1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
|
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
/*======
This file is part of PerconaFT.
Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved.
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
----------------------------------------
PerconaFT is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License, version 3,
as published by the Free Software Foundation.
PerconaFT is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with PerconaFT. If not, see <http://www.gnu.org/licenses/>.
======= */
#ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved."
#include "portability/memory.h"
#include "portability/toku_assert.h"
#include "portability/toku_portability.h"
#include "portability/toku_pthread.h"
// ugly but pragmatic, need access to dirty bits while holding translation lock
// TODO: Refactor this (possibly with FT-301)
#include "ft/ft-internal.h"
// TODO: reorganize this dependency (FT-303)
#include "ft/ft-ops.h" // for toku_maybe_truncate_file
#include "ft/serialize/block_table.h"
#include "ft/serialize/rbuf.h"
#include "ft/serialize/wbuf.h"
#include "ft/serialize/block_allocator.h"
#include "util/nb_mutex.h"
#include "util/scoped_malloc.h"
toku_instr_key *block_table_mutex_key;
toku_instr_key *safe_file_size_lock_mutex_key;
toku_instr_key *safe_file_size_lock_rwlock_key;
// indicates the end of a freelist
static const BLOCKNUM freelist_null = {-1};
// value of block_translation_pair.size if blocknum is unused
static const DISKOFF size_is_free = (DISKOFF)-1;
// value of block_translation_pair.u.diskoff if blocknum is used but does not
// yet have a diskblock
static const DISKOFF diskoff_unused = (DISKOFF)-2;
void block_table::_mutex_lock() { toku_mutex_lock(&_mutex); }
void block_table::_mutex_unlock() { toku_mutex_unlock(&_mutex); }
// TODO: Move lock to FT
void toku_ft_lock(FT ft) {
block_table *bt = &ft->blocktable;
bt->_mutex_lock();
}
// TODO: Move lock to FT
void toku_ft_unlock(FT ft) {
block_table *bt = &ft->blocktable;
toku_mutex_assert_locked(&bt->_mutex);
bt->_mutex_unlock();
}
// There are two headers: the reserve must fit them both and be suitably
// aligned.
static_assert(BlockAllocator::BLOCK_ALLOCATOR_HEADER_RESERVE %
BlockAllocator::BLOCK_ALLOCATOR_ALIGNMENT ==
0,
"Block allocator's header reserve must be suitibly aligned");
static_assert(
BlockAllocator::BLOCK_ALLOCATOR_HEADER_RESERVE * 2 ==
BlockAllocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE,
"Block allocator's total header reserve must exactly fit two headers");
// does NOT initialize the block allocator: the caller is responsible
void block_table::_create_internal() {
memset(&_current, 0, sizeof(struct translation));
memset(&_inprogress, 0, sizeof(struct translation));
memset(&_checkpointed, 0, sizeof(struct translation));
memset(&_mutex, 0, sizeof(_mutex));
_bt_block_allocator = new BlockAllocator();
toku_mutex_init(*block_table_mutex_key, &_mutex, nullptr);
nb_mutex_init(*safe_file_size_lock_mutex_key,
*safe_file_size_lock_rwlock_key,
&_safe_file_size_lock);
}
// Fill in the checkpointed translation from buffer, and copy checkpointed to
// current.
// The one read from disk is the last known checkpointed one, so we are keeping
// it in
// place and then setting current (which is never stored on disk) for current
// use.
// The translation_buffer has translation only, we create the rest of the
// block_table.
int block_table::create_from_buffer(
int fd,
DISKOFF location_on_disk, // Location of translation_buffer
DISKOFF size_on_disk,
unsigned char *translation_buffer) {
// Does not initialize the block allocator
_create_internal();
// Deserialize the translation and copy it to current
int r = _translation_deserialize_from_buffer(
&_checkpointed, location_on_disk, size_on_disk, translation_buffer);
if (r != 0) {
return r;
}
_copy_translation(&_current, &_checkpointed, TRANSLATION_CURRENT);
// Determine the file size
int64_t file_size = 0;
r = toku_os_get_file_size(fd, &file_size);
lazy_assert_zero(r);
invariant(file_size >= 0);
_safe_file_size = file_size;
// Gather the non-empty translations and use them to create the block
// allocator
toku::scoped_malloc pairs_buf(_checkpointed.smallest_never_used_blocknum.b *
sizeof(struct BlockAllocator::BlockPair));
struct BlockAllocator::BlockPair *CAST_FROM_VOIDP(pairs, pairs_buf.get());
uint64_t n_pairs = 0;
for (int64_t i = 0; i < _checkpointed.smallest_never_used_blocknum.b; i++) {
struct block_translation_pair pair = _checkpointed.block_translation[i];
if (pair.size > 0) {
invariant(pair.u.diskoff != diskoff_unused);
pairs[n_pairs++] =
BlockAllocator::BlockPair(pair.u.diskoff, pair.size);
}
}
_bt_block_allocator->CreateFromBlockPairs(
BlockAllocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE,
BlockAllocator::BLOCK_ALLOCATOR_ALIGNMENT,
pairs,
n_pairs);
return 0;
}
void block_table::create() {
// Does not initialize the block allocator
_create_internal();
_checkpointed.type = TRANSLATION_CHECKPOINTED;
_checkpointed.smallest_never_used_blocknum =
make_blocknum(RESERVED_BLOCKNUMS);
_checkpointed.length_of_array =
_checkpointed.smallest_never_used_blocknum.b;
_checkpointed.blocknum_freelist_head = freelist_null;
XMALLOC_N(_checkpointed.length_of_array, _checkpointed.block_translation);
for (int64_t i = 0; i < _checkpointed.length_of_array; i++) {
_checkpointed.block_translation[i].size = 0;
_checkpointed.block_translation[i].u.diskoff = diskoff_unused;
}
// we just created a default checkpointed, now copy it to current.
_copy_translation(&_current, &_checkpointed, TRANSLATION_CURRENT);
// Create an empty block allocator.
_bt_block_allocator->Create(
BlockAllocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE,
BlockAllocator::BLOCK_ALLOCATOR_ALIGNMENT);
}
// TODO: Refactor with FT-303
static void ft_set_dirty(FT ft, bool for_checkpoint) {
invariant(ft->h->type == FT_CURRENT);
if (for_checkpoint) {
invariant(ft->checkpoint_header->type == FT_CHECKPOINT_INPROGRESS);
ft->checkpoint_header->dirty = 1;
} else {
ft->h->dirty = 1;
}
}
void block_table::_maybe_truncate_file(int fd, uint64_t size_needed_before) {
toku_mutex_assert_locked(&_mutex);
uint64_t new_size_needed = _bt_block_allocator->AllocatedLimit();
// Save a call to toku_os_get_file_size (kernel call) if unlikely to be
// useful.
if (new_size_needed < size_needed_before &&
new_size_needed < _safe_file_size) {
nb_mutex_lock(&_safe_file_size_lock, &_mutex);
// Must hold _safe_file_size_lock to change _safe_file_size.
if (new_size_needed < _safe_file_size) {
int64_t safe_file_size_before = _safe_file_size;
// Not safe to use the 'to-be-truncated' portion until truncate is
// done.
_safe_file_size = new_size_needed;
_mutex_unlock();
uint64_t size_after;
toku_maybe_truncate_file(
fd, new_size_needed, safe_file_size_before, &size_after);
_mutex_lock();
_safe_file_size = size_after;
}
nb_mutex_unlock(&_safe_file_size_lock);
}
}
void block_table::maybe_truncate_file_on_open(int fd) {
_mutex_lock();
_maybe_truncate_file(fd, _safe_file_size);
_mutex_unlock();
}
void block_table::_copy_translation(struct translation *dst,
struct translation *src,
enum translation_type newtype) {
// We intend to malloc a fresh block, so the incoming translation should be
// empty
invariant_null(dst->block_translation);
invariant(src->length_of_array >= src->smallest_never_used_blocknum.b);
invariant(newtype == TRANSLATION_DEBUG ||
(src->type == TRANSLATION_CURRENT &&
newtype == TRANSLATION_INPROGRESS) ||
(src->type == TRANSLATION_CHECKPOINTED &&
newtype == TRANSLATION_CURRENT));
dst->type = newtype;
dst->smallest_never_used_blocknum = src->smallest_never_used_blocknum;
dst->blocknum_freelist_head = src->blocknum_freelist_head;
// destination btt is of fixed size. Allocate + memcpy the exact length
// necessary.
dst->length_of_array = dst->smallest_never_used_blocknum.b;
XMALLOC_N(dst->length_of_array, dst->block_translation);
memcpy(dst->block_translation,
src->block_translation,
dst->length_of_array * sizeof(*dst->block_translation));
// New version of btt is not yet stored on disk.
dst->block_translation[RESERVED_BLOCKNUM_TRANSLATION].size = 0;
dst->block_translation[RESERVED_BLOCKNUM_TRANSLATION].u.diskoff =
diskoff_unused;
}
int64_t block_table::get_blocks_in_use_unlocked() {
BLOCKNUM b;
struct translation *t = &_current;
int64_t num_blocks = 0;
{
// Reserved blocknums do not get upgraded; They are part of the header.
for (b.b = RESERVED_BLOCKNUMS; b.b < t->smallest_never_used_blocknum.b;
b.b++) {
if (t->block_translation[b.b].size != size_is_free) {
num_blocks++;
}
}
}
return num_blocks;
}
void block_table::_maybe_optimize_translation(struct translation *t) {
// Reduce 'smallest_never_used_blocknum.b' (completely free blocknums
// instead of just
// on a free list. Doing so requires us to regenerate the free list.
// This is O(n) work, so do it only if you're already doing that.
BLOCKNUM b;
paranoid_invariant(t->smallest_never_used_blocknum.b >= RESERVED_BLOCKNUMS);
// Calculate how large the free suffix is.
int64_t freed;
{
for (b.b = t->smallest_never_used_blocknum.b; b.b > RESERVED_BLOCKNUMS;
b.b--) {
if (t->block_translation[b.b - 1].size != size_is_free) {
break;
}
}
freed = t->smallest_never_used_blocknum.b - b.b;
}
if (freed > 0) {
t->smallest_never_used_blocknum.b = b.b;
if (t->length_of_array / 4 > t->smallest_never_used_blocknum.b) {
// We're using more memory than necessary to represent this now.
// Reduce.
uint64_t new_length = t->smallest_never_used_blocknum.b * 2;
XREALLOC_N(new_length, t->block_translation);
t->length_of_array = new_length;
// No need to zero anything out.
}
// Regenerate free list.
t->blocknum_freelist_head.b = freelist_null.b;
for (b.b = RESERVED_BLOCKNUMS; b.b < t->smallest_never_used_blocknum.b;
b.b++) {
if (t->block_translation[b.b].size == size_is_free) {
t->block_translation[b.b].u.next_free_blocknum =
t->blocknum_freelist_head;
t->blocknum_freelist_head = b;
}
}
}
}
// block table must be locked by caller of this function
void block_table::note_start_checkpoint_unlocked() {
toku_mutex_assert_locked(&_mutex);
// We're going to do O(n) work to copy the translation, so we
// can afford to do O(n) work by optimizing the translation
_maybe_optimize_translation(&_current);
// Copy current translation to inprogress translation.
_copy_translation(&_inprogress, &_current, TRANSLATION_INPROGRESS);
_checkpoint_skipped = false;
}
void block_table::note_skipped_checkpoint() {
// Purpose, alert block translation that the checkpoint was skipped, e.x.
// for a non-dirty header
_mutex_lock();
paranoid_invariant_notnull(_inprogress.block_translation);
_checkpoint_skipped = true;
_mutex_unlock();
}
// Purpose: free any disk space used by previous checkpoint that isn't in use by
// either
// - current state
// - in-progress checkpoint
// capture inprogress as new checkpointed.
// For each entry in checkpointBTT
// if offset does not match offset in inprogress
// assert offset does not match offset in current
// free (offset,len) from checkpoint
// move inprogress to checkpoint (resetting type)
// inprogress = NULL
void block_table::note_end_checkpoint(int fd) {
// Free unused blocks
_mutex_lock();
uint64_t allocated_limit_at_start = _bt_block_allocator->AllocatedLimit();
paranoid_invariant_notnull(_inprogress.block_translation);
if (_checkpoint_skipped) {
toku_free(_inprogress.block_translation);
memset(&_inprogress, 0, sizeof(_inprogress));
goto end;
}
// Make certain inprogress was allocated space on disk
invariant(
_inprogress.block_translation[RESERVED_BLOCKNUM_TRANSLATION].size > 0);
invariant(
_inprogress.block_translation[RESERVED_BLOCKNUM_TRANSLATION].u.diskoff >
0);
{
struct translation *t = &_checkpointed;
for (int64_t i = 0; i < t->length_of_array; i++) {
struct block_translation_pair *pair = &t->block_translation[i];
if (pair->size > 0 &&
!_translation_prevents_freeing(
&_inprogress, make_blocknum(i), pair)) {
invariant(!_translation_prevents_freeing(
&_current, make_blocknum(i), pair));
_bt_block_allocator->FreeBlock(pair->u.diskoff, pair->size);
}
}
toku_free(_checkpointed.block_translation);
_checkpointed = _inprogress;
_checkpointed.type = TRANSLATION_CHECKPOINTED;
memset(&_inprogress, 0, sizeof(_inprogress));
_maybe_truncate_file(fd, allocated_limit_at_start);
}
end:
_mutex_unlock();
}
bool block_table::_is_valid_blocknum(struct translation *t, BLOCKNUM b) {
invariant(t->length_of_array >= t->smallest_never_used_blocknum.b);
return b.b >= 0 && b.b < t->smallest_never_used_blocknum.b;
}
void block_table::_verify_valid_blocknum(struct translation *UU(t),
BLOCKNUM UU(b)) {
invariant(_is_valid_blocknum(t, b));
}
bool block_table::_is_valid_freeable_blocknum(struct translation *t,
BLOCKNUM b) {
invariant(t->length_of_array >= t->smallest_never_used_blocknum.b);
return b.b >= RESERVED_BLOCKNUMS && b.b < t->smallest_never_used_blocknum.b;
}
// should be freeable
void block_table::_verify_valid_freeable_blocknum(struct translation *UU(t),
BLOCKNUM UU(b)) {
invariant(_is_valid_freeable_blocknum(t, b));
}
// Also used only in ft-serialize-test.
void block_table::block_free(uint64_t offset, uint64_t size) {
_mutex_lock();
_bt_block_allocator->FreeBlock(offset, size);
_mutex_unlock();
}
int64_t block_table::_calculate_size_on_disk(struct translation *t) {
return 8 + // smallest_never_used_blocknum
8 + // blocknum_freelist_head
t->smallest_never_used_blocknum.b * 16 + // Array
4; // 4 for checksum
}
// We cannot free the disk space allocated to this blocknum if it is still in
// use by the given translation table.
bool block_table::_translation_prevents_freeing(
struct translation *t,
BLOCKNUM b,
struct block_translation_pair *old_pair) {
return t->block_translation && b.b < t->smallest_never_used_blocknum.b &&
old_pair->u.diskoff == t->block_translation[b.b].u.diskoff;
}
void block_table::_realloc_on_disk_internal(BLOCKNUM b,
DISKOFF size,
DISKOFF *offset,
FT ft,
bool for_checkpoint) {
toku_mutex_assert_locked(&_mutex);
ft_set_dirty(ft, for_checkpoint);
struct translation *t = &_current;
struct block_translation_pair old_pair = t->block_translation[b.b];
// Free the old block if it is not still in use by the checkpoint in
// progress or the previous checkpoint
bool cannot_free =
(!for_checkpoint &&
_translation_prevents_freeing(&_inprogress, b, &old_pair)) ||
_translation_prevents_freeing(&_checkpointed, b, &old_pair);
if (!cannot_free && old_pair.u.diskoff != diskoff_unused) {
_bt_block_allocator->FreeBlock(old_pair.u.diskoff, old_pair.size);
}
uint64_t allocator_offset = diskoff_unused;
t->block_translation[b.b].size = size;
if (size > 0) {
// Allocate a new block if the size is greater than 0,
// if the size is just 0, offset will be set to diskoff_unused
_bt_block_allocator->AllocBlock(size, &allocator_offset);
}
t->block_translation[b.b].u.diskoff = allocator_offset;
*offset = allocator_offset;
// Update inprogress btt if appropriate (if called because Pending bit is
// set).
if (for_checkpoint) {
paranoid_invariant(b.b < _inprogress.length_of_array);
_inprogress.block_translation[b.b] = t->block_translation[b.b];
}
}
void block_table::_ensure_safe_write_unlocked(int fd,
DISKOFF block_size,
DISKOFF block_offset) {
// Requires: holding _mutex
uint64_t size_needed = block_size + block_offset;
if (size_needed > _safe_file_size) {
// Must hold _safe_file_size_lock to change _safe_file_size.
nb_mutex_lock(&_safe_file_size_lock, &_mutex);
if (size_needed > _safe_file_size) {
_mutex_unlock();
int64_t size_after;
toku_maybe_preallocate_in_file(
fd, size_needed, _safe_file_size, &size_after);
_mutex_lock();
_safe_file_size = size_after;
}
nb_mutex_unlock(&_safe_file_size_lock);
}
}
void block_table::realloc_on_disk(BLOCKNUM b,
DISKOFF size,
DISKOFF *offset,
FT ft,
int fd,
bool for_checkpoint) {
_mutex_lock();
struct translation *t = &_current;
_verify_valid_freeable_blocknum(t, b);
_realloc_on_disk_internal(b, size, offset, ft, for_checkpoint);
_ensure_safe_write_unlocked(fd, size, *offset);
_mutex_unlock();
}
bool block_table::_pair_is_unallocated(struct block_translation_pair *pair) {
return pair->size == 0 && pair->u.diskoff == diskoff_unused;
}
// Effect: figure out where to put the inprogress btt on disk, allocate space
// for it there.
// The space must be 512-byte aligned (both the starting address and the
// size).
// As a result, the allcoated space may be a little bit bigger (up to the next
// 512-byte boundary) than the actual btt.
void block_table::_alloc_inprogress_translation_on_disk_unlocked() {
toku_mutex_assert_locked(&_mutex);
struct translation *t = &_inprogress;
paranoid_invariant_notnull(t->block_translation);
BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_TRANSLATION);
// Each inprogress is allocated only once
paranoid_invariant(_pair_is_unallocated(&t->block_translation[b.b]));
// Allocate a new block
int64_t size = _calculate_size_on_disk(t);
uint64_t offset;
_bt_block_allocator->AllocBlock(size, &offset);
t->block_translation[b.b].u.diskoff = offset;
t->block_translation[b.b].size = size;
}
// Effect: Serializes the blocktable to a wbuf (which starts uninitialized)
// A clean shutdown runs checkpoint start so that current and inprogress are
// copies.
// The resulting wbuf buffer is guaranteed to be be 512-byte aligned and the
// total length is a multiple of 512 (so we pad with zeros at the end if
// needd)
// The address is guaranteed to be 512-byte aligned, but the size is not
// guaranteed.
// It *is* guaranteed that we can read up to the next 512-byte boundary,
// however
void block_table::serialize_translation_to_wbuf(int fd,
struct wbuf *w,
int64_t *address,
int64_t *size) {
_mutex_lock();
struct translation *t = &_inprogress;
BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_TRANSLATION);
_alloc_inprogress_translation_on_disk_unlocked(); // The allocated block
// must be 512-byte
// aligned to make
// O_DIRECT happy.
uint64_t size_translation = _calculate_size_on_disk(t);
uint64_t size_aligned = roundup_to_multiple(512, size_translation);
invariant((int64_t)size_translation == t->block_translation[b.b].size);
{
// Init wbuf
if (0)
printf(
"%s:%d writing translation table of size_translation %" PRIu64
" at %" PRId64 "\n",
__FILE__,
__LINE__,
size_translation,
t->block_translation[b.b].u.diskoff);
char *XMALLOC_N_ALIGNED(512, size_aligned, buf);
for (uint64_t i = size_translation; i < size_aligned; i++)
buf[i] = 0; // fill in the end of the buffer with zeros.
wbuf_init(w, buf, size_aligned);
}
wbuf_BLOCKNUM(w, t->smallest_never_used_blocknum);
wbuf_BLOCKNUM(w, t->blocknum_freelist_head);
int64_t i;
for (i = 0; i < t->smallest_never_used_blocknum.b; i++) {
if (0)
printf("%s:%d %" PRId64 ",%" PRId64 "\n",
__FILE__,
__LINE__,
t->block_translation[i].u.diskoff,
t->block_translation[i].size);
wbuf_DISKOFF(w, t->block_translation[i].u.diskoff);
wbuf_DISKOFF(w, t->block_translation[i].size);
}
uint32_t checksum = toku_x1764_finish(&w->checksum);
wbuf_int(w, checksum);
*address = t->block_translation[b.b].u.diskoff;
*size = size_translation;
invariant((*address) % 512 == 0);
_ensure_safe_write_unlocked(fd, size_aligned, *address);
_mutex_unlock();
}
// Perhaps rename: purpose is get disk address of a block, given its blocknum
// (blockid?)
void block_table::_translate_blocknum_to_offset_size_unlocked(BLOCKNUM b,
DISKOFF *offset,
DISKOFF *size) {
struct translation *t = &_current;
_verify_valid_blocknum(t, b);
if (offset) {
*offset = t->block_translation[b.b].u.diskoff;
}
if (size) {
*size = t->block_translation[b.b].size;
}
}
// Perhaps rename: purpose is get disk address of a block, given its blocknum
// (blockid?)
void block_table::translate_blocknum_to_offset_size(BLOCKNUM b,
DISKOFF *offset,
DISKOFF *size) {
_mutex_lock();
_translate_blocknum_to_offset_size_unlocked(b, offset, size);
_mutex_unlock();
}
// Only called by toku_allocate_blocknum
// Effect: expand the array to maintain size invariant
// given that one more never-used blocknum will soon be used.
void block_table::_maybe_expand_translation(struct translation *t) {
if (t->length_of_array <= t->smallest_never_used_blocknum.b) {
// expansion is necessary
uint64_t new_length = t->smallest_never_used_blocknum.b * 2;
XREALLOC_N(new_length, t->block_translation);
uint64_t i;
for (i = t->length_of_array; i < new_length; i++) {
t->block_translation[i].u.next_free_blocknum = freelist_null;
t->block_translation[i].size = size_is_free;
}
t->length_of_array = new_length;
}
}
void block_table::_allocate_blocknum_unlocked(BLOCKNUM *res, FT ft) {
toku_mutex_assert_locked(&_mutex);
BLOCKNUM result;
struct translation *t = &_current;
if (t->blocknum_freelist_head.b == freelist_null.b) {
// no previously used blocknums are available
// use a never used blocknum
_maybe_expand_translation(
t); // Ensure a never used blocknums is available
result = t->smallest_never_used_blocknum;
t->smallest_never_used_blocknum.b++;
} else { // reuse a previously used blocknum
result = t->blocknum_freelist_head;
BLOCKNUM next = t->block_translation[result.b].u.next_free_blocknum;
t->blocknum_freelist_head = next;
}
// Verify the blocknum is free
paranoid_invariant(t->block_translation[result.b].size == size_is_free);
// blocknum is not free anymore
t->block_translation[result.b].u.diskoff = diskoff_unused;
t->block_translation[result.b].size = 0;
_verify_valid_freeable_blocknum(t, result);
*res = result;
ft_set_dirty(ft, false);
}
void block_table::allocate_blocknum(BLOCKNUM *res, FT ft) {
_mutex_lock();
_allocate_blocknum_unlocked(res, ft);
_mutex_unlock();
}
void block_table::_free_blocknum_in_translation(struct translation *t,
BLOCKNUM b) {
_verify_valid_freeable_blocknum(t, b);
paranoid_invariant(t->block_translation[b.b].size != size_is_free);
t->block_translation[b.b].size = size_is_free;
t->block_translation[b.b].u.next_free_blocknum = t->blocknum_freelist_head;
t->blocknum_freelist_head = b;
}
// Effect: Free a blocknum.
// If the blocknum holds the only reference to a block on disk, free that block
void block_table::_free_blocknum_unlocked(BLOCKNUM *bp,
FT ft,
bool for_checkpoint) {
toku_mutex_assert_locked(&_mutex);
BLOCKNUM b = *bp;
bp->b = 0; // Remove caller's reference.
struct block_translation_pair old_pair = _current.block_translation[b.b];
_free_blocknum_in_translation(&_current, b);
if (for_checkpoint) {
paranoid_invariant(ft->checkpoint_header->type ==
FT_CHECKPOINT_INPROGRESS);
_free_blocknum_in_translation(&_inprogress, b);
}
// If the size is 0, no disk block has ever been assigned to this blocknum.
if (old_pair.size > 0) {
// Free the old block if it is not still in use by the checkpoint in
// progress or the previous checkpoint
bool cannot_free =
_translation_prevents_freeing(&_inprogress, b, &old_pair) ||
_translation_prevents_freeing(&_checkpointed, b, &old_pair);
if (!cannot_free) {
_bt_block_allocator->FreeBlock(old_pair.u.diskoff, old_pair.size);
}
} else {
paranoid_invariant(old_pair.size == 0);
paranoid_invariant(old_pair.u.diskoff == diskoff_unused);
}
ft_set_dirty(ft, for_checkpoint);
}
void block_table::free_blocknum(BLOCKNUM *bp, FT ft, bool for_checkpoint) {
_mutex_lock();
_free_blocknum_unlocked(bp, ft, for_checkpoint);
_mutex_unlock();
}
// Verify there are no free blocks.
void block_table::verify_no_free_blocknums() {
invariant(_current.blocknum_freelist_head.b == freelist_null.b);
}
// Frees blocknums that have a size of 0 and unused diskoff
// Currently used for eliminating unused cached rollback log nodes
void block_table::free_unused_blocknums(BLOCKNUM root) {
_mutex_lock();
int64_t smallest = _current.smallest_never_used_blocknum.b;
for (int64_t i = RESERVED_BLOCKNUMS; i < smallest; i++) {
if (i == root.b) {
continue;
}
BLOCKNUM b = make_blocknum(i);
if (_current.block_translation[b.b].size == 0) {
invariant(_current.block_translation[b.b].u.diskoff ==
diskoff_unused);
_free_blocknum_in_translation(&_current, b);
}
}
_mutex_unlock();
}
bool block_table::_no_data_blocks_except_root(BLOCKNUM root) {
bool ok = true;
_mutex_lock();
int64_t smallest = _current.smallest_never_used_blocknum.b;
if (root.b < RESERVED_BLOCKNUMS) {
ok = false;
goto cleanup;
}
for (int64_t i = RESERVED_BLOCKNUMS; i < smallest; i++) {
if (i == root.b) {
continue;
}
BLOCKNUM b = make_blocknum(i);
if (_current.block_translation[b.b].size != size_is_free) {
ok = false;
goto cleanup;
}
}
cleanup:
_mutex_unlock();
return ok;
}
// Verify there are no data blocks except root.
// TODO(leif): This actually takes a lock, but I don't want to fix all the
// callers right now.
void block_table::verify_no_data_blocks_except_root(BLOCKNUM UU(root)) {
paranoid_invariant(_no_data_blocks_except_root(root));
}
bool block_table::_blocknum_allocated(BLOCKNUM b) {
_mutex_lock();
struct translation *t = &_current;
_verify_valid_blocknum(t, b);
bool ok = t->block_translation[b.b].size != size_is_free;
_mutex_unlock();
return ok;
}
// Verify a blocknum is currently allocated.
void block_table::verify_blocknum_allocated(BLOCKNUM UU(b)) {
paranoid_invariant(_blocknum_allocated(b));
}
// Only used by toku_dump_translation table (debug info)
void block_table::_dump_translation_internal(FILE *f, struct translation *t) {
if (t->block_translation) {
BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_TRANSLATION);
fprintf(f, " length_of_array[%" PRId64 "]", t->length_of_array);
fprintf(f,
" smallest_never_used_blocknum[%" PRId64 "]",
t->smallest_never_used_blocknum.b);
fprintf(f,
" blocknum_free_list_head[%" PRId64 "]",
t->blocknum_freelist_head.b);
fprintf(
f, " size_on_disk[%" PRId64 "]", t->block_translation[b.b].size);
fprintf(f,
" location_on_disk[%" PRId64 "]\n",
t->block_translation[b.b].u.diskoff);
int64_t i;
for (i = 0; i < t->length_of_array; i++) {
fprintf(f,
" %" PRId64 ": %" PRId64 " %" PRId64 "\n",
i,
t->block_translation[i].u.diskoff,
t->block_translation[i].size);
}
fprintf(f, "\n");
} else {
fprintf(f, " does not exist\n");
}
}
// Only used by toku_ft_dump which is only for debugging purposes
// "pretty" just means we use tabs so we can parse output easier later
void block_table::dump_translation_table_pretty(FILE *f) {
_mutex_lock();
struct translation *t = &_checkpointed;
invariant(t->block_translation != nullptr);
for (int64_t i = 0; i < t->length_of_array; ++i) {
fprintf(f,
"%" PRId64 "\t%" PRId64 "\t%" PRId64 "\n",
i,
t->block_translation[i].u.diskoff,
t->block_translation[i].size);
}
_mutex_unlock();
}
// Only used by toku_ft_dump which is only for debugging purposes
void block_table::dump_translation_table(FILE *f) {
_mutex_lock();
fprintf(f, "Current block translation:");
_dump_translation_internal(f, &_current);
fprintf(f, "Checkpoint in progress block translation:");
_dump_translation_internal(f, &_inprogress);
fprintf(f, "Checkpointed block translation:");
_dump_translation_internal(f, &_checkpointed);
_mutex_unlock();
}
// Only used by ftdump
void block_table::blocknum_dump_translation(BLOCKNUM b) {
_mutex_lock();
struct translation *t = &_current;
if (b.b < t->length_of_array) {
struct block_translation_pair *bx = &t->block_translation[b.b];
printf("%" PRId64 ": %" PRId64 " %" PRId64 "\n",
b.b,
bx->u.diskoff,
bx->size);
}
_mutex_unlock();
}
// Must not call this function when anything else is using the blocktable.
// No one may use the blocktable afterwards.
void block_table::destroy(void) {
// TODO: translation.destroy();
toku_free(_current.block_translation);
toku_free(_inprogress.block_translation);
toku_free(_checkpointed.block_translation);
_bt_block_allocator->Destroy();
delete _bt_block_allocator;
toku_mutex_destroy(&_mutex);
nb_mutex_destroy(&_safe_file_size_lock);
}
int block_table::_translation_deserialize_from_buffer(
struct translation *t,
DISKOFF location_on_disk,
uint64_t size_on_disk,
// out: buffer with serialized translation
unsigned char *translation_buffer) {
int r = 0;
invariant(location_on_disk != 0);
t->type = TRANSLATION_CHECKPOINTED;
// check the checksum
uint32_t x1764 = toku_x1764_memory(translation_buffer, size_on_disk - 4);
uint64_t offset = size_on_disk - 4;
uint32_t stored_x1764 = toku_dtoh32(*(int *)(translation_buffer + offset));
if (x1764 != stored_x1764) {
fprintf(stderr,
"Translation table checksum failure: calc=0x%08x read=0x%08x\n",
x1764,
stored_x1764);
r = TOKUDB_BAD_CHECKSUM;
goto exit;
}
struct rbuf rb;
rb.buf = translation_buffer;
rb.ndone = 0;
rb.size = size_on_disk - 4; // 4==checksum
t->smallest_never_used_blocknum = rbuf_blocknum(&rb);
t->length_of_array = t->smallest_never_used_blocknum.b;
invariant(t->smallest_never_used_blocknum.b >= RESERVED_BLOCKNUMS);
t->blocknum_freelist_head = rbuf_blocknum(&rb);
XMALLOC_N(t->length_of_array, t->block_translation);
for (int64_t i = 0; i < t->length_of_array; i++) {
t->block_translation[i].u.diskoff = rbuf_DISKOFF(&rb);
t->block_translation[i].size = rbuf_DISKOFF(&rb);
}
invariant(_calculate_size_on_disk(t) == (int64_t)size_on_disk);
invariant(t->block_translation[RESERVED_BLOCKNUM_TRANSLATION].size ==
(int64_t)size_on_disk);
invariant(t->block_translation[RESERVED_BLOCKNUM_TRANSLATION].u.diskoff ==
location_on_disk);
exit:
return r;
}
int block_table::iterate(enum translation_type type,
BLOCKTABLE_CALLBACK f,
void *extra,
bool data_only,
bool used_only) {
struct translation *src;
int r = 0;
switch (type) {
case TRANSLATION_CURRENT:
src = &_current;
break;
case TRANSLATION_INPROGRESS:
src = &_inprogress;
break;
case TRANSLATION_CHECKPOINTED:
src = &_checkpointed;
break;
default:
r = EINVAL;
}
struct translation fakecurrent;
memset(&fakecurrent, 0, sizeof(struct translation));
struct translation *t = &fakecurrent;
if (r == 0) {
_mutex_lock();
_copy_translation(t, src, TRANSLATION_DEBUG);
t->block_translation[RESERVED_BLOCKNUM_TRANSLATION] =
src->block_translation[RESERVED_BLOCKNUM_TRANSLATION];
_mutex_unlock();
int64_t i;
for (i = 0; i < t->smallest_never_used_blocknum.b; i++) {
struct block_translation_pair pair = t->block_translation[i];
if (data_only && i < RESERVED_BLOCKNUMS)
continue;
if (used_only && pair.size <= 0)
continue;
r = f(make_blocknum(i), pair.size, pair.u.diskoff, extra);
if (r != 0)
break;
}
toku_free(t->block_translation);
}
return r;
}
typedef struct {
int64_t used_space;
int64_t total_space;
} frag_extra;
static int frag_helper(BLOCKNUM UU(b),
int64_t size,
int64_t address,
void *extra) {
frag_extra *info = (frag_extra *)extra;
if (size + address > info->total_space)
info->total_space = size + address;
info->used_space += size;
return 0;
}
void block_table::internal_fragmentation(int64_t *total_sizep,
int64_t *used_sizep) {
frag_extra info = {0, 0};
int r = iterate(TRANSLATION_CHECKPOINTED, frag_helper, &info, false, true);
invariant_zero(r);
if (total_sizep)
*total_sizep = info.total_space;
if (used_sizep)
*used_sizep = info.used_space;
}
void block_table::_realloc_descriptor_on_disk_unlocked(DISKOFF size,
DISKOFF *offset,
FT ft) {
toku_mutex_assert_locked(&_mutex);
BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_DESCRIPTOR);
_realloc_on_disk_internal(b, size, offset, ft, false);
}
void block_table::realloc_descriptor_on_disk(DISKOFF size,
DISKOFF *offset,
FT ft,
int fd) {
_mutex_lock();
_realloc_descriptor_on_disk_unlocked(size, offset, ft);
_ensure_safe_write_unlocked(fd, size, *offset);
_mutex_unlock();
}
void block_table::get_descriptor_offset_size(DISKOFF *offset, DISKOFF *size) {
_mutex_lock();
BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_DESCRIPTOR);
_translate_blocknum_to_offset_size_unlocked(b, offset, size);
_mutex_unlock();
}
void block_table::get_fragmentation_unlocked(TOKU_DB_FRAGMENTATION report) {
// Requires: blocktable lock is held.
// Requires: report->file_size_bytes is already filled in.
// Count the headers.
report->data_bytes = BlockAllocator::BLOCK_ALLOCATOR_HEADER_RESERVE;
report->data_blocks = 1;
report->checkpoint_bytes_additional =
BlockAllocator::BLOCK_ALLOCATOR_HEADER_RESERVE;
report->checkpoint_blocks_additional = 1;
struct translation *current = &_current;
for (int64_t i = 0; i < current->length_of_array; i++) {
struct block_translation_pair *pair = ¤t->block_translation[i];
if (pair->size > 0) {
report->data_bytes += pair->size;
report->data_blocks++;
}
}
struct translation *checkpointed = &_checkpointed;
for (int64_t i = 0; i < checkpointed->length_of_array; i++) {
struct block_translation_pair *pair =
&checkpointed->block_translation[i];
if (pair->size > 0 &&
!(i < current->length_of_array &&
current->block_translation[i].size > 0 &&
current->block_translation[i].u.diskoff == pair->u.diskoff)) {
report->checkpoint_bytes_additional += pair->size;
report->checkpoint_blocks_additional++;
}
}
struct translation *inprogress = &_inprogress;
for (int64_t i = 0; i < inprogress->length_of_array; i++) {
struct block_translation_pair *pair = &inprogress->block_translation[i];
if (pair->size > 0 &&
!(i < current->length_of_array &&
current->block_translation[i].size > 0 &&
current->block_translation[i].u.diskoff == pair->u.diskoff) &&
!(i < checkpointed->length_of_array &&
checkpointed->block_translation[i].size > 0 &&
checkpointed->block_translation[i].u.diskoff ==
pair->u.diskoff)) {
report->checkpoint_bytes_additional += pair->size;
report->checkpoint_blocks_additional++;
}
}
_bt_block_allocator->UnusedStatistics(report);
}
void block_table::get_info64(struct ftinfo64 *s) {
_mutex_lock();
struct translation *current = &_current;
s->num_blocks_allocated = current->length_of_array;
s->num_blocks_in_use = 0;
s->size_allocated = 0;
s->size_in_use = 0;
for (int64_t i = 0; i < current->length_of_array; ++i) {
struct block_translation_pair *block = ¤t->block_translation[i];
if (block->size != size_is_free) {
++s->num_blocks_in_use;
s->size_in_use += block->size;
if (block->u.diskoff != diskoff_unused) {
uint64_t limit = block->u.diskoff + block->size;
if (limit > s->size_allocated) {
s->size_allocated = limit;
}
}
}
}
_mutex_unlock();
}
int block_table::iterate_translation_tables(
uint64_t checkpoint_count,
int (*iter)(uint64_t checkpoint_count,
int64_t total_num_rows,
int64_t blocknum,
int64_t diskoff,
int64_t size,
void *extra),
void *iter_extra) {
int error = 0;
_mutex_lock();
int64_t total_num_rows =
_current.length_of_array + _checkpointed.length_of_array;
for (int64_t i = 0; error == 0 && i < _current.length_of_array; ++i) {
struct block_translation_pair *block = &_current.block_translation[i];
error = iter(checkpoint_count,
total_num_rows,
i,
block->u.diskoff,
block->size,
iter_extra);
}
for (int64_t i = 0; error == 0 && i < _checkpointed.length_of_array; ++i) {
struct block_translation_pair *block =
&_checkpointed.block_translation[i];
error = iter(checkpoint_count - 1,
total_num_rows,
i,
block->u.diskoff,
block->size,
iter_extra);
}
_mutex_unlock();
return error;
}
|