q);
r = toku_os_close(fd);
assert_zero(r);
return result;
}
TOKU_FILE *pivots_stream = toku_bl_fidx2file(bl, pivots_file);
TXNID root_xid_that_created = TXNID_NONE;
if (bl->root_xids_that_created)
root_xid_that_created = bl->root_xids_that_created[which_db];
// TODO: (Zardosht/Yoni/Leif), do this code properly
struct ft ft;
toku_ft_init(&ft, (BLOCKNUM){0}, bl->load_lsn, root_xid_that_created, target_nodesize, target_basementnodesize, target_compression_method, target_fanout);
struct dbout out;
ZERO_STRUCT(out);
dbout_init(&out, &ft);
out.fd = fd;
out.current_off = 8192; // leave 8K reserved at beginning
out.n_translations = 3; // 3 translations reserved at the beginning
out.n_translations_limit = 4;
MALLOC_N(out.n_translations_limit, out.translation);
if (out.translation == NULL) {
result = get_error_errno();
dbout_destroy(&out);
drain_writer_q(q);
toku_free(ft.h);
return result;
}
// The blocks_array will contain all the block numbers that correspond to the pivots. Generally there should be one more block than pivot.
struct subtrees_info sts;
subtrees_info_init(&sts);
sts.next_free_block = 3;
sts.n_subtrees = 0;
sts.n_subtrees_limit = 1;
MALLOC_N(sts.n_subtrees_limit, sts.subtrees);
if (sts.subtrees == NULL) {
result = get_error_errno();
subtrees_info_destroy(&sts);
dbout_destroy(&out);
drain_writer_q(q);
toku_free(ft.h);
return result;
}
out.translation[0].off = -2LL; out.translation[0].size = 0; // block 0 is NULL
invariant(1==RESERVED_BLOCKNUM_TRANSLATION);
invariant(2==RESERVED_BLOCKNUM_DESCRIPTOR);
out.translation[1].off = -1; // block 1 is the block translation, filled in later
out.translation[2].off = -1; // block 2 is the descriptor
seek_align(&out);
int64_t lblock = 0; // make gcc --happy
result = allocate_block(&out, &lblock);
invariant(result == 0); // can not fail since translations reserved above
TXNID le_xid = leafentry_xid(bl, which_db);
struct leaf_buf *lbuf = start_leaf(&out, descriptor, lblock, le_xid, target_nodesize);
uint64_t n_rows_remaining = bl->n_rows;
uint64_t old_n_rows_remaining = bl->n_rows;
uint64_t used_estimate = 0; // how much diskspace have we used up?
DBT maxkey = make_dbt(0, 0); // keep track of the max key of the current node
STAT64INFO_S deltas = ZEROSTATS;
// This is just a placeholder and not used in the loader, the real/accurate
// stats will come out of 'deltas' because this loader is not pushing
// messages down into the top of a fractal tree where the logical row count
// is done, it is directly creating leaf entries so it must also take on
// performing the logical row counting on its own
int64_t logical_rows_delta = 0;
while (result == 0) {
void *item;
{
int rr = toku_queue_deq(q, &item, NULL, NULL);
if (rr == EOF) break;
if (rr != 0) {
ft_loader_set_panic(bl, rr, true, which_db, nullptr, nullptr);
break;
}
}
struct rowset *output_rowset = (struct rowset *)item;
for (unsigned int i = 0; i < output_rowset->n_rows; i++) {
DBT key = make_dbt(output_rowset->data+output_rowset->rows[i].off, output_rowset->rows[i].klen);
DBT val = make_dbt(output_rowset->data+output_rowset->rows[i].off + output_rowset->rows[i].klen, output_rowset->rows[i].vlen);
size_t this_leafentry_size = ft_loader_leafentry_size(key.size, val.size, le_xid);
used_estimate += this_leafentry_size;
// Spawn off a node if
// a) there is at least one row in it, and
// b) this item would make the nodesize too big, or
// c) the remaining amount won't fit in the current node and the current node's data is more than the remaining amount
uint64_t remaining_amount = total_disksize_estimate - used_estimate;
uint64_t used_here = lbuf->off + 1000; // leave 1000 for various overheads.
uint64_t target_size = (target_nodesize*7L)/8; // use only 7/8 of the node.
uint64_t used_here_with_next_key = used_here + this_leafentry_size;
if (lbuf->nkeys > 0 &&
((used_here_with_next_key >= target_size) || (used_here + remaining_amount >= target_size && lbuf->off > remaining_amount))) {
int progress_this_node = progress_allocation * (double)(old_n_rows_remaining - n_rows_remaining)/(double)old_n_rows_remaining;
progress_allocation -= progress_this_node;
old_n_rows_remaining = n_rows_remaining;
allocate_node(&sts, lblock);
n_pivots++;
invariant(maxkey.data != NULL);
if ((r = bl_write_dbt(&maxkey, pivots_stream, NULL, nullptr, bl))) {
ft_loader_set_panic(bl, r, true, which_db, nullptr, nullptr);
if (result == 0) result = r;
break;
}
finish_leafnode(&out, lbuf, progress_this_node, bl, target_basementnodesize, target_compression_method);
lbuf = NULL;
r = allocate_block(&out, &lblock);
if (r != 0) {
ft_loader_set_panic(bl, r, true, which_db, nullptr, nullptr);
if (result == 0) result = r;
break;
}
lbuf = start_leaf(&out, descriptor, lblock, le_xid, target_nodesize);
}
add_pair_to_leafnode(
lbuf,
(unsigned char*)key.data,
key.size,
(unsigned char*)val.data,
val.size,
this_leafentry_size,
&deltas,
&logical_rows_delta);
n_rows_remaining--;
update_maxkey(&maxkey, &key); // set the new maxkey to the current key
}
r = copy_maxkey(&maxkey); // make a copy of maxkey before the rowset is destroyed
if (result == 0)
result = r;
destroy_rowset(output_rowset);
toku_free(output_rowset);
if (result == 0)
result = ft_loader_get_error(&bl->error_callback); // check if an error was posted and terminate this quickly
}
if (deltas.numrows || deltas.numbytes) {
toku_ft_update_stats(&ft.in_memory_stats, deltas);
}
// As noted above, the loader directly creates a tree structure without
// going through the higher level ft API and tus bypasses the logical row
// counting performed at that level. So, we must manually update the logical
// row count with the info we have from the physical delta that comes out of
// add_pair_to_leafnode.
toku_ft_adjust_logical_row_count(&ft, deltas.numrows);
cleanup_maxkey(&maxkey);
if (lbuf) {
allocate_node(&sts, lblock);
{
int p = progress_allocation/2;
finish_leafnode(&out, lbuf, p, bl, target_basementnodesize, target_compression_method);
progress_allocation -= p;
}
}
if (result == 0) {
result = ft_loader_get_error(&bl->error_callback); // if there were any prior errors then exit
}
if (result != 0) goto error;
// We haven't paniced, so the sum should add up.
invariant(used_estimate == total_disksize_estimate);
n_pivots++;
{
DBT key = make_dbt(0,0); // must write an extra DBT into the pivots file.
r = bl_write_dbt(&key, pivots_stream, NULL, nullptr, bl);
if (r) {
result = r; goto error;
}
}
r = write_nonleaves(bl, pivots_file, &out, &sts, descriptor, target_nodesize, target_basementnodesize, target_compression_method);
if (r) {
result = r; goto error;
}
{
invariant(sts.n_subtrees==1);
out.ft->h->root_blocknum = make_blocknum(sts.subtrees[0].block);
toku_free(sts.subtrees); sts.subtrees = NULL;
// write the descriptor
{
seek_align(&out);
invariant(out.n_translations >= RESERVED_BLOCKNUM_DESCRIPTOR);
invariant(out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].off == -1);
out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].off = out.current_off;
size_t desc_size = 4+toku_serialize_descriptor_size(descriptor);
invariant(desc_size>0);
out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].size = desc_size;
struct wbuf wbuf;
char *XMALLOC_N(desc_size, buf);
wbuf_init(&wbuf, buf, desc_size);
toku_serialize_descriptor_contents_to_wbuf(&wbuf, descriptor);
uint32_t checksum = toku_x1764_finish(&wbuf.checksum);
wbuf_int(&wbuf, checksum);
invariant(wbuf.ndone==desc_size);
r = toku_os_write(out.fd, wbuf.buf, wbuf.ndone);
out.current_off += desc_size;
toku_free(buf); // wbuf_destroy
if (r) {
result = r; goto error;
}
}
long long off_of_translation;
r = write_translation_table(&out, &off_of_translation);
if (r) {
result = r; goto error;
}
r = write_header(&out, off_of_translation, (out.n_translations+1)*16+4);
if (r) {
result = r; goto error;
}
r = update_progress(progress_allocation, bl, "wrote tdb file");
if (r) {
result = r; goto error;
}
}
r = fsync(out.fd);
if (r) {
result = get_error_errno(); goto error;
}
// Do we need to pay attention to user_said_stop? Or should the guy at the other end of the queue pay attention and send in an EOF.
error:
{
int rr = toku_os_close(fd);
if (rr)
result = get_error_errno();
}
out.fd = -1;
subtrees_info_destroy(&sts);
dbout_destroy(&out);
drain_writer_q(q);
toku_free(ft.h);
return result;
}
int toku_loader_write_ft_from_q_in_C (FTLOADER bl,
const DESCRIPTOR descriptor,
int fd, // write to here
int progress_allocation,
QUEUE q,
uint64_t total_disksize_estimate,
int which_db,
uint32_t target_nodesize,
uint32_t target_basementnodesize,
enum toku_compression_method target_compression_method,
uint32_t target_fanout)
// This is probably only for testing.
{
target_nodesize = target_nodesize == 0 ? default_loader_nodesize : target_nodesize;
target_basementnodesize = target_basementnodesize == 0 ? default_loader_basementnodesize : target_basementnodesize;
return toku_loader_write_ft_from_q (bl, descriptor, fd, progress_allocation, q, total_disksize_estimate, which_db, target_nodesize, target_basementnodesize, target_compression_method, target_fanout);
}
static void* fractal_thread (void *ftav) {
struct fractal_thread_args *fta = (struct fractal_thread_args *)ftav;
int r = toku_loader_write_ft_from_q(fta->bl,
fta->descriptor,
fta->fd,
fta->progress_allocation,
fta->q,
fta->total_disksize_estimate,
fta->which_db,
fta->target_nodesize,
fta->target_basementnodesize,
fta->target_compression_method,
fta->target_fanout);
fta->errno_result = r;
toku_instr_delete_current_thread();
return toku_pthread_done(nullptr);
}
static int loader_do_i(FTLOADER bl,
int which_db,
DB *dest_db,
ft_compare_func compare,
const DESCRIPTOR descriptor,
const char *new_fname,
int progress_allocation // how much progress do I need
// to add into bl->progress by
// the end..
)
/* Effect: Handle the file creating for one particular DB in the bulk loader. */
/* Requires: The data is fully extracted, so we can do merges out of files and
write the ft file. */
{
//printf("doing i use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation);
struct merge_fileset *fs = &(bl->fs[which_db]);
struct rowset *rows = &(bl->rows[which_db]);
invariant(rows->data==NULL); // the rows should be all cleaned up already
int r = toku_queue_create(&bl->fractal_queues[which_db], FRACTAL_WRITER_QUEUE_DEPTH);
if (r) goto error;
{
mode_t mode = S_IRUSR + S_IWUSR + S_IRGRP + S_IWGRP;
int fd = toku_os_open(new_fname,
O_RDWR | O_CREAT | O_BINARY,
mode,
*tokudb_file_load_key); // #2621
if (fd < 0) {
r = get_error_errno();
goto error;
}
uint32_t target_nodesize, target_basementnodesize, target_fanout;
enum toku_compression_method target_compression_method;
r = dest_db->get_pagesize(dest_db, &target_nodesize);
invariant_zero(r);
r = dest_db->get_readpagesize(dest_db, &target_basementnodesize);
invariant_zero(r);
r = dest_db->get_compression_method(dest_db, &target_compression_method);
invariant_zero(r);
r = dest_db->get_fanout(dest_db, &target_fanout);
invariant_zero(r);
if (bl->allow_puts) {
// a better allocation would be to figure out roughly how many merge passes we'll need.
int allocation_for_merge = (2*progress_allocation)/3;
progress_allocation -= allocation_for_merge;
// This structure must stay live until the join below.
struct fractal_thread_args fta = {bl,
descriptor,
fd,
progress_allocation,
bl->fractal_queues[which_db],
bl->extracted_datasizes[which_db],
0,
which_db,
target_nodesize,
target_basementnodesize,
target_compression_method,
target_fanout};
r = toku_pthread_create(*fractal_thread_key,
bl->fractal_threads + which_db,
nullptr,
fractal_thread,
static_cast<void *>(&fta));
if (r) {
int r2 __attribute__((__unused__)) =
toku_queue_destroy(bl->fractal_queues[which_db]);
// ignore r2, since we already have an error
bl->fractal_queues[which_db] = nullptr;
goto error;
}
invariant(bl->fractal_threads_live[which_db]==false);
bl->fractal_threads_live[which_db] = true;
r = merge_files(fs, bl, which_db, dest_db, compare, allocation_for_merge, bl->fractal_queues[which_db]);
{
void *toku_pthread_retval;
int r2 = toku_pthread_join(bl->fractal_threads[which_db], &toku_pthread_retval);
invariant(fta.bl==bl); // this is a gratuitous assertion to make sure that the fta struct is still live here. A previous bug put that struct into a C block statement.
resource_assert_zero(r2);
invariant(toku_pthread_retval==NULL);
invariant(bl->fractal_threads_live[which_db]);
bl->fractal_threads_live[which_db] = false;
if (r == 0) r = fta.errno_result;
}
} else {
toku_queue_eof(bl->fractal_queues[which_db]);
r = toku_loader_write_ft_from_q(bl, descriptor, fd, progress_allocation,
bl->fractal_queues[which_db], bl->extracted_datasizes[which_db], which_db,
target_nodesize, target_basementnodesize, target_compression_method, target_fanout);
}
}
error: // this is the cleanup code. Even if r==0 (no error) we fall through to here.
if (bl->fractal_queues[which_db]) {
int r2 = toku_queue_destroy(bl->fractal_queues[which_db]);
invariant(r2==0);
bl->fractal_queues[which_db] = nullptr;
}
// if we get here we need to free up the merge_fileset and the rowset, as well as the keys
toku_free(rows->data); rows->data = NULL;
toku_free(rows->rows); rows->rows = NULL;
toku_free(fs->data_fidxs); fs->data_fidxs = NULL;
return r;
}
static int toku_ft_loader_close_internal (FTLOADER bl)
/* Effect: Close the bulk loader.
* Return all the file descriptors in the array fds. */
{
int result = 0;
if (bl->N == 0)
result = update_progress(PROGRESS_MAX, bl, "done");
else {
int remaining_progress = PROGRESS_MAX;
for (int i = 0; i < bl->N; i++) {
// Take the unallocated progress and divide it among the unfinished jobs.
// This calculation allocates all of the PROGRESS_MAX bits of progress to some job.
int allocate_here = remaining_progress/(bl->N - i);
remaining_progress -= allocate_here;
char *fname_in_cwd = toku_cachetable_get_fname_in_cwd(bl->cachetable, bl->new_fnames_in_env[i]);
result = loader_do_i(bl, i, bl->dbs[i], bl->bt_compare_funs[i], bl->descriptors[i], fname_in_cwd, allocate_here);
toku_free(fname_in_cwd);
if (result != 0)
goto error;
invariant(0 <= bl->progress && bl->progress <= PROGRESS_MAX);
}
if (result==0) invariant(remaining_progress==0);
// fsync the directory containing the new tokudb files.
char *fname0 = toku_cachetable_get_fname_in_cwd(bl->cachetable, bl->new_fnames_in_env[0]);
int r = toku_fsync_directory(fname0);
toku_free(fname0);
if (r != 0) {
result = r; goto error;
}
}
invariant(bl->file_infos.n_files_open == 0);
invariant(bl->file_infos.n_files_extant == 0);
invariant(bl->progress == PROGRESS_MAX);
error:
toku_ft_loader_internal_destroy(bl, (bool)(result!=0));
return result;
}
int toku_ft_loader_close (FTLOADER bl,
ft_loader_error_func error_function, void *error_extra,
ft_loader_poll_func poll_function, void *poll_extra
)
{
int result = 0;
int r;
//printf("Closing\n");
ft_loader_set_error_function(&bl->error_callback, error_function, error_extra);
ft_loader_set_poll_function(&bl->poll_callback, poll_function, poll_extra);
if (bl->extractor_live) {
r = finish_extractor(bl);
if (r)
result = r;
invariant(!bl->extractor_live);
} else {
r = finish_primary_rows(bl);
if (r)
result = r;
}
// check for an error during extraction
if (result == 0) {
r = ft_loader_call_error_function(&bl->error_callback);
if (r)
result = r;
}
if (result == 0) {
r = toku_ft_loader_close_internal(bl);
if (r && result == 0)
result = r;
} else
toku_ft_loader_internal_destroy(bl, true);
return result;
}
int toku_ft_loader_finish_extractor(FTLOADER bl) {
int result = 0;
if (bl->extractor_live) {
int r = finish_extractor(bl);
if (r)
result = r;
invariant(!bl->extractor_live);
} else
result = EINVAL;
return result;
}
int toku_ft_loader_abort(FTLOADER bl, bool is_error)
/* Effect : Abort the bulk loader, free ft_loader resources */
{
int result = 0;
// cleanup the extractor thread
if (bl->extractor_live) {
int r = finish_extractor(bl);
if (r)
result = r;
invariant(!bl->extractor_live);
}
for (int i = 0; i < bl->N; i++)
invariant(!bl->fractal_threads_live[i]);
toku_ft_loader_internal_destroy(bl, is_error);
return result;
}
int toku_ft_loader_get_error(FTLOADER bl, int *error) {
*error = ft_loader_get_error(&bl->error_callback);
return 0;
}
static void add_pair_to_leafnode(
struct leaf_buf* lbuf,
unsigned char* key,
int keylen,
unsigned char* val,
int vallen,
int this_leafentry_size,
STAT64INFO stats_to_update,
int64_t* logical_rows_delta) {
lbuf->nkeys++;
lbuf->ndata++;
lbuf->dsize += keylen + vallen;
lbuf->off += this_leafentry_size;
// append this key val pair to the leafnode
// #3588 TODO just make a clean ule and append it to the omt
// #3588 TODO can do the rebalancing here and avoid a lot of work later
FTNODE leafnode = lbuf->node;
uint32_t idx = BLB_DATA(leafnode, 0)->num_klpairs();
DBT kdbt, vdbt;
ft_msg msg(
toku_fill_dbt(&kdbt, key, keylen),
toku_fill_dbt(&vdbt, val, vallen),
FT_INSERT,
ZERO_MSN,
lbuf->xids);
uint64_t workdone = 0;
// there's no mvcc garbage in a bulk-loaded FT, so there's no need to pass useful gc info
txn_gc_info gc_info(nullptr, TXNID_NONE, TXNID_NONE, true);
toku_ft_bn_apply_msg_once(
BLB(leafnode, 0),
msg,
idx,
keylen,
NULL,
&gc_info,
&workdone,
stats_to_update,
logical_rows_delta);
}
static int write_literal(struct dbout *out, void*data, size_t len) {
invariant(out->current_off%4096==0);
int result = toku_os_write(out->fd, data, len);
if (result == 0)
out->current_off+=len;
return result;
}
static void finish_leafnode(
struct dbout* out,
struct leaf_buf* lbuf,
int progress_allocation,
FTLOADER bl,
uint32_t target_basementnodesize,
enum toku_compression_method target_compression_method) {
int result = 0;
// serialize leaf to buffer
size_t serialized_leaf_size = 0;
size_t uncompressed_serialized_leaf_size = 0;
char *serialized_leaf = NULL;
FTNODE_DISK_DATA ndd = NULL;
result = toku_serialize_ftnode_to_memory(
lbuf->node,
&ndd,
target_basementnodesize,
target_compression_method,
true,
true,
&serialized_leaf_size,
&uncompressed_serialized_leaf_size,
&serialized_leaf);
// write it out
if (result == 0) {
dbout_lock(out);
long long off_of_leaf = out->current_off;
result = write_literal(out, serialized_leaf, serialized_leaf_size);
if (result == 0) {
out->translation[lbuf->blocknum.b].off = off_of_leaf;
out->translation[lbuf->blocknum.b].size = serialized_leaf_size;
seek_align_locked(out);
}
dbout_unlock(out);
}
// free the node
if (serialized_leaf) {
toku_free(ndd);
toku_free(serialized_leaf);
}
toku_ftnode_free(&lbuf->node);
toku_xids_destroy(&lbuf->xids);
toku_free(lbuf);
//printf("Nodewrite %d (%.1f%%):", progress_allocation, 100.0*progress_allocation/PROGRESS_MAX);
if (result == 0)
result = update_progress(progress_allocation, bl, "wrote node");
if (result)
ft_loader_set_panic(bl, result, true, 0, nullptr, nullptr);
}
static int write_translation_table (struct dbout *out, long long *off_of_translation_p) {
seek_align(out);
struct dbuf ttable;
dbuf_init(&ttable);
long long off_of_translation = out->current_off;
long long bt_size_on_disk = out->n_translations * 16 + 20;
putbuf_int64(&ttable, out->n_translations); // number of records
putbuf_int64(&ttable, -1LL); // the linked list
out->translation[1].off = off_of_translation;
out->translation[1].size = bt_size_on_disk;
for (int i=0; i<out->n_translations; i++) {
putbuf_int64(&ttable, out->translation[i].off);
putbuf_int64(&ttable, out->translation[i].size);
}
unsigned int checksum = toku_x1764_memory(ttable.buf, ttable.off);
putbuf_int32(&ttable, checksum);
// pad it to 512 zeros
long long encoded_length = ttable.off;
{
int nbytes_to_add = roundup_to_multiple(512, ttable.off) - encoded_length;
char zeros[nbytes_to_add];
for (int i=0; i<nbytes_to_add; i++) zeros[i]=0;
putbuf_bytes(&ttable, zeros, nbytes_to_add);
}
int result = ttable.error;
if (result == 0) {
invariant(bt_size_on_disk==encoded_length);
result = toku_os_pwrite(out->fd, ttable.buf, ttable.off, off_of_translation);
}
dbuf_destroy(&ttable);
*off_of_translation_p = off_of_translation;
return result;
}
static int write_header(
struct dbout* out,
long long translation_location_on_disk,
long long translation_size_on_disk) {
int result = 0;
size_t size = toku_serialize_ft_size(out->ft->h);
size_t alloced_size = roundup_to_multiple(512, size);
struct wbuf wbuf;
char *MALLOC_N_ALIGNED(512, alloced_size, buf);
if (buf == NULL) {
result = get_error_errno();
} else {
wbuf_init(&wbuf, buf, size);
out->ft->h->on_disk_stats = out->ft->in_memory_stats;
out->ft->h->on_disk_logical_rows = out->ft->in_memory_logical_rows;
toku_serialize_ft_to_wbuf(&wbuf, out->ft->h, translation_location_on_disk, translation_size_on_disk);
for (size_t i=size; i<alloced_size; i++) buf[i]=0; // initialize all those unused spots to zero
if (wbuf.ndone != size)
result = EINVAL;
else {
assert(wbuf.ndone <= alloced_size);
result = toku_os_pwrite(out->fd, wbuf.buf, alloced_size, 0);
}
toku_free(buf);
}
return result;
}
static int read_some_pivots (FIDX pivots_file, int n_to_read, FTLOADER bl,
/*out*/ DBT pivots[/*n_to_read*/])
// pivots is an array to be filled in. The pivots array is uninitialized.
{
for (int i = 0; i < n_to_read; i++)
pivots[i] = zero_dbt;
TOKU_FILE *pivots_stream = toku_bl_fidx2file(bl, pivots_file);
int result = 0;
for (int i = 0; i < n_to_read; i++) {
int r = bl_read_dbt(&pivots[i], pivots_stream);
if (r != 0) {
result = r;
break;
}
}
return result;
}
static void delete_pivots(DBT pivots[], int n) {
for (int i = 0; i < n; i++)
toku_free(pivots[i].data);
toku_free(pivots);
}
static int setup_nonleaf_block (int n_children,
struct subtrees_info *subtrees, FIDX pivots_file, int64_t first_child_offset_in_subtrees,
struct subtrees_info *next_subtrees, FIDX next_pivots_file,
struct dbout *out, FTLOADER bl,
/*out*/int64_t *blocknum,
/*out*/struct subtree_info **subtrees_info_p,
/*out*/DBT **pivots_p)
// Do the serial part of setting up a non leaf block.
// Read the pivots out of the file, and store them in a newly allocated array of DBTs (returned in *pivots_p) There are (n_blocks_to_use-1) of these.
// Copy the final pivot into the next_pivots file instead of returning it.
// Copy the subtree_info from the subtrees structure, and store them in a newly allocated array of subtree_infos (return in *subtrees_info_p). There are n_blocks_to_use of these.
// Allocate a block number and return it in *blocknum.
// Store the blocknum in the next_blocks structure, so it can be combined with the pivots at the next level of the tree.
// Update n_blocks_used and n_translations.
// This code cannot be called in parallel because of all the race conditions.
// The actual creation of the node can be called in parallel after this work is done.
{
//printf("Nonleaf has children :"); for(int i=0; i<n_children; i++) printf(" %ld", subtrees->subtrees[i].block); printf("\n");
int result = 0;
DBT *MALLOC_N(n_children, pivots);
if (pivots == NULL) {
result = get_error_errno();
}
if (result == 0) {
int r = read_some_pivots(pivots_file, n_children, bl, pivots);
if (r)
result = r;
}
if (result == 0) {
TOKU_FILE *next_pivots_stream = toku_bl_fidx2file(bl, next_pivots_file);
int r = bl_write_dbt(
&pivots[n_children - 1], next_pivots_stream, NULL, nullptr, bl);
if (r)
result = r;
}
if (result == 0) {
// The last pivot was written to the next_pivots file, so we free it now instead of returning it.
toku_free(pivots[n_children-1].data);
pivots[n_children-1] = zero_dbt;
struct subtree_info *XMALLOC_N(n_children, subtrees_array);
for (int i = 0; i < n_children; i++) {
int64_t from_blocknum = first_child_offset_in_subtrees + i;
subtrees_array[i] = subtrees->subtrees[from_blocknum];
}
int r = allocate_block(out, blocknum);
if (r) {
toku_free(subtrees_array);
result = r;
} else {
allocate_node(next_subtrees, *blocknum);
*pivots_p = pivots;
*subtrees_info_p = subtrees_array;
}
}
if (result != 0) {
if (pivots) {
delete_pivots(pivots, n_children); pivots = NULL;
}
}
return result;
}
static void write_nonleaf_node (FTLOADER bl, struct dbout *out, int64_t blocknum_of_new_node, int n_children,
DBT *pivots, /* must free this array, as well as the things it points t */
struct subtree_info *subtree_info, int height, const DESCRIPTOR UU(desc), uint32_t UU(target_nodesize), uint32_t target_basementnodesize, enum toku_compression_method target_compression_method)
{
//Nodes do not currently touch descriptors
invariant(height > 0);
int result = 0;
FTNODE XMALLOC(node);
toku_initialize_empty_ftnode(node, make_blocknum(blocknum_of_new_node), height, n_children,
FT_LAYOUT_VERSION, 0);
node->pivotkeys.create_from_dbts(pivots, n_children - 1);
assert(node->bp);
for (int i=0; i<n_children; i++) {
BP_BLOCKNUM(node,i) = make_blocknum(subtree_info[i].block);
BP_STATE(node,i) = PT_AVAIL;
}
FTNODE_DISK_DATA ndd = NULL;
if (result == 0) {
size_t n_bytes;
size_t n_uncompressed_bytes;
char *bytes;
int r;
r = toku_serialize_ftnode_to_memory(node, &ndd, target_basementnodesize, target_compression_method, true, true, &n_bytes, &n_uncompressed_bytes, &bytes);
if (r) {
result = r;
} else {
dbout_lock(out);
out->translation[blocknum_of_new_node].off = out->current_off;
out->translation[blocknum_of_new_node].size = n_bytes;
//fprintf(stderr, "Wrote internal node at %ld (%ld bytes)\n", out->current_off, n_bytes);
//for (uint32_t i=0; i<n_bytes; i++) { unsigned char b = bytes[i]; printf("%d:%02x (%d) ('%c')\n", i, b, b, (b>=' ' && b<128) ? b : '*'); }
r = write_literal(out, bytes, n_bytes);
if (r)
result = r;
else
seek_align_locked(out);
dbout_unlock(out);
toku_free(bytes);
}
}
for (int i=0; i<n_children-1; i++) {
toku_free(pivots[i].data);
}
for (int i=0; i<n_children; i++) {
destroy_nonleaf_childinfo(BNC(node,i));
}
toku_free(pivots);
// TODO: Should be using toku_destroy_ftnode_internals, which should be renamed to toku_ftnode_destroy
toku_free(node->bp);
node->pivotkeys.destroy();
toku_free(node);
toku_free(ndd);
toku_free(subtree_info);
if (result != 0)
ft_loader_set_panic(bl, result, true, 0, nullptr, nullptr);
}
static int write_nonleaves (FTLOADER bl, FIDX pivots_fidx, struct dbout *out, struct subtrees_info *sts, const DESCRIPTOR descriptor, uint32_t target_nodesize, uint32_t target_basementnodesize, enum toku_compression_method target_compression_method) {
int result = 0;
int height = 1;
// Watch out for the case where we saved the last pivot but didn't write any more nodes out.
// The trick is not to look at n_pivots, but to look at blocks.n_blocks
while (sts->n_subtrees > 1) {
// If there is more than one block in blocks, then we must build another level of the tree.
// we need to create a pivots file for the pivots of the next level.
// and a blocks_array
// So for example.
// 1) we grab 16 pivots and 16 blocks.
// 2) We put the 15 pivots and 16 blocks into an non-leaf node.
// 3) We put the 16th pivot into the next pivots file.
{
int r =
fseek(toku_bl_fidx2file(bl, pivots_fidx)->file, 0, SEEK_SET);
if (r != 0) {
return get_error_errno();
}
}
FIDX next_pivots_file;
{
int r = ft_loader_open_temp_file (bl, &next_pivots_file);
if (r != 0) { result = r; break; }
}
struct subtrees_info next_sts;
subtrees_info_init(&next_sts);
next_sts.n_subtrees = 0;
next_sts.n_subtrees_limit = 1;
XMALLOC_N(next_sts.n_subtrees_limit, next_sts.subtrees);
const int n_per_block = 15;
int64_t n_subtrees_used = 0;
while (sts->n_subtrees - n_subtrees_used >= n_per_block*2) {
// grab the first N_PER_BLOCK and build a node.
DBT *pivots;
int64_t blocknum_of_new_node = 0;
struct subtree_info *subtree_info;
int r = setup_nonleaf_block (n_per_block,
sts, pivots_fidx, n_subtrees_used,
&next_sts, next_pivots_file,
out, bl,
&blocknum_of_new_node, &subtree_info, &pivots);
if (r) {
result = r;
break;
} else {
write_nonleaf_node(bl, out, blocknum_of_new_node, n_per_block, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method); // frees all the data structures that go into making the node.
n_subtrees_used += n_per_block;
}
}
int64_t n_blocks_left = sts->n_subtrees - n_subtrees_used;
if (result == 0) {
// Now we have a one or two blocks at the end to handle.
invariant(n_blocks_left>=2);
if (n_blocks_left > n_per_block) {
// Write half the remaining blocks
int64_t n_first = n_blocks_left/2;
DBT *pivots;
int64_t blocknum_of_new_node;
struct subtree_info *subtree_info;
int r = setup_nonleaf_block(n_first,
sts, pivots_fidx, n_subtrees_used,
&next_sts, next_pivots_file,
out, bl,
&blocknum_of_new_node, &subtree_info, &pivots);
if (r) {
result = r;
} else {
write_nonleaf_node(bl, out, blocknum_of_new_node, n_first, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method);
n_blocks_left -= n_first;
n_subtrees_used += n_first;
}
}
}
if (result == 0) {
// Write the last block.
DBT *pivots;
int64_t blocknum_of_new_node;
struct subtree_info *subtree_info;
int r = setup_nonleaf_block(n_blocks_left,
sts, pivots_fidx, n_subtrees_used,
&next_sts, next_pivots_file,
out, bl,
&blocknum_of_new_node, &subtree_info, &pivots);
if (r) {
result = r;
} else {
write_nonleaf_node(bl, out, blocknum_of_new_node, n_blocks_left, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method);
n_subtrees_used += n_blocks_left;
}
}
if (result == 0)
invariant(n_subtrees_used == sts->n_subtrees);
if (result == 0) // pick up write_nonleaf_node errors
result = ft_loader_get_error(&bl->error_callback);
// Now set things up for the next iteration.
int r = ft_loader_fi_close(&bl->file_infos, pivots_fidx, true); if (r != 0 && result == 0) result = r;
r = ft_loader_fi_unlink(&bl->file_infos, pivots_fidx); if (r != 0 && result == 0) result = r;
pivots_fidx = next_pivots_file;
toku_free(sts->subtrees); sts->subtrees = NULL;
*sts = next_sts;
height++;
if (result)
break;
}
{ int r = ft_loader_fi_close (&bl->file_infos, pivots_fidx, true); if (r != 0 && result == 0) result = r; }
{ int r = ft_loader_fi_unlink(&bl->file_infos, pivots_fidx); if (r != 0 && result == 0) result = r; }
return result;
}
void ft_loader_set_fractal_workers_count_from_c(FTLOADER bl) {
ft_loader_set_fractal_workers_count (bl);
}
|