summaryrefslogtreecommitdiff
path: root/proxy_network.c
blob: 73735a02d39d3abecfb49b1fdc7f2fa84fa3413c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
/* -*- Mode: C; tab-width: 4; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// Functions related to the backend handler thread.

#include "proxy.h"

static void proxy_backend_handler(const int fd, const short which, void *arg);
static void proxy_event_handler(evutil_socket_t fd, short which, void *arg);
static void proxy_event_updater(evutil_socket_t fd, short which, void *arg);
static int _flush_pending_write(mcp_backend_t *be);
static int _reset_bad_backend(mcp_backend_t *be, enum proxy_be_failures err);
static void _set_event(mcp_backend_t *be, struct event_base *base, int flags, struct timeval t, event_callback_fn callback);
static int proxy_backend_drive_machine(mcp_backend_t *be, int bread, char **rbuf, size_t *toread);

static int _proxy_event_handler_dequeue(proxy_event_thread_t *t) {
    io_head_t head;

    STAILQ_INIT(&head);
    STAILQ_INIT(&t->be_head);

    // Pull the entire stack of inbound into local queue.
    pthread_mutex_lock(&t->mutex);
    STAILQ_CONCAT(&head, &t->io_head_in);
    pthread_mutex_unlock(&t->mutex);

    int io_count = 0;
    int be_count = 0;
    while (!STAILQ_EMPTY(&head)) {
        io_pending_proxy_t *io = STAILQ_FIRST(&head);
        io->flushed = false;
        mcp_backend_t *be = io->backend;
        // So the backend can retrieve its event base.
        be->event_thread = t;

        // _no_ mutex on backends. they are owned by the event thread.
        STAILQ_REMOVE_HEAD(&head, io_next);
        if (be->bad) {
            P_DEBUG("%s: fast failing request to bad backend\n", __func__);
            io->client_resp->status = MCMC_ERR;
            return_io_pending((io_pending_t *)io);
            continue;
        }
        STAILQ_INSERT_TAIL(&be->io_head, io, io_next);
        be->depth++;
        io_count++;
        if (!be->stacked) {
            be->stacked = true;
            STAILQ_INSERT_TAIL(&t->be_head, be, be_next);
            be_count++;
        }
    }
    //P_DEBUG("%s: io/be counts for syscalls [%d/%d]\n", __func__, io_count, be_count);
    return io_count;
}

#ifdef HAVE_LIBURING
static void _proxy_evthr_evset_be_read(mcp_backend_t *be, char *buf, size_t len, struct __kernel_timespec *ts);
static void _proxy_evthr_evset_be_wrpoll(mcp_backend_t *be, struct __kernel_timespec *ts);
static void _proxy_evthr_evset_be_retry(mcp_backend_t *be);

static void proxy_event_updater_ur(void *udata, struct io_uring_cqe *cqe) {
    proxy_event_thread_t *t = udata;
    proxy_ctx_t *ctx = t->ctx;

    _proxy_evthr_evset_clock(t);

    // we reuse the "global stats" lock since it's hardly ever used.
    STAT_L(ctx);
    memcpy(&t->tunables, &ctx->tunables, sizeof(t->tunables));
    STAT_UL(ctx);
}

// No-op at the moment. when the linked timeout fires uring returns the
// linked request (read/write/poll/etc) with an interrupted/timeout/cancelled
// error. So we don't need to explicitly handle timeouts.
// I'm leaving the structure in to simplify the callback routine.
// Since timeouts rarely get called the extra code here shouldn't matter.
static void proxy_backend_timeout_handler_ur(void *udata, struct io_uring_cqe *cqe) {
    return;
}

static void proxy_backend_retry_handler_ur(void *udata, struct io_uring_cqe *cqe) {
    mcp_backend_t *be = udata;
    _proxy_evthr_evset_be_wrpoll(be, &be->event_thread->tunables.connect_ur);
}

static void _proxy_evthr_evset_be_retry(mcp_backend_t *be) {
    struct io_uring_sqe *sqe;
    if (be->ur_te_ev.set)
        return;

    be->ur_te_ev.cb = proxy_backend_retry_handler_ur;
    be->ur_te_ev.udata = be;

    sqe = io_uring_get_sqe(&be->event_thread->ring);
    // TODO (v2): NULL?

    io_uring_prep_timeout(sqe, &be->event_thread->tunables.retry_ur, 0, 0);
    io_uring_sqe_set_data(sqe, &be->ur_te_ev);
    be->ur_te_ev.set = true;
}

static void _backend_failed_ur(mcp_backend_t *be) {
    if (++be->failed_count > be->event_thread->tunables.backend_failure_limit) {
        P_DEBUG("%s: marking backend as bad\n", __func__);
        be->bad = true;
        _proxy_evthr_evset_be_retry(be);
    } else {
        _proxy_evthr_evset_be_wrpoll(be, &be->event_thread->tunables.retry_ur);
    }
}

// read handler.
static void proxy_backend_handler_ur(void *udata, struct io_uring_cqe *cqe) {
    mcp_backend_t *be = udata;
    int bread = cqe->res;
    char *rbuf = NULL;
    size_t toread = 0;
    // Error or disconnection.
    if (bread <= 0) {
        _reset_bad_backend(be, P_BE_FAIL_DISCONNECTED);
        // NOTE: Not calling backed_failed here since if the backend is busted
        // it should be caught by the connect routine.
        // This is probably not _always_ true in practice. Leaving this note
        // so I can re-evaluate later.
        return;
    }

    int res = proxy_backend_drive_machine(be, bread, &rbuf, &toread);
    P_DEBUG("%s: bread: %d res: %d toread: %lu\n", __func__, bread, res, toread);

    if (res > 0) {
        _proxy_evthr_evset_be_read(be, rbuf, toread, &be->event_thread->tunables.read_ur);
    } else if (res == -1) {
        _reset_bad_backend(be, P_BE_FAIL_DISCONNECTED);
        return;
    }

    // TODO (v2): when exactly do we need to reset the backend handler?
    if (!STAILQ_EMPTY(&be->io_head)) {
        _proxy_evthr_evset_be_read(be, be->rbuf, READ_BUFFER_SIZE, &be->event_thread->tunables.read_ur);
    }
}

static void proxy_backend_wrhandler_ur(void *udata, struct io_uring_cqe *cqe) {
    mcp_backend_t *be = udata;
    int flags = 0;

    be->can_write = true;
    if (be->connecting) {
        int err = 0;
        // We were connecting, now ensure we're properly connected.
        if (mcmc_check_nonblock_connect(be->client, &err) != MCMC_OK) {
            // kick the bad backend, clear the queue, retry later.
            // TODO (v2): if a connect fails, anything currently in the queue
            // should be safe to hold up until their timeout.
            _reset_bad_backend(be, P_BE_FAIL_CONNECTING);
            _backend_failed_ur(be);
            P_DEBUG("%s: backend failed to connect\n", __func__);
            return;
        }
        P_DEBUG("%s: backend connected\n", __func__);
        be->connecting = false;
        be->state = mcp_backend_read;
        be->bad = false;
        be->failed_count = 0;
    }
    int res = _flush_pending_write(be);
    if (res == -1) {
        _reset_bad_backend(be, P_BE_FAIL_WRITING);
        return;
    }

    if (flags & EV_WRITE) {
        _proxy_evthr_evset_be_wrpoll(be, &be->event_thread->tunables.connect_ur);
    }

    _proxy_evthr_evset_be_read(be, be->rbuf, READ_BUFFER_SIZE, &be->event_thread->tunables.read_ur);
}

static void proxy_event_handler_ur(void *udata, struct io_uring_cqe *cqe) {
    proxy_event_thread_t *t = udata;

    // liburing always uses eventfd for the notifier.
    // *cqe has our result.
    assert(cqe->res != -EINVAL);
    if (cqe->res != sizeof(eventfd_t)) {
        P_DEBUG("%s: cqe->res: %d\n", __func__, cqe->res);
        // FIXME (v2): figure out if this is impossible, and how to handle if not.
        assert(1 == 0);
    }

    // need to re-arm the listener every time.
    _proxy_evthr_evset_notifier(t);

    // TODO (v2): sqe queues for writing to backends
    //  - _ur handler for backend write completion is to set a read event and
    //  re-submit. ugh.
    // Should be possible to have standing reads, but flow is harder and lets
    // optimize that later. (ie; allow matching reads to a request but don't
    // actually dequeue anything until both read and write are confirmed)
    if (_proxy_event_handler_dequeue(t) == 0) {
        //P_DEBUG("%s: no IO's to complete\n", __func__);
        return;
    }

    // Re-walk each backend and check set event as required.
    mcp_backend_t *be = NULL;

    // TODO (v2): for each backend, queue writev's into sqe's
    // move the backend sqe bits into a write complete handler
    STAILQ_FOREACH(be, &t->be_head, be_next) {
        be->stacked = false;
        int flags = 0;

        if (be->connecting) {
            P_DEBUG("%s: deferring IO pending connecting\n", __func__);
            flags |= EV_WRITE;
        } else {
            flags = _flush_pending_write(be);
        }

        if (flags == -1) {
            _reset_bad_backend(be, P_BE_FAIL_WRITING);
        } else {
            // FIXME (v2): needs a re-write to handle sqe starvation.
            // FIXME (v2): can't actually set the read here? need to confirm _some_
            // write first?
            if (flags & EV_WRITE) {
                _proxy_evthr_evset_be_wrpoll(be, &t->tunables.connect_ur);
            }
            if (flags & EV_READ) {
                _proxy_evthr_evset_be_read(be, be->rbuf, READ_BUFFER_SIZE, &t->tunables.read_ur);
            }
        }
    }
}

static void _proxy_evthr_evset_be_wrpoll(mcp_backend_t *be, struct __kernel_timespec *ts) {
    struct io_uring_sqe *sqe;
    if (be->ur_wr_ev.set)
        return;

    be->ur_wr_ev.cb = proxy_backend_wrhandler_ur;
    be->ur_wr_ev.udata = be;

    sqe = io_uring_get_sqe(&be->event_thread->ring);
    // FIXME (v2): NULL?

    io_uring_prep_poll_add(sqe, mcmc_fd(be->client), POLLOUT);
    io_uring_sqe_set_data(sqe, &be->ur_wr_ev);
    be->ur_wr_ev.set = true;

    sqe->flags |= IOSQE_IO_LINK;

    // add a timeout.
    be->ur_te_ev.cb = proxy_backend_timeout_handler_ur;
    be->ur_te_ev.udata = be;
    sqe = io_uring_get_sqe(&be->event_thread->ring);

    io_uring_prep_link_timeout(sqe, ts, 0);
    io_uring_sqe_set_data(sqe, &be->ur_te_ev);
}

static void _proxy_evthr_evset_be_read(mcp_backend_t *be, char *buf, size_t len, struct __kernel_timespec *ts) {
    P_DEBUG("%s: setting: %lu\n", __func__, len);
    struct io_uring_sqe *sqe;
    if (be->ur_rd_ev.set) {
        P_DEBUG("%s: already set\n", __func__);
        return;
    }

    be->ur_rd_ev.cb = proxy_backend_handler_ur;
    be->ur_rd_ev.udata = be;

    sqe = io_uring_get_sqe(&be->event_thread->ring);
    // FIXME (v2): NULL?
    assert(be->rbuf != NULL);
    io_uring_prep_recv(sqe, mcmc_fd(be->client), buf, len, 0);
    io_uring_sqe_set_data(sqe, &be->ur_rd_ev);
    be->ur_rd_ev.set = true;

    sqe->flags |= IOSQE_IO_LINK;

    // add a timeout.
    // TODO (v2): we can pre-set the event data and avoid always re-doing it here.
    be->ur_te_ev.cb = proxy_backend_timeout_handler_ur;
    be->ur_te_ev.udata = be;
    sqe = io_uring_get_sqe(&be->event_thread->ring);

    io_uring_prep_link_timeout(sqe, ts, 0);
    io_uring_sqe_set_data(sqe, &be->ur_te_ev);
}

static void _proxy_evthr_evset_clock(proxy_event_thread_t *t) {
    struct io_uring_sqe *sqe;

    sqe = io_uring_get_sqe(&t->ring);
    // FIXME (v2): NULL?

    io_uring_prep_timeout(sqe, &updater_ts, 0, 0);
    io_uring_sqe_set_data(sqe, &t->ur_clock_event);
    t->ur_clock_event.set = true;
}

static void _proxy_evthr_evset_notifier(proxy_event_thread_t *t) {
    struct io_uring_sqe *sqe;
    P_DEBUG("%s: setting: %d\n", __func__, t->ur_notify_event.set);
    if (t->ur_notify_event.set)
        return;

    t->ur_notify_event.cb = proxy_event_handler_ur;
    t->ur_notify_event.udata = t;

    sqe = io_uring_get_sqe(&t->ring);
    // FIXME (v2): NULL?
    io_uring_prep_read(sqe, t->event_fd, &t->event_counter, sizeof(eventfd_t), 0);
    io_uring_sqe_set_data(sqe, &t->ur_notify_event);
}

// TODO (v2): CQE's can generate many SQE's, so we might need to occasionally check
// for space free in the sqe queue and submit in the middle of the cqe
// foreach.
// There might be better places to do this, but I think it's cleaner if
// submission and cqe can stay in this function.
// TODO (v2): The problem is io_submit() can deadlock if too many cqe's are
// waiting.
// Need to understand if this means "CQE's ready to be picked up" or "CQE's in
// flight", because the former is much easier to work around (ie; only run the
// backend handler after dequeuing everything else)
// TODO (v2): IOURING_FEAT_NODROP: uring_submit() should return -EBUSY if out of CQ
// events slots. Therefore might starve SQE's if we were low beforehand.
// - switch from for_each_cqe to doing one at a time (for now?)
// - track # of sqe's allocated in the cqe loop.
// - stop and submit if we've >= half the queue.
// - ??? when can a CQE generate > 1 SQE?
//   - wrhandler_ur can set both wrpoll and read
// - if CQE's can gen > 1 SQE at a time, we'll eventually starve.
// - proper flow: CQE's can enqueue backends to be processed.
// - after CQE's are processed, backends are processed (ouch?)
//   - if SQE's starve here, bail but keep the BE queue.
// - then submit SQE's
static void *proxy_event_thread_ur(void *arg) {
    proxy_event_thread_t *t = arg;
    struct io_uring_cqe *cqe;

    P_DEBUG("%s: starting\n", __func__);

    logger_create(); // TODO (v2): add logger to struct
    while (1) {
        P_DEBUG("%s: submit and wait\n", __func__);
        io_uring_submit_and_wait(&t->ring, 1);
        //P_DEBUG("%s: sqe submitted: %d\n", __func__, ret);

        uint32_t head = 0;
        uint32_t count = 0;

        io_uring_for_each_cqe(&t->ring, head, cqe) {
            P_DEBUG("%s: got a CQE [count:%d]\n", __func__, count);

            proxy_event_t *pe = io_uring_cqe_get_data(cqe);
            pe->set = false;
            pe->cb(pe->udata, cqe);

            count++;
        }

        P_DEBUG("%s: advancing [count:%d]\n", __func__, count);
        io_uring_cq_advance(&t->ring, count);
    }

    return NULL;
}
#endif // HAVE_LIBURING

// We need to get timeout/retry/etc updates to the event thread(s)
// occasionally. I'd like to have a better inteface around this where updates
// are shipped directly; but this is good enough to start with.
static void proxy_event_updater(evutil_socket_t fd, short which, void *arg) {
    proxy_event_thread_t *t = arg;
    proxy_ctx_t *ctx = t->ctx;

    // TODO (v2): double check how much of this boilerplate is still necessary?
    // reschedule the clock event.
    evtimer_del(&t->clock_event);

    evtimer_set(&t->clock_event, proxy_event_updater, t);
    event_base_set(t->base, &t->clock_event);
    struct timeval rate = {.tv_sec = 3, .tv_usec = 0};
    evtimer_add(&t->clock_event, &rate);

    // we reuse the "global stats" lock since it's hardly ever used.
    STAT_L(ctx);
    memcpy(&t->tunables, &ctx->tunables, sizeof(t->tunables));
    STAT_UL(ctx);
}

// event handler for executing backend requests
static void proxy_event_handler(evutil_socket_t fd, short which, void *arg) {
    proxy_event_thread_t *t = arg;

#ifdef USE_EVENTFD
    uint64_t u;
    if (read(fd, &u, sizeof(uint64_t)) != sizeof(uint64_t)) {
        // Temporary error or wasn't actually ready to read somehow.
        return;
    }
#else
    char buf[1];
    // TODO (v2): This is a lot more fatal than it should be. can it fail? can
    // it blow up the server?
    // TODO (v2): a cross-platform method of speeding this up would be nice. With
    // event fds we can queue N events and wakeup once here.
    // If we're pulling one byte out of the pipe at a time here it'll just
    // wake us up too often.
    // If the pipe is O_NONBLOCK then maybe just a larger read would work?
    if (read(fd, buf, 1) != 1) {
        P_DEBUG("%s: pipe read failed\n", __func__);
        return;
    }
#endif

    if (_proxy_event_handler_dequeue(t) == 0) {
        //P_DEBUG("%s: no IO's to complete\n", __func__);
        return;
    }

    // Re-walk each backend and check set event as required.
    mcp_backend_t *be = NULL;
    struct timeval tmp_time = t->tunables.read;

    // FIXME (v2): _set_event() is buggy, see notes on function.
    STAILQ_FOREACH(be, &t->be_head, be_next) {
        be->stacked = false;
        int flags = 0;

        if (be->connecting) {
            P_DEBUG("%s: deferring IO pending connecting\n", __func__);
        } else {
            flags = _flush_pending_write(be);
        }

        if (flags == -1) {
            _reset_bad_backend(be, P_BE_FAIL_WRITING);
        } else {
            flags = be->can_write ? EV_READ|EV_TIMEOUT : EV_READ|EV_WRITE|EV_TIMEOUT;
            _set_event(be, t->base, flags, tmp_time, proxy_backend_handler);
        }
    }

}

void *proxy_event_thread(void *arg) {
    proxy_event_thread_t *t = arg;

    logger_create(); // TODO (v2): add logger ptr to structure
    event_base_loop(t->base, 0);
    event_base_free(t->base);

    // TODO (v2): join bt threads, free array.

    return NULL;
}

// FIXME (v2): if we use the newer API the various pending checks can be adjusted.
static void _set_event(mcp_backend_t *be, struct event_base *base, int flags, struct timeval t, event_callback_fn callback) {
    // FIXME (v2): chicken and egg.
    // can't check if pending if the structure is was calloc'ed (sigh)
    // don't want to double test here. should be able to event_assign but
    // not add anything during initialization, but need the owner thread's
    // event base.
    int pending = 0;
    if (event_initialized(&be->event)) {
        pending = event_pending(&be->event, EV_READ|EV_WRITE|EV_TIMEOUT, NULL);
    }
    if ((pending & (EV_READ|EV_WRITE|EV_TIMEOUT)) != 0) {
            event_del(&be->event); // replace existing event.
    }

    // if we can't write, we could be connecting.
    // TODO (v2): always check for READ in case some commands were sent
    // successfully? The flags could be tracked on *be and reset in the
    // handler, perhaps?
    event_assign(&be->event, base, mcmc_fd(be->client),
            flags, callback, be);
    event_add(&be->event, &t);
}

// NOTES:
// - mcp_backend_read: grab req_stack_head, do things
// read -> next, want_read -> next | read_end, etc.
// issue: want read back to read_end as necessary. special state?
//   - it's fine: p->client_resp->type.
// - mcp_backend_next: advance, consume, etc.
// TODO (v2): second argument with enum for a specific error.
// - probably just for logging. for app if any of these errors shouldn't
// result in killing the request stack!
static int proxy_backend_drive_machine(mcp_backend_t *be, int bread, char **rbuf, size_t *toread) {
    bool stop = false;
    io_pending_proxy_t *p = NULL;
    mcmc_resp_t tmp_resp; // helper for testing for GET's END marker.
    int flags = 0;

    p = STAILQ_FIRST(&be->io_head);
    if (p == NULL) {
        // got a read event, but nothing was queued.
        // probably means a disconnect event.
        // TODO (v2): could probably confirm this by attempting to read the
        // socket, getsockopt, or something else simply for logging or
        // statistical purposes.
        // In this case we know it's going to be a close so error.
        flags = -1;
        P_DEBUG("%s: read event but nothing in IO queue\n", __func__);
        return flags;
    }

    while (!stop) {
        mcp_resp_t *r;
        int res = 1;
        int remain = 0;
        char *newbuf = NULL;

    switch(be->state) {
        case mcp_backend_read:
            assert(p != NULL);
            P_DEBUG("%s: [read] bread: %d\n", __func__, bread);

            if (bread == 0) {
                // haven't actually done a read yet; figure out where/what.
                *rbuf = mcmc_read_prep(be->client, be->rbuf, READ_BUFFER_SIZE, toread);
                return EV_READ;
            } else {
                be->state = mcp_backend_parse;
            }
            break;
        case mcp_backend_parse:
            r = p->client_resp;
            r->status = mcmc_parse_buf(be->client, be->rbuf, bread, &r->resp);
            // FIXME (v2): Don't like how this mcmc API ended up.
            bread = 0; // only add the bread once per loop.
            if (r->status != MCMC_OK) {
                P_DEBUG("%s: mcmc_read failed [%d]\n", __func__, r->status);
                if (r->status == MCMC_WANT_READ) {
                    flags |= EV_READ;
                    be->state = mcp_backend_read;
                    stop = true;
                    break;
                } else {
                    flags = -1;
                    stop = true;
                    break;
                }
            }

            // we actually don't care about anything but the value length
            // TODO (v2): if vlen != vlen_read, pull an item and copy the data.
            int extra_space = 0;
            switch (r->resp.type) {
                case MCMC_RESP_GET:
                    // We're in GET mode. we only support one key per
                    // GET in the proxy backends, so we need to later check
                    // for an END.
                    extra_space = ENDLEN;
                    break;
                case MCMC_RESP_END:
                    // this is a MISS from a GET request
                    // or final handler from a STAT request.
                    assert(r->resp.vlen == 0);
                    break;
                case MCMC_RESP_META:
                    // we can handle meta responses easily since they're self
                    // contained.
                    break;
                case MCMC_RESP_GENERIC:
                case MCMC_RESP_NUMERIC:
                    break;
                // TODO (v2): No-op response?
                default:
                    P_DEBUG("%s: Unhandled response from backend: %d\n", __func__, r->resp.type);
                    // unhandled :(
                    flags = -1;
                    stop = true;
                    break;
            }

            if (res) {
                if (p->ascii_multiget && r->resp.type == MCMC_RESP_END) {
                    // Ascii multiget hack mode; consume END's
                    be->state = mcp_backend_next;
                    break;
                }

                // r->resp.reslen + r->resp.vlen is the total length of the response.
                // TODO (v2): need to associate a buffer with this response...
                // for now lets abuse write_and_free on mc_resp and simply malloc the
                // space we need, stuffing it into the resp object.

                r->blen = r->resp.reslen + r->resp.vlen;
                r->buf = malloc(r->blen + extra_space);
                if (r->buf == NULL) {
                    flags = -1; // TODO (v2): specific error.
                    stop = true;
                    break;
                }

                P_DEBUG("%s: r->status: %d, r->bread: %d, r->vlen: %lu\n", __func__, r->status, r->bread, r->resp.vlen);
                if (r->resp.vlen != r->resp.vlen_read) {
                    P_DEBUG("%s: got a short read, moving to want_read\n", __func__);
                    // copy the partial and advance mcmc's buffer digestion.
                    // FIXME (v2): should call this for both cases?
                    // special function for advancing mcmc's buffer for
                    // reading a value? perhaps a flag to skip the data copy
                    // when it's unnecessary?
                    memcpy(r->buf, be->rbuf, r->resp.reslen);
                    r->status = mcmc_read_value_buf(be->client, r->buf+r->resp.reslen, r->resp.vlen, &r->bread);
                    be->state = mcp_backend_want_read;
                    break;
                } else {
                    // mcmc's already counted the value as read if it fit in
                    // the original buffer...
                    memcpy(r->buf, be->rbuf, r->resp.reslen+r->resp.vlen_read);
                }
            } else {
                // TODO (v2): no response read?
                // nothing currently sets res to 0. should remove if that
                // never comes up and handle the error entirely above.
                P_DEBUG("%s: no response read from backend\n", __func__);
                flags = -1;
                stop = true;
                break;
            }

            if (r->resp.type == MCMC_RESP_GET) {
                // advance the buffer
                newbuf = mcmc_buffer_consume(be->client, &remain);
                if (remain != 0) {
                    // TODO (v2): don't need to shuffle buffer with better API
                    memmove(be->rbuf, newbuf, remain);
                }

                be->state = mcp_backend_read_end;
            } else {
                be->state = mcp_backend_next;
            }

            break;
        case mcp_backend_read_end:
            r = p->client_resp;
            // we need to ensure the next data in the stream is "END\r\n"
            // if not, the stack is desynced and we lose it.

            r->status = mcmc_parse_buf(be->client, be->rbuf, bread, &tmp_resp);
            P_DEBUG("%s [read_end]: r->status: %d, bread: %d resp.type:%d\n", __func__, r->status, bread, tmp_resp.type);
            if (r->status != MCMC_OK) {
                if (r->status == MCMC_WANT_READ) {
                    *rbuf = mcmc_read_prep(be->client, be->rbuf, READ_BUFFER_SIZE, toread);
                    return EV_READ;
                } else {
                    flags = -1; // TODO (v2): specific error.
                    stop = true;
                }
                break;
            } else if (tmp_resp.type != MCMC_RESP_END) {
                // TODO (v2): specific error about protocol desync
                flags = -1;
                stop = true;
                break;
            } else {
                // response is good.
                // FIXME (v2): copy what the server actually sent?
                if (!p->ascii_multiget) {
                    // sigh... if part of a multiget we need to eat the END
                    // markers down here.
                    memcpy(r->buf+r->blen, ENDSTR, ENDLEN);
                    r->blen += 5;
                }
            }

            be->state = mcp_backend_next;

            break;
        case mcp_backend_want_read:
            // Continuing a read from earlier
            r = p->client_resp;
            // take bread input and see if we're done reading the value,
            // else advance, set buffers, return next.
            if (bread > 0) {
                r->bread += bread;
                bread = 0;
            }
            P_DEBUG("%s: [want_read] r->bread: %d vlen: %lu\n", __func__, r->bread, r->resp.vlen);

            if (r->bread >= r->resp.vlen) {
                // all done copying data.
                if (r->resp.type == MCMC_RESP_GET) {
                    newbuf = mcmc_buffer_consume(be->client, &remain);
                    // Shouldn't be anything in the buffer if we had to run to
                    // want_read to read the value.
                    assert(remain == 0);
                    be->state = mcp_backend_read_end;
                } else {
                    be->state = mcp_backend_next;
                }
            } else {
                // signal to caller to issue a read.
                *rbuf = r->buf+r->resp.reslen+r->bread;
                *toread = r->resp.vlen - r->bread;
                // need to retry later.
                flags |= EV_READ;
                stop = true;
            }

            break;
        case mcp_backend_next:
            // set the head here. when we break the head will be correct.
            STAILQ_REMOVE_HEAD(&be->io_head, io_next);
            be->depth--;
            // have to do the q->count-- and == 0 and redispatch_conn()
            // stuff here. The moment we call return_io here we
            // don't own *p anymore.
            return_io_pending((io_pending_t *)p);

            if (STAILQ_EMPTY(&be->io_head)) {
                // TODO (v2): suspicious of this code. audit harder?
                stop = true;
            } else {
                p = STAILQ_FIRST(&be->io_head);
            }

            // mcmc_buffer_consume() - if leftover, keep processing
            // IO's.
            // if no more data in buffer, need to re-set stack head and re-set
            // event.
            remain = 0;
            // TODO (v2): do we need to yield every N reads?
            newbuf = mcmc_buffer_consume(be->client, &remain);
            P_DEBUG("%s: [next] remain: %d\n", __func__, remain);
            be->state = mcp_backend_read;
            if (remain != 0) {
                // data trailing in the buffer, for a different request.
                memmove(be->rbuf, newbuf, remain);
                be->state = mcp_backend_parse;
                P_DEBUG("read buffer remaining: %p %d\n", (void *)be, remain);
            } else {
                // need to read more data, buffer is empty.
                stop = true;
            }

            break;
        default:
            // TODO (v2): at some point (after v1?) this should attempt to recover,
            // though we should only get here from memory corruption and
            // bailing may be the right thing to do.
            fprintf(stderr, "%s: invalid backend state: %d\n", __func__, be->state);
            assert(false);
    } // switch
    } // while

    return flags;
}

// All we need to do here is schedule the backend to attempt to connect again.
static void proxy_backend_retry_handler(const int fd, const short which, void *arg) {
    mcp_backend_t *be = arg;
    assert(which & EV_TIMEOUT);
    struct timeval tmp_time = be->event_thread->tunables.retry;
    _set_event(be, be->event_thread->base, EV_WRITE|EV_TIMEOUT, tmp_time, proxy_backend_handler);
}

// currently just for timeouts, but certain errors should consider a backend
// to be "bad" as well.
// must be called before _reset_bad_backend(), so the backend is currently
// clear.
// TODO (v2): currently only notes for "bad backends" in cases of timeouts or
// connect failures. We need a specific connect() handler that executes a
// "version" call to at least check that the backend isn't speaking garbage.
// In theory backends can fail such that responses are constantly garbage,
// but it's more likely an app is doing something bad and culling the backend
// may prevent any other clients from talking to that backend. In
// that case we need to track if clients are causing errors consistently and
// block them instead. That's more challenging so leaving a note instead
// of doing this now :)
static void _backend_failed(mcp_backend_t *be) {
    struct timeval tmp_time = be->event_thread->tunables.retry;
    if (++be->failed_count > be->event_thread->tunables.backend_failure_limit) {
        P_DEBUG("%s: marking backend as bad\n", __func__);
        be->bad = true;
       _set_event(be, be->event_thread->base, EV_TIMEOUT, tmp_time, proxy_backend_retry_handler);
        STAT_INCR(be->event_thread->ctx, backend_marked_bad, 1);
    } else {
        STAT_INCR(be->event_thread->ctx, backend_failed, 1);
        _set_event(be, be->event_thread->base, EV_WRITE|EV_TIMEOUT, tmp_time, proxy_backend_handler);
    }
}

const char *proxy_be_failure_text[] = {
    [P_BE_FAIL_TIMEOUT] = "timeout",
    [P_BE_FAIL_DISCONNECTED] = "disconnected",
    [P_BE_FAIL_CONNECTING] = "connecting",
    [P_BE_FAIL_WRITING] = "writing",
    [P_BE_FAIL_READING] = "reading",
    [P_BE_FAIL_PARSING] = "parsing",
    NULL
};

// TODO (v2): add a second argument for assigning a specific error to all pending
// IO's (ie; timeout).
// The backend has gotten into a bad state (timed out, protocol desync, or
// some other supposedly unrecoverable error: purge the queue and
// cycle the socket.
// Note that some types of errors may not require flushing the queue and
// should be fixed as they're figured out.
// _must_ be called from within the event thread.
static int _reset_bad_backend(mcp_backend_t *be, enum proxy_be_failures err) {
    io_pending_proxy_t *io = NULL;
    STAILQ_FOREACH(io, &be->io_head, io_next) {
        // TODO (v2): Unsure if this is the best way of surfacing errors to lua,
        // but will do for V1.
        io->client_resp->status = MCMC_ERR;
        return_io_pending((io_pending_t *)io);
    }

    STAILQ_INIT(&be->io_head);

    mcmc_disconnect(be->client);
    int status = mcmc_connect(be->client, be->ip, be->port, be->connect_flags);
    if (status == MCMC_CONNECTED) {
        // TODO (v2): unexpected but lets let it be here.
        be->connecting = false;
        be->can_write = true;
    } else if (status == MCMC_CONNECTING) {
        be->connecting = true;
        be->can_write = false;
    } else {
        // TODO (v2): failed to immediately re-establish the connection.
        // need to put the BE into a bad/retry state.
        // FIXME (v2): until we get an event to specifically handle connecting and
        // bad server handling, attempt to force a reconnect here the next
        // time a request comes through.
        // The event thread will attempt to write to the backend, fail, then
        // end up in this routine again.
        be->connecting = false;
        be->can_write = true;
    }

    LOGGER_LOG(NULL, LOG_PROXYEVENTS, LOGGER_PROXY_BE_ERROR, NULL, proxy_be_failure_text[err], be->ip, be->port);

    return 0;
}

static int _prep_pending_write(mcp_backend_t *be, unsigned int *tosend) {
    struct iovec *iovs = be->write_iovs;
    io_pending_proxy_t *io = NULL;
    int iovused = 0;
    STAILQ_FOREACH(io, &be->io_head, io_next) {
        if (io->flushed)
            continue;

        if (io->iovcnt + iovused > BE_IOV_MAX) {
            // Signal to caller that we need to keep writing, if writeable.
            // FIXME (v2): can certainly refactor this to loop instead of waiting
            // for a writeable event.
            *tosend += 1;
            break;
        }

        memcpy(&iovs[iovused], io->iov, sizeof(struct iovec)*io->iovcnt);
        iovused += io->iovcnt;
        *tosend += io->iovbytes;
    }
    return iovused;
}

static int _flush_pending_write(mcp_backend_t *be) {
    int flags = 0;
    unsigned int tosend = 0;
    int iovcnt = _prep_pending_write(be, &tosend);

    ssize_t sent = writev(mcmc_fd(be->client), be->write_iovs, iovcnt);
    if (sent > 0) {
        io_pending_proxy_t *io = NULL;
        if (sent < tosend) {
            flags |= EV_WRITE;
        }

        STAILQ_FOREACH(io, &be->io_head, io_next) {
            bool flushed = true;
            if (io->flushed)
                continue;

            if (sent >= io->iovbytes) {
                // short circuit for common case.
                sent -= io->iovbytes;
            } else {
                for (int x = 0; x < io->iovcnt; x++) {
                    struct iovec *iov = &io->iov[x];
                    if (sent >= iov->iov_len) {
                        sent -= iov->iov_len;
                        iov->iov_len = 0;
                    } else {
                        iov->iov_len -= sent;
                        sent = 0;
                        flushed = false;
                        break;
                    }
                }
            }
            io->flushed = flushed;

            if (flushed) {
                flags |= EV_READ;
            }
            if (sent <= 0) {
                // really shouldn't be negative, though.
                assert(sent >= 0);
                break;
            }
        } // STAILQ_FOREACH
    } else if (sent == -1) {
        if (errno == EAGAIN || errno == EWOULDBLOCK) {
            be->can_write = false;
            flags |= EV_WRITE;
        } else {
            flags = -1;
        }
    }

    return flags;
}

// The libevent backend callback handler.
// If we end up resetting a backend, it will get put back into a connecting
// state.
static void proxy_backend_handler(const int fd, const short which, void *arg) {
    mcp_backend_t *be = arg;
    int flags = EV_TIMEOUT;
    struct timeval tmp_time = be->event_thread->tunables.read;

    if (which & EV_TIMEOUT) {
        P_DEBUG("%s: timeout received, killing backend queue\n", __func__);
        _reset_bad_backend(be, P_BE_FAIL_TIMEOUT);
        _backend_failed(be);
        return;
    }

    if (which & EV_WRITE) {
        be->can_write = true;
        // TODO (v2): move connect routine to its own function?
        // - hard to do right now because we can't (easily?) edit libevent
        // events.
        if (be->connecting) {
            int err = 0;
            // We were connecting, now ensure we're properly connected.
            if (mcmc_check_nonblock_connect(be->client, &err) != MCMC_OK) {
                // kick the bad backend, clear the queue, retry later.
                // FIXME (v2): if a connect fails, anything currently in the queue
                // should be safe to hold up until their timeout.
                _reset_bad_backend(be, P_BE_FAIL_CONNECTING);
                _backend_failed(be);
                P_DEBUG("%s: backend failed to connect\n", __func__);
                return;
            }
            P_DEBUG("%s: backend connected\n", __func__);
            be->connecting = false;
            be->state = mcp_backend_read;
            be->bad = false;
            be->failed_count = 0;
        }
        int res = _flush_pending_write(be);
        if (res == -1) {
            _reset_bad_backend(be, P_BE_FAIL_WRITING);
            return;
        }
    }

    if (which & EV_READ) {
        // We do the syscall here before diving into the state machine to allow a
        // common code path for io_uring/epoll
        int res = 1;
        int read = 0;
        while (res > 0) {
            char *rbuf = NULL;
            size_t toread = 0;
            // need to input how much was read since last call
            // needs _output_ of the buffer to read into and how much.
            res = proxy_backend_drive_machine(be, read, &rbuf, &toread);
            P_DEBUG("%s: res: %d toread: %lu\n", __func__, res, toread);

            if (res > 0) {
                read = recv(mcmc_fd(be->client), rbuf, toread, 0);
                P_DEBUG("%s: read: %d\n", __func__, read);
                if (read == 0) {
                    // not connected or error.
                    _reset_bad_backend(be, P_BE_FAIL_DISCONNECTED);
                    return;
                } else if (read == -1) {
                    if (errno == EAGAIN || errno == EWOULDBLOCK) {
                        break; // sit on epoll again.
                    } else {
                        _reset_bad_backend(be, P_BE_FAIL_READING);
                        return;
                    }
                }
            } else if (res == -1) {
                _reset_bad_backend(be, P_BE_FAIL_PARSING);
                return;
            } else {
                break;
            }
        }

#ifdef PROXY_DEBUG
        if (!STAILQ_EMPTY(&be->io_head)) {
            P_DEBUG("backend has leftover IOs: %d\n", be->depth);
        }
#endif
    }

    // Still pending requests to read or write.
    if (!STAILQ_EMPTY(&be->io_head)) {
        flags |= EV_READ; // FIXME (v2): might not be necessary here, but ensures we get a disconnect event.
        _set_event(be, be->event_thread->base, flags, tmp_time, proxy_backend_handler);
    }
}

// TODO (v2): IORING_SETUP_ATTACH_WQ port from bench_event once we have multiple
// event threads.
void proxy_init_evthread_events(proxy_event_thread_t *t) {
#ifdef HAVE_LIBURING
    bool use_uring = t->ctx->use_uring;
    struct io_uring_params p = {0};
    assert(t->event_fd); // uring only exists where eventfd also does.

    // Setup the CQSIZE to be much larger than SQ size, since backpressure
    // issues can cause us to block on SQ submissions and as a network server,
    // stuff happens.

    if (use_uring) {
        p.flags = IORING_SETUP_CQSIZE;
        p.cq_entries = PRING_QUEUE_CQ_ENTRIES;
        int ret = io_uring_queue_init_params(PRING_QUEUE_SQ_ENTRIES, &t->ring, &p);
        if (ret) {
            perror("io_uring_queue_init_params");
            exit(1);
        }
        if (!(p.features & IORING_FEAT_NODROP)) {
            fprintf(stderr, "uring: kernel missing IORING_FEAT_NODROP, using libevent\n");
            use_uring = false;
        }
        if (!(p.features & IORING_FEAT_SINGLE_MMAP)) {
            fprintf(stderr, "uring: kernel missing IORING_FEAT_SINGLE_MMAP, using libevent\n");
            use_uring = false;
        }
        if (!(p.features & IORING_FEAT_FAST_POLL)) {
            fprintf(stderr, "uring: kernel missing IORING_FEAT_FAST_POLL, using libevent\n");
            use_uring = false;
        }

        if (use_uring) {
            // FIXME (v2): Sigh. we need a blocking event_fd for io_uring but we've a
            // chicken and egg in here. need a better structure... in meantime
            // re-create the event_fd.
            close(t->event_fd);
            t->event_fd = eventfd(0, 0);
            // FIXME (v2): hack for event init.
            t->ur_notify_event.set = false;
            _proxy_evthr_evset_notifier(t);

            // periodic data updater for event thread
            t->ur_clock_event.cb = proxy_event_updater_ur;
            t->ur_clock_event.udata = t;
            t->ur_clock_event.set = false;
            _proxy_evthr_evset_clock(t);

            t->use_uring = true;
            return;
        } else {
            // Decided to not use io_uring, so don't waste memory.
            t->use_uring = false;
            io_uring_queue_exit(&t->ring);
        }
    } else {
        t->use_uring = false;
    }
#endif

    struct event_config *ev_config;
    ev_config = event_config_new();
    event_config_set_flag(ev_config, EVENT_BASE_FLAG_NOLOCK);
    t->base = event_base_new_with_config(ev_config);
    event_config_free(ev_config);
    if (! t->base) {
        fprintf(stderr, "Can't allocate event base\n");
        exit(1);
    }

    // listen for notifications.
    // NULL was thread_libevent_process
    // FIXME (v2): use modern format? (event_assign)
#ifdef USE_EVENTFD
    event_set(&t->notify_event, t->event_fd,
          EV_READ | EV_PERSIST, proxy_event_handler, t);
#else
    event_set(&t->notify_event, t->notify_receive_fd,
          EV_READ | EV_PERSIST, proxy_event_handler, t);
#endif

    evtimer_set(&t->clock_event, proxy_event_updater, t);
    event_base_set(t->base, &t->clock_event);
    struct timeval rate = {.tv_sec = 3, .tv_usec = 0};
    evtimer_add(&t->clock_event, &rate);

    event_base_set(t->base, &t->notify_event);
    if (event_add(&t->notify_event, 0) == -1) {
        fprintf(stderr, "Can't monitor libevent notify pipe\n");
        exit(1);
    }

}