summaryrefslogtreecommitdiff
path: root/crc32c.c
diff options
context:
space:
mode:
authordormando <dormando@rydia.net>2020-04-24 15:19:44 -0700
committerdormando <dormando@rydia.net>2020-04-30 17:34:10 -0700
commit97e8ebd82fc7ac142a30bd0740cd60bc37b8c8bc (patch)
tree42bb6eb9e9a1d48d2acfe6a35352f738c5099752 /crc32c.c
parentd9abf57787e9a0ae60161bbae6117056c49a5f11 (diff)
downloadmemcached-97e8ebd82fc7ac142a30bd0740cd60bc37b8c8bc.tar.gz
Pull in BE-compatible crc32c
with my qemu-mips test the CRC fails and the items are never fetched, this updated crc32c seems to fix that.
Diffstat (limited to 'crc32c.c')
-rw-r--r--crc32c.c396
1 files changed, 203 insertions, 193 deletions
diff --git a/crc32c.c b/crc32c.c
index a3c526e..4d413bf 100644
--- a/crc32c.c
+++ b/crc32c.c
@@ -1,6 +1,6 @@
/* crc32c.c -- compute CRC-32C using the Intel crc32 instruction
- * Copyright (C) 2013 Mark Adler
- * Version 1.1 1 Aug 2013 Mark Adler
+ * Copyright (C) 2013, 2015 Mark Adler
+ * Version 1.3 31 Dec 2015 Mark Adler
*/
/*
@@ -31,153 +31,33 @@
/* Version history:
1.0 10 Feb 2013 First version
1.1 1 Aug 2013 Correct comments on why three crc instructions in parallel
+ 1.2 1 Nov 2015 Add const qualifier to avoid compiler warning
+ Load entire input into memory (test code)
+ Argument gives number of times to repeat (test code)
+ Argument < 0 forces software implementation (test code)
+ 1.3 31 Dec 2015 Check for Intel architecture using compiler macro
+ Support big-endian processors in software calculation
+ Add header for external use
*/
-/* This version has been modified by dormando for inclusion in memcached */
-
-#include <stdio.h>
-#include <stdlib.h>
-#include <stdint.h>
-#include <unistd.h>
#include <pthread.h>
-#include "config.h"
-#if defined(__linux__) && defined(__aarch64__)
-#include <sys/auxv.h>
-#endif
#include "crc32c.h"
-crc_func crc32c;
-
/* CRC-32C (iSCSI) polynomial in reversed bit order. */
#define POLY 0x82f63b78
-/* Table for a quadword-at-a-time software crc. */
-static pthread_once_t crc32c_once_sw = PTHREAD_ONCE_INIT;
-static uint32_t crc32c_table[8][256];
-
-/* Construct table for software CRC-32C calculation. */
-static void crc32c_init_sw(void)
-{
- uint32_t n, crc, k;
-
- for (n = 0; n < 256; n++) {
- crc = n;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
- crc32c_table[0][n] = crc;
- }
- for (n = 0; n < 256; n++) {
- crc = crc32c_table[0][n];
- for (k = 1; k < 8; k++) {
- crc = crc32c_table[0][crc & 0xff] ^ (crc >> 8);
- crc32c_table[k][n] = crc;
- }
- }
-}
-
-/* Table-driven software version as a fall-back. This is about 15 times slower
- than using the hardware instructions. This assumes little-endian integers,
- as is the case on Intel processors that the assembler code here is for. */
-static uint32_t crc32c_sw(uint32_t crci, const void *buf, size_t len)
-{
- const unsigned char *next = buf;
- uint64_t crc;
-
- pthread_once(&crc32c_once_sw, crc32c_init_sw);
- crc = crci ^ 0xffffffff;
- while (len && ((uintptr_t)next & 7) != 0) {
- crc = crc32c_table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
- len--;
- }
- while (len >= 8) {
- crc ^= *(uint64_t *)next;
- crc = crc32c_table[7][crc & 0xff] ^
- crc32c_table[6][(crc >> 8) & 0xff] ^
- crc32c_table[5][(crc >> 16) & 0xff] ^
- crc32c_table[4][(crc >> 24) & 0xff] ^
- crc32c_table[3][(crc >> 32) & 0xff] ^
- crc32c_table[2][(crc >> 40) & 0xff] ^
- crc32c_table[1][(crc >> 48) & 0xff] ^
- crc32c_table[0][crc >> 56];
- next += 8;
- len -= 8;
- }
- while (len) {
- crc = crc32c_table[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
- len--;
- }
- return (uint32_t)crc ^ 0xffffffff;
-}
-
-/* Hardware CRC support for aarch64 platform */
-#if defined(__linux__) && defined(__aarch64__) && defined(ARM_CRC32)
-
-#define CRC32CX(crc, value) __asm__("crc32cx %w[c], %w[c], %x[v]":[c]"+r"(crc):[v]"r"(+value))
-#define CRC32CW(crc, value) __asm__("crc32cw %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(+value))
-#define CRC32CH(crc, value) __asm__("crc32ch %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(+value))
-#define CRC32CB(crc, value) __asm__("crc32cb %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(+value))
-
-#ifndef HWCAP_CRC32
-#define HWCAP_CRC32 (1 << 7)
-#endif /* HWCAP for crc32 */
-
-static uint32_t crc32c_hw_aarch64(uint32_t crc, const void* buf, size_t len)
-{
- const uint8_t* p_buf = buf;
- uint64_t crc64bit = crc;
- for (size_t i = 0; i < len / sizeof(uint64_t); i++) {
- CRC32CX(crc64bit, *(uint64_t*) p_buf);
- p_buf += sizeof(uint64_t);
- }
+uint32_t crc32c_sw_little(uint32_t crc, void const *buf, size_t len);
+uint32_t crc32c_sw_big(uint32_t crc, void const *buf, size_t len);
+#ifdef __x86_64__
- uint32_t crc32bit = (uint32_t) crc64bit;
- len &= sizeof(uint64_t) - 1;
- switch (len) {
- case 7:
- CRC32CB(crc32bit, *p_buf++);
- case 6:
- CRC32CH(crc32bit, *(uint16_t*) p_buf);
- p_buf += 2;
- case 4:
- CRC32CW(crc32bit, *(uint32_t*) p_buf);
- break;
- case 3:
- CRC32CB(crc32bit, *p_buf++);
- case 2:
- CRC32CH(crc32bit, *(uint16_t*) p_buf);
- break;
- case 5:
- CRC32CW(crc32bit, *(uint32_t*) p_buf);
- p_buf += 4;
- case 1:
- CRC32CB(crc32bit, *p_buf);
- break;
- case 0:
- break;
- }
-
- return crc32bit;
-}
-#endif
-
-/* Apply if the platform is intel */
-#if defined(__X86_64__)||defined(__x86_64__)||defined(__ia64__)
+/* Hardware CRC-32C for Intel and compatible processors. */
/* Multiply a matrix times a vector over the Galois field of two elements,
GF(2). Each element is a bit in an unsigned integer. mat must have at
least as many entries as the power of two for most significant one bit in
vec. */
-static inline uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec)
-{
- uint32_t sum;
-
- sum = 0;
+static inline uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec) {
+ uint32_t sum = 0;
while (vec) {
if (vec & 1)
sum ^= *mat;
@@ -189,11 +69,8 @@ static inline uint32_t gf2_matrix_times(uint32_t *mat, uint32_t vec)
/* Multiply a matrix by itself over GF(2). Both mat and square must have 32
rows. */
-static inline void gf2_matrix_square(uint32_t *square, uint32_t *mat)
-{
- int n;
-
- for (n = 0; n < 32; n++)
+static inline void gf2_matrix_square(uint32_t *square, uint32_t *mat) {
+ for (unsigned n = 0; n < 32; n++)
square[n] = gf2_matrix_times(mat, mat[n]);
}
@@ -202,16 +79,13 @@ static inline void gf2_matrix_square(uint32_t *square, uint32_t *mat)
largest power of two less than len. The result for len == 0 is the same as
for len == 1. A version of this routine could be easily written for any
len, but that is not needed for this application. */
-static void crc32c_zeros_op(uint32_t *even, size_t len)
-{
- int n;
- uint32_t row;
+static void crc32c_zeros_op(uint32_t *even, size_t len) {
uint32_t odd[32]; /* odd-power-of-two zeros operator */
/* put operator for one zero bit in odd */
odd[0] = POLY; /* CRC-32C polynomial */
- row = 1;
- for (n = 1; n < 32; n++) {
+ uint32_t row = 1;
+ for (unsigned n = 1; n < 32; n++) {
odd[n] = row;
row <<= 1;
}
@@ -235,19 +109,17 @@ static void crc32c_zeros_op(uint32_t *even, size_t len)
} while (len);
/* answer ended up in odd -- copy to even */
- for (n = 0; n < 32; n++)
+ for (unsigned n = 0; n < 32; n++)
even[n] = odd[n];
}
/* Take a length and build four lookup tables for applying the zeros operator
for that length, byte-by-byte on the operand. */
-static void crc32c_zeros(uint32_t zeros[][256], size_t len)
-{
- uint32_t n;
+static void crc32c_zeros(uint32_t zeros[][256], size_t len) {
uint32_t op[32];
crc32c_zeros_op(op, len);
- for (n = 0; n < 256; n++) {
+ for (unsigned n = 0; n < 256; n++) {
zeros[0][n] = gf2_matrix_times(op, n);
zeros[1][n] = gf2_matrix_times(op, n << 8);
zeros[2][n] = gf2_matrix_times(op, n << 16);
@@ -256,8 +128,7 @@ static void crc32c_zeros(uint32_t zeros[][256], size_t len)
}
/* Apply the zeros operator table to crc. */
-static inline uint32_t crc32c_shift(uint32_t zeros[][256], uint32_t crc)
-{
+static inline uint32_t crc32c_shift(uint32_t zeros[][256], uint32_t crc) {
return zeros[0][crc & 0xff] ^ zeros[1][(crc >> 8) & 0xff] ^
zeros[2][(crc >> 16) & 0xff] ^ zeros[3][crc >> 24];
}
@@ -278,27 +149,23 @@ static uint32_t crc32c_long[4][256];
static uint32_t crc32c_short[4][256];
/* Initialize tables for shifting crcs. */
-static void crc32c_init_hw(void)
-{
+static void crc32c_init_hw(void) {
crc32c_zeros(crc32c_long, LONG);
crc32c_zeros(crc32c_short, SHORT);
}
/* Compute CRC-32C using the Intel hardware instruction. */
-static uint32_t crc32c_hw(uint32_t crc, const void *buf, size_t len)
-{
- const unsigned char *next = buf;
- const unsigned char *end;
- uint64_t crc0, crc1, crc2; /* need to be 64 bits for crc32q */
-
+static uint32_t crc32c_hw(uint32_t crc, void const *buf, size_t len) {
/* populate shift tables the first time through */
pthread_once(&crc32c_once_hw, crc32c_init_hw);
/* pre-process the crc */
- crc0 = crc ^ 0xffffffff;
+ crc = ~crc;
+ uint64_t crc0 = crc; /* 64-bits for crc32q instruction */
/* compute the crc for up to seven leading bytes to bring the data pointer
to an eight-byte boundary */
+ unsigned char const *next = buf;
while (len && ((uintptr_t)next & 7) != 0) {
__asm__("crc32b\t" "(%1), %0"
: "=r"(crc0)
@@ -312,9 +179,9 @@ static uint32_t crc32c_hw(uint32_t crc, const void *buf, size_t len)
Westmere, Sandy Bridge, and Ivy Bridge architectures, which have a
throughput of one crc per cycle, but a latency of three cycles */
while (len >= LONG*3) {
- crc1 = 0;
- crc2 = 0;
- end = next + LONG;
+ uint64_t crc1 = 0;
+ uint64_t crc2 = 0;
+ unsigned char const * const end = next + LONG;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" LONGx1 "(%3), %1\n\t"
@@ -332,9 +199,9 @@ static uint32_t crc32c_hw(uint32_t crc, const void *buf, size_t len)
/* do the same thing, but now on SHORT*3 blocks for the remaining data less
than a LONG*3 block */
while (len >= SHORT*3) {
- crc1 = 0;
- crc2 = 0;
- end = next + SHORT;
+ uint64_t crc1 = 0;
+ uint64_t crc2 = 0;
+ unsigned char const * const end = next + SHORT;
do {
__asm__("crc32q\t" "(%3), %0\n\t"
"crc32q\t" SHORTx1 "(%3), %1\n\t"
@@ -351,14 +218,16 @@ static uint32_t crc32c_hw(uint32_t crc, const void *buf, size_t len)
/* compute the crc on the remaining eight-byte units less than a SHORT*3
block */
- end = next + (len - (len & 7));
- while (next < end) {
- __asm__("crc32q\t" "(%1), %0"
- : "=r"(crc0)
- : "r"(next), "0"(crc0));
- next += 8;
+ {
+ unsigned char const * const end = next + (len - (len & 7));
+ while (next < end) {
+ __asm__("crc32q\t" "(%1), %0"
+ : "=r"(crc0)
+ : "r"(next), "0"(crc0));
+ next += 8;
+ }
+ len &= 7;
}
- len &= 7;
/* compute the crc for up to seven trailing bytes */
while (len) {
@@ -370,7 +239,7 @@ static uint32_t crc32c_hw(uint32_t crc, const void *buf, size_t len)
}
/* return a post-processed crc */
- return (uint32_t)crc0 ^ 0xffffffff;
+ return ~crc0;
}
/* Check for SSE 4.2. SSE 4.2 was first supported in Nehalem processors
@@ -389,27 +258,168 @@ static uint32_t crc32c_hw(uint32_t crc, const void *buf, size_t len)
(have) = (ecx >> 20) & 1; \
} while (0)
-#endif
/* Compute a CRC-32C. If the crc32 instruction is available, use the hardware
version. Otherwise, use the software version. */
-void crc32c_init(void) {
- #if defined(__X86_64__)||defined(__x86_64__)||defined(__ia64__)
+uint32_t crc32c(uint32_t crc, void const *buf, size_t len) {
int sse42;
+
SSE42(sse42);
+ return sse42 ? crc32c_hw(crc, buf, len) : crc32c_sw(crc, buf, len);
+}
- if (sse42) {
- crc32c = crc32c_hw;
- } else
- #endif
- /* Check if CRC instructions supported by aarch64 */
- #if defined(__linux__) && defined(__aarch64__) && defined(ARM_CRC32)
- unsigned long hwcap = getauxval(AT_HWCAP);
-
- if (hwcap & HWCAP_CRC32) {
- crc32c = crc32c_hw_aarch64;
- } else
- #endif
- {
- crc32c = crc32c_sw;
+#else /* !__x86_64__ */
+
+uint32_t crc32c(uint32_t crc, void const *buf, size_t len) {
+ return crc32c_sw(crc, buf, len);
+}
+
+#endif
+
+/* Construct table for software CRC-32C little-endian calculation. */
+static pthread_once_t crc32c_once_little = PTHREAD_ONCE_INIT;
+static uint32_t crc32c_table_little[8][256];
+static void crc32c_init_sw_little(void) {
+ for (unsigned n = 0; n < 256; n++) {
+ uint32_t crc = n;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc32c_table_little[0][n] = crc;
+ }
+ for (unsigned n = 0; n < 256; n++) {
+ uint32_t crc = crc32c_table_little[0][n];
+ for (unsigned k = 1; k < 8; k++) {
+ crc = crc32c_table_little[0][crc & 0xff] ^ (crc >> 8);
+ crc32c_table_little[k][n] = crc;
+ }
+ }
+}
+
+/* Compute a CRC-32C in software assuming a little-endian architecture,
+ constructing the required table if that hasn't already been done. */
+uint32_t crc32c_sw_little(uint32_t crc, void const *buf, size_t len) {
+ unsigned char const *next = buf;
+
+ pthread_once(&crc32c_once_little, crc32c_init_sw_little);
+ crc = ~crc;
+ while (len && ((uintptr_t)next & 7) != 0) {
+ crc = crc32c_table_little[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
+ len--;
}
+ if (len >= 8) {
+ uint64_t crcw = crc;
+ do {
+ crcw ^= *(uint64_t const *)next;
+ crcw = crc32c_table_little[7][crcw & 0xff] ^
+ crc32c_table_little[6][(crcw >> 8) & 0xff] ^
+ crc32c_table_little[5][(crcw >> 16) & 0xff] ^
+ crc32c_table_little[4][(crcw >> 24) & 0xff] ^
+ crc32c_table_little[3][(crcw >> 32) & 0xff] ^
+ crc32c_table_little[2][(crcw >> 40) & 0xff] ^
+ crc32c_table_little[1][(crcw >> 48) & 0xff] ^
+ crc32c_table_little[0][crcw >> 56];
+ next += 8;
+ len -= 8;
+ } while (len >= 8);
+ crc = crcw;
+ }
+ while (len) {
+ crc = crc32c_table_little[0][(crc ^ *next++) & 0xff] ^ (crc >> 8);
+ len--;
+ }
+ return ~crc;
+}
+
+/* Swap the bytes in a uint64_t. (Only for big-endian.) */
+#if defined(__has_builtin) || (defined(__GNUC__) && \
+ (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)))
+# define swap __builtin_bswap64
+#else
+static inline uint64_t swap(uint64_t x) {
+ x = ((x << 8) & 0xff00ff00ff00ff00) | ((x >> 8) & 0xff00ff00ff00ff);
+ x = ((x << 16) & 0xffff0000ffff0000) | ((x >> 16) & 0xffff0000ffff);
+ return (x << 32) | (x >> 32);
+}
+#endif
+
+/* Construct tables for software CRC-32C big-endian calculation. */
+static pthread_once_t crc32c_once_big = PTHREAD_ONCE_INIT;
+static uint32_t crc32c_table_big_byte[256];
+static uint64_t crc32c_table_big[8][256];
+static void crc32c_init_sw_big(void) {
+ for (unsigned n = 0; n < 256; n++) {
+ uint32_t crc = n;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc = crc & 1 ? (crc >> 1) ^ POLY : crc >> 1;
+ crc32c_table_big_byte[n] = crc;
+ }
+ for (unsigned n = 0; n < 256; n++) {
+ uint32_t crc = crc32c_table_big_byte[n];
+ crc32c_table_big[0][n] = swap(crc);
+ for (unsigned k = 1; k < 8; k++) {
+ crc = crc32c_table_big_byte[crc & 0xff] ^ (crc >> 8);
+ crc32c_table_big[k][n] = swap(crc);
+ }
+ }
+}
+
+/* Compute a CRC-32C in software assuming a big-endian architecture,
+ constructing the required tables if that hasn't already been done. */
+uint32_t crc32c_sw_big(uint32_t crc, void const *buf, size_t len) {
+ unsigned char const *next = buf;
+
+ pthread_once(&crc32c_once_big, crc32c_init_sw_big);
+ crc = ~crc;
+ while (len && ((uintptr_t)next & 7) != 0) {
+ crc = crc32c_table_big_byte[(crc ^ *next++) & 0xff] ^ (crc >> 8);
+ len--;
+ }
+ if (len >= 8) {
+ uint64_t crcw = swap(crc);
+ do {
+ crcw ^= *(uint64_t const *)next;
+ crcw = crc32c_table_big[0][crcw & 0xff] ^
+ crc32c_table_big[1][(crcw >> 8) & 0xff] ^
+ crc32c_table_big[2][(crcw >> 16) & 0xff] ^
+ crc32c_table_big[3][(crcw >> 24) & 0xff] ^
+ crc32c_table_big[4][(crcw >> 32) & 0xff] ^
+ crc32c_table_big[5][(crcw >> 40) & 0xff] ^
+ crc32c_table_big[6][(crcw >> 48) & 0xff] ^
+ crc32c_table_big[7][(crcw >> 56)];
+ next += 8;
+ len -= 8;
+ } while (len >= 8);
+ crc = swap(crcw);
+ }
+ while (len) {
+ crc = crc32c_table_big_byte[(crc ^ *next++) & 0xff] ^ (crc >> 8);
+ len--;
+ }
+ return ~crc;
+}
+
+/* Table-driven software CRC-32C. This is about 15 times slower than using the
+ hardware instructions. Determine the endianess of the processor and proceed
+ accordingly. Ideally the endianess will be determined at compile time, in
+ which case the unused functions and tables for the other endianess will be
+ removed by the optimizer. If not, then the proper routines and tables will
+ be used, even if the endianess is changed mid-stream. (Yes, there are
+ processors that permit that -- go figure.) */
+uint32_t crc32c_sw(uint32_t crc, void const *buf, size_t len) {
+ static int const little = 1;
+ if (*(char const *)&little)
+ return crc32c_sw_little(crc, buf, len);
+ else
+ return crc32c_sw_big(crc, buf, len);
}