summaryrefslogtreecommitdiff
path: root/src/compiler/nir/nir_lower_mem_access_bit_sizes.c
blob: 16269f6e76a05f592f6718d6d670b837e4568c66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
/*
 * Copyright © 2018 Intel Corporation
 * Copyright © 2023 Collabora, Ltd.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "nir_builder.h"
#include "util/u_math.h"
#include "util/bitscan.h"

static nir_intrinsic_instr *
dup_mem_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
                  nir_ssa_def *offset,
                  unsigned align_mul, unsigned align_offset,
                  nir_ssa_def *data,
                  unsigned num_components, unsigned bit_size)
{
   const nir_intrinsic_info *info = &nir_intrinsic_infos[intrin->intrinsic];

   nir_intrinsic_instr *dup =
      nir_intrinsic_instr_create(b->shader, intrin->intrinsic);

   nir_src *intrin_offset_src = nir_get_io_offset_src(intrin);
   for (unsigned i = 0; i < info->num_srcs; i++) {
      assert(intrin->src[i].is_ssa);
      if (i == 0 && data != NULL) {
         assert(!info->has_dest);
         assert(&intrin->src[i] != intrin_offset_src);
         dup->src[i] = nir_src_for_ssa(data);
      } else if (&intrin->src[i] == intrin_offset_src) {
         dup->src[i] = nir_src_for_ssa(offset);
      } else {
         dup->src[i] = nir_src_for_ssa(intrin->src[i].ssa);
      }
   }

   dup->num_components = num_components;
   for (unsigned i = 0; i < info->num_indices; i++)
      dup->const_index[i] = intrin->const_index[i];

   nir_intrinsic_set_align(dup, align_mul, align_offset);

   if (info->has_dest) {
      assert(intrin->dest.is_ssa);
      nir_ssa_dest_init(&dup->instr, &dup->dest,
                        num_components, bit_size, NULL);
   } else {
      nir_intrinsic_set_write_mask(dup, (1 << num_components) - 1);
   }

   nir_builder_instr_insert(b, &dup->instr);

   return dup;
}

static bool
lower_mem_load(nir_builder *b, nir_intrinsic_instr *intrin,
               nir_lower_mem_access_bit_sizes_cb mem_access_size_align_cb,
               const void *cb_data)
{
   assert(intrin->dest.is_ssa);
   const unsigned bit_size = intrin->dest.ssa.bit_size;
   const unsigned num_components = intrin->dest.ssa.num_components;
   const unsigned bytes_read = num_components * (bit_size / 8);
   const uint32_t align_mul = nir_intrinsic_align_mul(intrin);
   const uint32_t whole_align_offset = nir_intrinsic_align_offset(intrin);
   const uint32_t whole_align = nir_intrinsic_align(intrin);
   nir_src *offset_src = nir_get_io_offset_src(intrin);
   const bool offset_is_const = nir_src_is_const(*offset_src);
   assert(offset_src->is_ssa);
   nir_ssa_def *offset = offset_src->ssa;

   nir_mem_access_size_align requested =
      mem_access_size_align_cb(intrin->intrinsic, bytes_read,
                               align_mul, whole_align_offset,
                               offset_is_const, cb_data);

   assert(util_is_power_of_two_nonzero(align_mul));
   assert(util_is_power_of_two_nonzero(requested.align));
   if (requested.num_components == num_components &&
       requested.bit_size == bit_size &&
       requested.align <= whole_align)
      return false;

   /* Otherwise, we have to break it into chunks.  We could end up with as
    * many as 32 chunks if we're loading a u64vec16 as individual dwords.
    */
   nir_ssa_def *chunks[32];
   unsigned num_chunks = 0;
   unsigned chunk_start = 0;
   while (chunk_start < bytes_read) {
      const unsigned bytes_left = bytes_read - chunk_start;
      const uint32_t chunk_align_offset =
         (whole_align_offset + chunk_start) % align_mul;
      const uint32_t chunk_align =
         nir_combined_align(align_mul, chunk_align_offset);
      requested = mem_access_size_align_cb(intrin->intrinsic, bytes_left,
                                           align_mul, chunk_align_offset,
                                           offset_is_const, cb_data);

      unsigned chunk_bytes;
      assert(util_is_power_of_two_nonzero(requested.align));
      if (align_mul < requested.align) {
         /* For this case, we need to be able to shift the value so we assume
          * the alignment is less than the size of a single component.  This
          * ensures that we don't need to upcast in order to shift.
          */
         assert(requested.bit_size >= requested.align * 8);

         uint64_t align_mask = requested.align - 1;
         nir_ssa_def *chunk_offset = nir_iadd_imm(b, offset, chunk_start);
         nir_ssa_def *pad = nir_iand_imm(b, chunk_offset, align_mask);
         chunk_offset = nir_iand_imm(b, chunk_offset, ~align_mask);

         nir_intrinsic_instr *load =
            dup_mem_intrinsic(b, intrin, chunk_offset,
                              requested.align, 0, NULL,
                              requested.num_components, requested.bit_size);

         unsigned max_pad = requested.align - chunk_align;
         unsigned requested_bytes =
            requested.num_components * requested.bit_size / 8;
         chunk_bytes = MIN2(bytes_left, requested_bytes - max_pad);

         nir_ssa_def *shift = nir_imul_imm(b, pad, 8);
         nir_ssa_def *shifted = nir_ushr(b, &load->dest.ssa, shift);

         if (load->dest.ssa.num_components > 1) {
            nir_ssa_def *rev_shift =
               nir_isub_imm(b, load->dest.ssa.bit_size, shift);
            nir_ssa_def *rev_shifted = nir_ishl(b, &load->dest.ssa, rev_shift);

            nir_ssa_def *comps[NIR_MAX_VEC_COMPONENTS];
            for (unsigned i = 1; i < load->dest.ssa.num_components; i++)
               comps[i - 1] = nir_channel(b, rev_shifted, i);

            comps[load->dest.ssa.num_components - 1] =
               nir_imm_zero(b, 1, load->dest.ssa.bit_size);

            rev_shifted = nir_vec(b, comps, load->dest.ssa.num_components);
            shifted = nir_bcsel(b, nir_ieq_imm(b, shift, 0), &load->dest.ssa,
                                   nir_ior(b, shifted, rev_shifted));
         }

         unsigned chunk_bit_size = MIN2(8 << (ffs(chunk_bytes) - 1), bit_size);
         unsigned chunk_num_components = chunk_bytes / (chunk_bit_size / 8);

         /* There's no guarantee that chunk_num_components is a valid NIR
          * vector size, so just loop one chunk component at a time
          */
         for (unsigned i = 0; i < chunk_num_components; i++) {
            assert(num_chunks < ARRAY_SIZE(chunks));
            chunks[num_chunks++] =
               nir_extract_bits(b, &shifted, 1, i * chunk_bit_size,
                                1, chunk_bit_size);
         }
      } else if (chunk_align_offset % requested.align) {
         /* In this case, we know how much to adjust the offset */
         uint32_t delta = chunk_align_offset % requested.align;
         nir_ssa_def *load_offset =
            nir_iadd_imm(b, offset, chunk_start - (int)delta);

         const uint32_t load_align_offset =
            (chunk_align_offset - delta) % align_mul;

         nir_intrinsic_instr *load =
            dup_mem_intrinsic(b, intrin, load_offset,
                              align_mul, load_align_offset, NULL,
                              requested.num_components, requested.bit_size);

         assert(requested.bit_size >= 8);
         chunk_bytes = requested.num_components * (requested.bit_size / 8);
         assert(chunk_bytes > delta);
         chunk_bytes -= delta;

         unsigned chunk_bit_size = MIN2(8 << (ffs(chunk_bytes) - 1), bit_size);
         unsigned chunk_num_components = chunk_bytes / (chunk_bit_size / 8);

         /* There's no guarantee that chunk_num_components is a valid NIR
          * vector size, so just loop one chunk component at a time
          */
         nir_ssa_def *chunk_data = &load->dest.ssa;
         for (unsigned i = 0; i < chunk_num_components; i++) {
            assert(num_chunks < ARRAY_SIZE(chunks));
            chunks[num_chunks++] =
               nir_extract_bits(b, &chunk_data, 1,
                                delta * 8 + i * chunk_bit_size,
                                1, chunk_bit_size);
         }
      } else {
         nir_ssa_def *chunk_offset = nir_iadd_imm(b, offset, chunk_start);
         nir_intrinsic_instr *load =
            dup_mem_intrinsic(b, intrin, chunk_offset,
                              align_mul, chunk_align_offset, NULL,
                              requested.num_components, requested.bit_size);

         chunk_bytes = requested.num_components * (requested.bit_size / 8);
         assert(num_chunks < ARRAY_SIZE(chunks));
         chunks[num_chunks++] = &load->dest.ssa;
      }

      chunk_start += chunk_bytes;
   }

   nir_ssa_def *result = nir_extract_bits(b, chunks, num_chunks, 0,
                                          num_components, bit_size);
   nir_ssa_def_rewrite_uses(&intrin->dest.ssa, result);
   nir_instr_remove(&intrin->instr);

   return true;
}

static bool
lower_mem_store(nir_builder *b, nir_intrinsic_instr *intrin,
               nir_lower_mem_access_bit_sizes_cb mem_access_size_align_cb,
               const void *cb_data)
{
   assert(intrin->src[0].is_ssa);
   nir_ssa_def *value = intrin->src[0].ssa;

   assert(intrin->num_components == value->num_components);
   const unsigned bit_size = value->bit_size;
   const unsigned byte_size = bit_size / 8;
   const unsigned num_components = intrin->num_components;
   const unsigned bytes_written = num_components * byte_size;
   const uint32_t align_mul = nir_intrinsic_align_mul(intrin);
   const uint32_t whole_align_offset = nir_intrinsic_align_offset(intrin);
   const uint32_t whole_align = nir_intrinsic_align(intrin);
   nir_src *offset_src = nir_get_io_offset_src(intrin);
   const bool offset_is_const = nir_src_is_const(*offset_src);
   assert(offset_src->is_ssa);
   nir_ssa_def *offset = offset_src->ssa;

   nir_component_mask_t writemask = nir_intrinsic_write_mask(intrin);
   assert(writemask < (1 << num_components));

   nir_mem_access_size_align requested =
      mem_access_size_align_cb(intrin->intrinsic, bytes_written,
                               align_mul, whole_align_offset,
                               offset_is_const, cb_data);

   assert(util_is_power_of_two_nonzero(align_mul));
   assert(util_is_power_of_two_nonzero(requested.align));
   if (requested.num_components == num_components &&
       requested.bit_size == bit_size &&
       requested.align <= whole_align &&
       writemask == BITFIELD_MASK(num_components))
      return false;

   assert(byte_size <= sizeof(uint64_t));
   BITSET_DECLARE(mask, NIR_MAX_VEC_COMPONENTS * sizeof(uint64_t));
   BITSET_ZERO(mask);

   for (unsigned i = 0; i < num_components; i++) {
      if (writemask & (1u << i)) {
         BITSET_SET_RANGE_INSIDE_WORD(mask, i * byte_size,
                                      ((i + 1) * byte_size) - 1);
      }
   }

   while (BITSET_FFS(mask) != 0) {
      const uint32_t chunk_start = BITSET_FFS(mask) - 1;

      uint32_t end;
      for (end = chunk_start + 1; end < bytes_written; end++) {
         if (!(BITSET_TEST(mask, end)))
            break;
      }
      /* The size of the current contiguous chunk in bytes */
      const uint32_t max_chunk_bytes = end - chunk_start;
      const uint32_t chunk_align_offset =
         (whole_align_offset + chunk_start) % align_mul;

      requested = mem_access_size_align_cb(intrin->intrinsic, max_chunk_bytes,
                                           align_mul, chunk_align_offset,
                                           offset_is_const, cb_data);

      const uint32_t chunk_bytes =
         requested.num_components * (requested.bit_size / 8);
      assert(chunk_bytes <= max_chunk_bytes);

      assert(util_is_power_of_two_nonzero(requested.align));
      assert(requested.align <= align_mul);
      assert((chunk_align_offset % requested.align) == 0);

      nir_ssa_def *packed = nir_extract_bits(b, &value, 1, chunk_start * 8,
                                             requested.num_components,
                                             requested.bit_size);

      nir_ssa_def *chunk_offset = nir_iadd_imm(b, offset, chunk_start);
      dup_mem_intrinsic(b, intrin, chunk_offset,
                        align_mul, chunk_align_offset, packed,
                        requested.num_components, requested.bit_size);

      BITSET_CLEAR_RANGE(mask, chunk_start, (chunk_start + chunk_bytes - 1));
   }

   nir_instr_remove(&intrin->instr);

   return true;
}

struct lower_mem_access_state {
   nir_variable_mode modes;
   nir_lower_mem_access_bit_sizes_cb cb;
   const void *cb_data;
};

static nir_variable_mode
intrin_to_variable_mode(nir_intrinsic_op intrin)
{
   switch (intrin) {
   case nir_intrinsic_load_ubo:
      return nir_var_mem_ubo;

   case nir_intrinsic_load_global:
   case nir_intrinsic_store_global:
      return nir_var_mem_global;

   case nir_intrinsic_load_global_constant:
      return nir_var_mem_constant;

   case nir_intrinsic_load_ssbo:
   case nir_intrinsic_store_ssbo:
      return nir_var_mem_ssbo;

   case nir_intrinsic_load_shared:
   case nir_intrinsic_store_shared:
      return nir_var_mem_shared;

   case nir_intrinsic_load_scratch:
   case nir_intrinsic_store_scratch:
      return nir_var_shader_temp | nir_var_function_temp;

   case nir_intrinsic_load_task_payload:
   case nir_intrinsic_store_task_payload:
      return nir_var_mem_task_payload;

   default:
      return 0;
   }
}

static bool
lower_mem_access_instr(nir_builder *b, nir_instr *instr, void *_data)
{
   struct lower_mem_access_state *state = _data;

   if (instr->type != nir_instr_type_intrinsic)
      return false;

   nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
   if (!(state->modes & intrin_to_variable_mode(intrin->intrinsic)))
      return false;

   b->cursor = nir_after_instr(instr);

   switch (intrin->intrinsic) {
   case nir_intrinsic_load_ubo:
   case nir_intrinsic_load_global:
   case nir_intrinsic_load_global_constant:
   case nir_intrinsic_load_ssbo:
   case nir_intrinsic_load_shared:
   case nir_intrinsic_load_scratch:
   case nir_intrinsic_load_task_payload:
      return lower_mem_load(b, intrin, state->cb, state->cb_data);

   case nir_intrinsic_store_global:
   case nir_intrinsic_store_ssbo:
   case nir_intrinsic_store_shared:
   case nir_intrinsic_store_scratch:
   case nir_intrinsic_store_task_payload:
      return lower_mem_store(b, intrin, state->cb, state->cb_data);

   default:
      return false;
   }
}

bool
nir_lower_mem_access_bit_sizes(nir_shader *shader,
                               nir_variable_mode modes,
                               nir_lower_mem_access_bit_sizes_cb cb,
                               const void *cb_data)
{
   struct lower_mem_access_state state = {
      .modes = modes,
      .cb = cb,
      .cb_data = cb_data
   };

   return nir_shader_instructions_pass(shader, lower_mem_access_instr,
                                       nir_metadata_block_index |
                                       nir_metadata_dominance,
                                       (void *)&state);
}