1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
/*
* Copyright © 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
/* These passes enable converting uniforms to literals when it's profitable,
* effectively inlining uniform values in the IR. The main benefit is register
* usage decrease leading to better SMT (hyperthreading). It's accomplished
* by targetting uniforms that determine whether a conditional branch is
* taken or a loop can be unrolled.
*
* Only uniforms used in these places are analyzed:
* 1. if condition
* 2. loop terminator
* 3. init and update value of induction variable used in loop terminator
*
* nir_find_inlinable_uniforms finds uniforms that can be inlined and stores
* that information in shader_info.
*
* nir_inline_uniforms inlines uniform values.
*
* (uniforms must be lowered to load_ubo before calling this)
*/
#include "nir_builder.h"
#include "nir_loop_analyze.h"
/* Maximum value in shader_info::inlinable_uniform_dw_offsets[] */
#define MAX_OFFSET (UINT16_MAX * 4)
#define MAX_NUM_BO 32
/**
* Collect uniforms used in a source
*
* Recursively collects all of the UBO loads with constant UBO index and
* constant offset (per the restictions of \c max_num_bo and \c
* max_offset). If any values are discovered that are non-constant, uniforms
* that don't meet the restrictions, or if more than \c
* MAX_INLINEABLE_UNIFORMS are discoverd for any one UBO, false is returned.
*
* When false is returned, the state of \c uni_offsets and \c num_offsets is
* undefined.
*
* \param max_num_bo Maximum number of uniform buffer objects
* \param max_offset Maximum offset within a UBO
* \param uni_offset Array of \c max_num_bo * \c MAX_INLINABLE_UNIFORMS values
* used to store offsets of discovered uniform loads.
* \param num_offsets Array of \c max_num_bo values used to store the number
* of uniforms collected from each UBO.
*/
bool
nir_collect_src_uniforms(const nir_src *src, int component,
uint32_t *uni_offsets, uint8_t *num_offsets,
unsigned max_num_bo, unsigned max_offset)
{
if (!src->is_ssa)
return false;
assert(max_num_bo > 0 && max_num_bo <= MAX_NUM_BO);
assert(component < src->ssa->num_components);
nir_instr *instr = src->ssa->parent_instr;
switch (instr->type) {
case nir_instr_type_alu: {
nir_alu_instr *alu = nir_instr_as_alu(instr);
/* Vector ops only need to check the corresponding component. */
if (nir_op_is_vec(alu->op)) {
nir_alu_src *alu_src = alu->src + component;
return nir_collect_src_uniforms(&alu_src->src, alu_src->swizzle[0],
uni_offsets, num_offsets,
max_num_bo, max_offset);
}
/* Return true if all sources return true. */
for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
nir_alu_src *alu_src = alu->src + i;
int input_sizes = nir_op_infos[alu->op].input_sizes[i];
if (input_sizes == 0) {
/* For ops which has no input size, each component of dest is
* only determined by the same component of srcs.
*/
if (!nir_collect_src_uniforms(&alu_src->src, alu_src->swizzle[component],
uni_offsets, num_offsets,
max_num_bo, max_offset))
return false;
} else {
/* For ops which has input size, all components of dest are
* determined by all components of srcs (except vec ops).
*/
for (unsigned j = 0; j < input_sizes; j++) {
if (!nir_collect_src_uniforms(&alu_src->src, alu_src->swizzle[j],
uni_offsets, num_offsets,
max_num_bo, max_offset))
return false;
}
}
}
return true;
}
case nir_instr_type_intrinsic: {
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
/* Return true if the intrinsic loads from UBO 0 with a constant
* offset.
*/
if (intr->intrinsic == nir_intrinsic_load_ubo &&
nir_src_is_const(intr->src[0]) &&
nir_src_as_uint(intr->src[0]) < max_num_bo &&
nir_src_is_const(intr->src[1]) &&
nir_src_as_uint(intr->src[1]) <= max_offset &&
/* TODO: Can't handle other bit sizes for now. */
intr->dest.ssa.bit_size == 32) {
/* num_offsets can be NULL if-and-only-if uni_offsets is NULL. */
assert((num_offsets == NULL) == (uni_offsets == NULL));
/* If we're just checking that it's a uniform load, don't check (or
* add to) the table.
*/
if (uni_offsets == NULL)
return true;
uint32_t offset = nir_src_as_uint(intr->src[1]) + component * 4;
assert(offset < MAX_OFFSET);
const unsigned ubo = nir_src_as_uint(intr->src[0]);
/* Already recorded by other one */
for (int i = 0; i < num_offsets[ubo]; i++) {
if (uni_offsets[ubo * MAX_NUM_BO + i] == offset)
return true;
}
/* Exceed uniform number limit */
if (num_offsets[ubo] == MAX_INLINABLE_UNIFORMS)
return false;
/* Record the uniform offset. */
uni_offsets[ubo * MAX_NUM_BO + num_offsets[ubo]++] = offset;
return true;
}
return false;
}
case nir_instr_type_load_const:
/* Always return true for constants. */
return true;
default:
return false;
}
}
static bool
is_induction_variable(const nir_src *src, int component, nir_loop_info *info,
uint32_t *uni_offsets, uint8_t *num_offsets,
unsigned max_num_bo, unsigned max_offset)
{
if (!src->is_ssa)
return false;
assert(component < src->ssa->num_components);
/* Return true for induction variable (ie. i in for loop) */
for (int i = 0; i < info->num_induction_vars; i++) {
nir_loop_induction_variable *var = info->induction_vars + i;
if (var->def == src->ssa) {
/* Induction variable should have constant initial value (ie. i = 0),
* constant update value (ie. i++) and constant end condition
* (ie. i < 10), so that we know the exact loop count for unrolling
* the loop.
*
* Add uniforms need to be inlined for this induction variable's
* initial and update value to be constant, for example:
*
* for (i = init; i < count; i += step)
*
* We collect uniform "init" and "step" here.
*/
if (var->init_src) {
if (!nir_collect_src_uniforms(var->init_src, component,
uni_offsets, num_offsets,
max_num_bo, max_offset))
return false;
}
if (var->update_src) {
nir_alu_src *alu_src = var->update_src;
if (!nir_collect_src_uniforms(&alu_src->src,
alu_src->swizzle[component],
uni_offsets, num_offsets,
max_num_bo, max_offset))
return false;
}
return true;
}
}
return false;
}
void
nir_add_inlinable_uniforms(const nir_src *cond, nir_loop_info *info,
uint32_t *uni_offsets, uint8_t *num_offsets,
unsigned max_num_bo, unsigned max_offset)
{
uint8_t new_num[MAX_NUM_BO];
memcpy(new_num, num_offsets, sizeof(new_num));
/* If condition SSA is always scalar, so component is 0. */
unsigned component = 0;
/* Allow induction variable which means a loop terminator. */
if (info) {
nir_ssa_scalar cond_scalar = {cond->ssa, 0};
/* Limit terminator condition to loop unroll support case which is a simple
* comparison (ie. "i < count" is supported, but "i + 1 < count" is not).
*/
if (nir_is_supported_terminator_condition(cond_scalar)) {
if (nir_ssa_scalar_alu_op(cond_scalar) == nir_op_inot)
cond_scalar = nir_ssa_scalar_chase_alu_src(cond_scalar, 0);
nir_alu_instr *alu = nir_instr_as_alu(cond_scalar.def->parent_instr);
/* One side of comparison is induction variable, the other side is
* only uniform.
*/
for (int i = 0; i < 2; i++) {
if (is_induction_variable(&alu->src[i].src, alu->src[i].swizzle[0],
info, uni_offsets, new_num,
max_num_bo, max_offset)) {
cond = &alu->src[1 - i].src;
component = alu->src[1 - i].swizzle[0];
break;
}
}
}
}
/* Only update uniform number when all uniforms in the expression
* can be inlined. Partially inline uniforms can't lower if/loop.
*
* For example, uniform can be inlined for a shader is limited to 4,
* and we have already added 3 uniforms, then want to deal with
*
* if (uniform0 + uniform1 == 10)
*
* only uniform0 can be inlined due to we exceed the 4 limit. But
* unless both uniform0 and uniform1 are inlined, can we eliminate
* the if statement.
*
* This is even possible when we deal with loop if the induction
* variable init and update also contains uniform like
*
* for (i = uniform0; i < uniform1; i+= uniform2)
*
* unless uniform0, uniform1 and uniform2 can be inlined at once,
* can the loop be unrolled.
*/
if (nir_collect_src_uniforms(cond, component, uni_offsets, new_num,
max_num_bo, max_offset))
memcpy(num_offsets, new_num, sizeof(new_num[0]) * max_num_bo);
}
static void
process_node(nir_cf_node *node, nir_loop_info *info,
uint32_t *uni_offsets, uint8_t *num_offsets)
{
switch (node->type) {
case nir_cf_node_if: {
nir_if *if_node = nir_cf_node_as_if(node);
const nir_src *cond = &if_node->condition;
nir_add_inlinable_uniforms(cond, info, uni_offsets, num_offsets,
1, MAX_OFFSET);
/* Do not pass loop info down so only alow induction variable
* in loop terminator "if":
*
* for (i = 0; true; i++)
* if (i == count)
* if (i == num)
* <no break>
* break
*
* so "num" won't be inlined due to the "if" is not a
* terminator.
*/
info = NULL;
foreach_list_typed(nir_cf_node, nested_node, node, &if_node->then_list)
process_node(nested_node, info, uni_offsets, num_offsets);
foreach_list_typed(nir_cf_node, nested_node, node, &if_node->else_list)
process_node(nested_node, info, uni_offsets, num_offsets);
break;
}
case nir_cf_node_loop: {
nir_loop *loop = nir_cf_node_as_loop(node);
assert(!nir_loop_has_continue_construct(loop));
/* Replace loop info, no nested loop info currently:
*
* for (i = 0; i < count0; i++)
* for (j = 0; j < count1; j++)
* if (i == num)
*
* so "num" won't be inlined due to "i" is an induction
* variable of upper loop.
*/
info = loop->info;
foreach_list_typed(nir_cf_node, nested_node, node, &loop->body) {
bool is_terminator = false;
list_for_each_entry(nir_loop_terminator, terminator,
&info->loop_terminator_list,
loop_terminator_link) {
if (nested_node == &terminator->nif->cf_node) {
is_terminator = true;
break;
}
}
/* Allow induction variables for terminator "if" only:
*
* for (i = 0; i < count; i++)
* if (i == num)
* <no break>
*
* so "num" won't be inlined due to the "if" is not a
* terminator.
*/
nir_loop_info *use_info = is_terminator ? info : NULL;
process_node(nested_node, use_info, uni_offsets, num_offsets);
}
break;
}
default:
break;
}
}
void
nir_find_inlinable_uniforms(nir_shader *shader)
{
uint32_t uni_offsets[MAX_INLINABLE_UNIFORMS];
uint8_t num_offsets = 0;
nir_foreach_function(function, shader) {
if (function->impl) {
nir_metadata_require(function->impl, nir_metadata_loop_analysis,
nir_var_all, false);
foreach_list_typed(nir_cf_node, node, node, &function->impl->body)
process_node(node, NULL, uni_offsets, &num_offsets);
}
}
for (int i = 0; i < num_offsets; i++)
shader->info.inlinable_uniform_dw_offsets[i] = uni_offsets[i] / 4;
shader->info.num_inlinable_uniforms = num_offsets;
}
void
nir_inline_uniforms(nir_shader *shader, unsigned num_uniforms,
const uint32_t *uniform_values,
const uint16_t *uniform_dw_offsets)
{
if (!num_uniforms)
return;
nir_foreach_function(function, shader) {
if (function->impl) {
nir_builder b;
nir_builder_init(&b, function->impl);
nir_foreach_block(block, function->impl) {
nir_foreach_instr_safe(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
/* Only replace UBO 0 with constant offsets. */
if (intr->intrinsic == nir_intrinsic_load_ubo &&
nir_src_is_const(intr->src[0]) &&
nir_src_as_uint(intr->src[0]) == 0 &&
nir_src_is_const(intr->src[1]) &&
/* TODO: Can't handle other bit sizes for now. */
intr->dest.ssa.bit_size == 32) {
int num_components = intr->dest.ssa.num_components;
uint32_t offset = nir_src_as_uint(intr->src[1]) / 4;
if (num_components == 1) {
/* Just replace the uniform load to constant load. */
for (unsigned i = 0; i < num_uniforms; i++) {
if (offset == uniform_dw_offsets[i]) {
b.cursor = nir_before_instr(&intr->instr);
nir_ssa_def *def = nir_imm_int(&b, uniform_values[i]);
nir_ssa_def_rewrite_uses(&intr->dest.ssa, def);
nir_instr_remove(&intr->instr);
break;
}
}
} else {
/* Lower vector uniform load to scalar and replace each
* found component load with constant load.
*/
uint32_t max_offset = offset + num_components;
nir_ssa_def *components[NIR_MAX_VEC_COMPONENTS] = {0};
bool found = false;
b.cursor = nir_before_instr(&intr->instr);
/* Find component to replace. */
for (unsigned i = 0; i < num_uniforms; i++) {
uint32_t uni_offset = uniform_dw_offsets[i];
if (uni_offset >= offset && uni_offset < max_offset) {
int index = uni_offset - offset;
components[index] = nir_imm_int(&b, uniform_values[i]);
found = true;
}
}
if (!found)
continue;
/* Create per-component uniform load. */
for (unsigned i = 0; i < num_components; i++) {
if (!components[i]) {
uint32_t scalar_offset = (offset + i) * 4;
components[i] = nir_load_ubo(&b, 1, intr->dest.ssa.bit_size,
intr->src[0].ssa,
nir_imm_int(&b, scalar_offset));
nir_intrinsic_instr *load =
nir_instr_as_intrinsic(components[i]->parent_instr);
nir_intrinsic_set_align(load, NIR_ALIGN_MUL_MAX, scalar_offset);
nir_intrinsic_set_range_base(load, scalar_offset);
nir_intrinsic_set_range(load, 4);
}
}
/* Replace the original uniform load. */
nir_ssa_def_rewrite_uses(&intr->dest.ssa,
nir_vec(&b, components, num_components));
nir_instr_remove(&intr->instr);
}
}
}
}
nir_metadata_preserve(function->impl, nir_metadata_block_index |
nir_metadata_dominance);
}
}
}
|