summaryrefslogtreecommitdiff
path: root/src/compiler/nir/nir_lower_subgroups.c
blob: 93bbef4a6141c08135c01f2dfbfa2f02ff39df15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
/*
 * Copyright © 2017 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "nir.h"
#include "nir_builder.h"
#include "util/u_math.h"

/**
 * \file nir_opt_intrinsics.c
 */

static nir_intrinsic_instr *
lower_subgroups_64bit_split_intrinsic(nir_builder *b, nir_intrinsic_instr *intrin,
                                      unsigned int component)
{
   nir_ssa_def *comp;
   if (component == 0)
      comp = nir_unpack_64_2x32_split_x(b, intrin->src[0].ssa);
   else
      comp = nir_unpack_64_2x32_split_y(b, intrin->src[0].ssa);

   nir_intrinsic_instr *intr = nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
   nir_ssa_dest_init(&intr->instr, &intr->dest, 1, 32);
   intr->const_index[0] = intrin->const_index[0];
   intr->const_index[1] = intrin->const_index[1];
   intr->src[0] = nir_src_for_ssa(comp);
   if (nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2)
      nir_src_copy(&intr->src[1], &intrin->src[1], &intr->instr);

   intr->num_components = 1;
   nir_builder_instr_insert(b, &intr->instr);
   return intr;
}

static nir_ssa_def *
lower_subgroup_op_to_32bit(nir_builder *b, nir_intrinsic_instr *intrin)
{
   assert(intrin->src[0].ssa->bit_size == 64);
   nir_intrinsic_instr *intr_x = lower_subgroups_64bit_split_intrinsic(b, intrin, 0);
   nir_intrinsic_instr *intr_y = lower_subgroups_64bit_split_intrinsic(b, intrin, 1);
   return nir_pack_64_2x32_split(b, &intr_x->dest.ssa, &intr_y->dest.ssa);
}

static nir_ssa_def *
ballot_type_to_uint(nir_builder *b, nir_ssa_def *value,
                    const nir_lower_subgroups_options *options)
{
   /* Only the new-style SPIR-V subgroup instructions take a ballot result as
    * an argument, so we only use this on uvec4 types.
    */
   assert(value->num_components == 4 && value->bit_size == 32);

   return nir_extract_bits(b, &value, 1, 0, options->ballot_components,
                           options->ballot_bit_size);
}

static nir_ssa_def *
uint_to_ballot_type(nir_builder *b, nir_ssa_def *value,
                    unsigned num_components, unsigned bit_size)
{
   assert(util_is_power_of_two_nonzero(num_components));
   assert(util_is_power_of_two_nonzero(value->num_components));

   unsigned total_bits = bit_size * num_components;

   /* If the source doesn't have enough bits, zero-pad */
   if (total_bits > value->bit_size * value->num_components)
      value = nir_pad_vector_imm_int(b, value, 0, total_bits / value->bit_size);

   value = nir_bitcast_vector(b, value, bit_size);

   /* If the source has too many components, truncate.  This can happen if,
    * for instance, we're implementing GL_ARB_shader_ballot or
    * VK_EXT_shader_subgroup_ballot which have 64-bit ballot values on an
    * architecture with a native 128-bit uvec4 ballot.  This comes up in Zink
    * for OpenGL on Vulkan.  It's the job of the driver calling this lowering
    * pass to ensure that it's restricted subgroup sizes sufficiently that we
    * have enough ballot bits.
    */
   if (value->num_components > num_components)
      value = nir_trim_vector(b, value, num_components);

   return value;
}

static nir_ssa_def *
lower_subgroup_op_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin,
                            bool lower_to_32bit)
{
   /* This is safe to call on scalar things but it would be silly */
   assert(intrin->dest.ssa.num_components > 1);

   nir_ssa_def *value = nir_ssa_for_src(b, intrin->src[0],
                                           intrin->num_components);
   nir_ssa_def *reads[NIR_MAX_VEC_COMPONENTS];

   for (unsigned i = 0; i < intrin->num_components; i++) {
      nir_intrinsic_instr *chan_intrin =
         nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
      nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest, 1,
                        intrin->dest.ssa.bit_size);
      chan_intrin->num_components = 1;

      /* value */
      chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i));
      /* invocation */
      if (nir_intrinsic_infos[intrin->intrinsic].num_srcs > 1) {
         assert(nir_intrinsic_infos[intrin->intrinsic].num_srcs == 2);
         nir_src_copy(&chan_intrin->src[1], &intrin->src[1], &chan_intrin->instr);
      }

      chan_intrin->const_index[0] = intrin->const_index[0];
      chan_intrin->const_index[1] = intrin->const_index[1];

      if (lower_to_32bit && chan_intrin->src[0].ssa->bit_size == 64) {
         reads[i] = lower_subgroup_op_to_32bit(b, chan_intrin);
      } else {
         nir_builder_instr_insert(b, &chan_intrin->instr);
         reads[i] = &chan_intrin->dest.ssa;
      }
   }

   return nir_vec(b, reads, intrin->num_components);
}

static nir_ssa_def *
lower_vote_eq_to_scalar(nir_builder *b, nir_intrinsic_instr *intrin)
{
   assert(intrin->src[0].is_ssa);
   nir_ssa_def *value = intrin->src[0].ssa;

   nir_ssa_def *result = NULL;
   for (unsigned i = 0; i < intrin->num_components; i++) {
      nir_intrinsic_instr *chan_intrin =
         nir_intrinsic_instr_create(b->shader, intrin->intrinsic);
      nir_ssa_dest_init(&chan_intrin->instr, &chan_intrin->dest, 1,
                        intrin->dest.ssa.bit_size);
      chan_intrin->num_components = 1;
      chan_intrin->src[0] = nir_src_for_ssa(nir_channel(b, value, i));
      nir_builder_instr_insert(b, &chan_intrin->instr);

      if (result) {
         result = nir_iand(b, result, &chan_intrin->dest.ssa);
      } else {
         result = &chan_intrin->dest.ssa;
      }
   }

   return result;
}

static nir_ssa_def *
lower_vote_eq(nir_builder *b, nir_intrinsic_instr *intrin)
{
   assert(intrin->src[0].is_ssa);
   nir_ssa_def *value = intrin->src[0].ssa;

   /* We have to implicitly lower to scalar */
   nir_ssa_def *all_eq = NULL;
   for (unsigned i = 0; i < intrin->num_components; i++) {
      nir_ssa_def *rfi = nir_read_first_invocation(b, nir_channel(b, value, i));

      nir_ssa_def *is_eq;
      if (intrin->intrinsic == nir_intrinsic_vote_feq) {
         is_eq = nir_feq(b, rfi, nir_channel(b, value, i));
      } else {
         is_eq = nir_ieq(b, rfi, nir_channel(b, value, i));
      }

      if (all_eq == NULL) {
         all_eq = is_eq;
      } else {
         all_eq = nir_iand(b, all_eq, is_eq);
      }
   }

   return nir_vote_all(b, 1, all_eq);
}

static nir_ssa_def *
lower_shuffle_to_swizzle(nir_builder *b, nir_intrinsic_instr *intrin,
                         const nir_lower_subgroups_options *options)
{
   unsigned mask = nir_src_as_uint(intrin->src[1]);

   if (mask >= 32)
      return NULL;

   nir_intrinsic_instr *swizzle = nir_intrinsic_instr_create(
      b->shader, nir_intrinsic_masked_swizzle_amd);
   swizzle->num_components = intrin->num_components;
   nir_src_copy(&swizzle->src[0], &intrin->src[0], &swizzle->instr);
   nir_intrinsic_set_swizzle_mask(swizzle, (mask << 10) | 0x1f);
   nir_ssa_dest_init(&swizzle->instr, &swizzle->dest,
                     intrin->dest.ssa.num_components,
                     intrin->dest.ssa.bit_size);

   if (options->lower_to_scalar && swizzle->num_components > 1) {
      return lower_subgroup_op_to_scalar(b, swizzle, options->lower_shuffle_to_32bit);
   } else if (options->lower_shuffle_to_32bit && swizzle->src[0].ssa->bit_size == 64) {
      return lower_subgroup_op_to_32bit(b, swizzle);
   } else {
      nir_builder_instr_insert(b, &swizzle->instr);
      return &swizzle->dest.ssa;
   }
}

/* Lowers "specialized" shuffles to a generic nir_intrinsic_shuffle. */

static nir_ssa_def *
lower_to_shuffle(nir_builder *b, nir_intrinsic_instr *intrin,
                 const nir_lower_subgroups_options *options)
{
   if (intrin->intrinsic == nir_intrinsic_shuffle_xor &&
       options->lower_shuffle_to_swizzle_amd &&
       nir_src_is_const(intrin->src[1])) {
      nir_ssa_def *result =
         lower_shuffle_to_swizzle(b, intrin, options);
      if (result)
         return result;
   }

   nir_ssa_def *index = nir_load_subgroup_invocation(b);
   bool is_shuffle = false;
   switch (intrin->intrinsic) {
   case nir_intrinsic_shuffle_xor:
      assert(intrin->src[1].is_ssa);
      index = nir_ixor(b, index, intrin->src[1].ssa);
      is_shuffle = true;
      break;
   case nir_intrinsic_shuffle_up:
      assert(intrin->src[1].is_ssa);
      index = nir_isub(b, index, intrin->src[1].ssa);
      is_shuffle = true;
      break;
   case nir_intrinsic_shuffle_down:
      assert(intrin->src[1].is_ssa);
      index = nir_iadd(b, index, intrin->src[1].ssa);
      is_shuffle = true;
      break;
   case nir_intrinsic_quad_broadcast:
      assert(intrin->src[1].is_ssa);
      index = nir_ior(b, nir_iand(b, index, nir_imm_int(b, ~0x3)),
                         intrin->src[1].ssa);
      break;
   case nir_intrinsic_quad_swap_horizontal:
      /* For Quad operations, subgroups are divided into quads where
       * (invocation % 4) is the index to a square arranged as follows:
       *
       *    +---+---+
       *    | 0 | 1 |
       *    +---+---+
       *    | 2 | 3 |
       *    +---+---+
       */
      index = nir_ixor(b, index, nir_imm_int(b, 0x1));
      break;
   case nir_intrinsic_quad_swap_vertical:
      index = nir_ixor(b, index, nir_imm_int(b, 0x2));
      break;
   case nir_intrinsic_quad_swap_diagonal:
      index = nir_ixor(b, index, nir_imm_int(b, 0x3));
      break;
   case nir_intrinsic_rotate: {
      nir_ssa_def *delta = intrin->src[1].ssa;
      nir_ssa_def *local_id = nir_load_subgroup_invocation(b);
      const unsigned cluster_size = nir_intrinsic_cluster_size(intrin);

      nir_ssa_def *rotation_group_mask =
         cluster_size > 0 ? nir_imm_int(b, (int)(cluster_size - 1)) :
                            nir_iadd_imm(b, nir_load_subgroup_size(b), -1);

      index = nir_iand(b, nir_iadd(b, local_id, delta),
                          rotation_group_mask);
      if (cluster_size > 0) {
         index = nir_iadd(b, index,
                          nir_iand(b, local_id, nir_inot(b, rotation_group_mask)));
      }
      break;
   }
   default:
      unreachable("Invalid intrinsic");
   }

   nir_intrinsic_instr *shuffle =
      nir_intrinsic_instr_create(b->shader, nir_intrinsic_shuffle);
   shuffle->num_components = intrin->num_components;
   nir_src_copy(&shuffle->src[0], &intrin->src[0], &shuffle->instr);
   shuffle->src[1] = nir_src_for_ssa(index);
   nir_ssa_dest_init(&shuffle->instr, &shuffle->dest,
                     intrin->dest.ssa.num_components,
                     intrin->dest.ssa.bit_size);

   bool lower_to_32bit = options->lower_shuffle_to_32bit && is_shuffle;
   if (options->lower_to_scalar && shuffle->num_components > 1) {
      return lower_subgroup_op_to_scalar(b, shuffle, lower_to_32bit);
   } else if (lower_to_32bit && shuffle->src[0].ssa->bit_size == 64) {
      return lower_subgroup_op_to_32bit(b, shuffle);
   } else {
      nir_builder_instr_insert(b, &shuffle->instr);
      return &shuffle->dest.ssa;
   }
}

static const struct glsl_type *
glsl_type_for_ssa(nir_ssa_def *def)
{
   const struct glsl_type *comp_type = def->bit_size == 1 ? glsl_bool_type() :
      glsl_uintN_t_type(def->bit_size);
   return glsl_replace_vector_type(comp_type, def->num_components);
}

/* Lower nir_intrinsic_shuffle to a waterfall loop + nir_read_invocation.
 */
static nir_ssa_def *
lower_shuffle(nir_builder *b, nir_intrinsic_instr *intrin)
{
   assert(intrin->src[0].is_ssa);
   assert(intrin->src[1].is_ssa);
   nir_ssa_def *val = intrin->src[0].ssa;
   nir_ssa_def *id = intrin->src[1].ssa;

   /* The loop is something like:
    *
    * while (true) {
    *    first_id = readFirstInvocation(gl_SubgroupInvocationID);
    *    first_val = readFirstInvocation(val);
    *    first_result = readInvocation(val, readFirstInvocation(id));
    *    if (id == first_id)
    *       result = first_val;
    *    if (elect()) {
    *       if (id > gl_SubgroupInvocationID) {
    *          result = first_result;
    *       }
    *       break;
    *    }
    * }
    *
    * The idea is to guarantee, on each iteration of the loop, that anything
    * reading from first_id gets the correct value, so that we can then kill
    * it off by breaking out of the loop. Before doing that we also have to
    * ensure that first_id invocation gets the correct value. It only won't be
    * assigned the correct value already if the invocation it's reading from
    * isn't already killed off, that is, if it's later than its own ID.
    * Invocations where id <= gl_SubgroupInvocationID will be assigned their
    * result in the first if, and invocations where id >
    * gl_SubgroupInvocationID will be assigned their result in the second if.
    *
    * We do this more complicated loop rather than looping over all id's
    * explicitly because at this point we don't know the "actual" subgroup
    * size and at the moment there's no way to get at it, which means we may
    * loop over always-inactive invocations.
    */

   nir_ssa_def *subgroup_id = nir_load_subgroup_invocation(b);

   nir_variable *result =
      nir_local_variable_create(b->impl, glsl_type_for_ssa(val), "result");

   nir_loop *loop = nir_push_loop(b); {
      nir_ssa_def *first_id = nir_read_first_invocation(b, subgroup_id);
      nir_ssa_def *first_val = nir_read_first_invocation(b, val);
      nir_ssa_def *first_result =
         nir_read_invocation(b, val, nir_read_first_invocation(b, id));

      nir_if *nif = nir_push_if(b, nir_ieq(b, id, first_id)); {
         nir_store_var(b, result, first_val, BITFIELD_MASK(val->num_components));
      } nir_pop_if(b, nif);

      nir_if *nif2 = nir_push_if(b, nir_elect(b, 1)); {
         nir_if *nif3 = nir_push_if(b, nir_ult(b, subgroup_id, id)); {
            nir_store_var(b, result, first_result, BITFIELD_MASK(val->num_components));
         } nir_pop_if(b, nif3);

         nir_jump(b, nir_jump_break);
      } nir_pop_if(b, nif2);
   } nir_pop_loop(b, loop);

   return nir_load_var(b, result);
}

static bool
lower_subgroups_filter(const nir_instr *instr, const void *_options)
{
   return instr->type == nir_instr_type_intrinsic;
}

/* Return a ballot-mask-sized value which represents "val" sign-extended and
 * then shifted left by "shift". Only particular values for "val" are
 * supported, see below.
 */
static nir_ssa_def *
build_ballot_imm_ishl(nir_builder *b, int64_t val, nir_ssa_def *shift,
                      const nir_lower_subgroups_options *options)
{
   /* This only works if all the high bits are the same as bit 1. */
   assert((val >> 2) == (val & 0x2 ? -1 : 0));

   /* First compute the result assuming one ballot component. */
   nir_ssa_def *result =
      nir_ishl(b, nir_imm_intN_t(b, val, options->ballot_bit_size), shift);

   if (options->ballot_components == 1)
      return result;

   /* Fix up the result when there is > 1 component. The idea is that nir_ishl
    * masks out the high bits of the shift value already, so in case there's
    * more than one component the component which 1 would be shifted into
    * already has the right value and all we have to do is fixup the other
    * components. Components below it should always be 0, and components above
    * it must be either 0 or ~0 because of the assert above. For example, if
    * the target ballot size is 2 x uint32, and we're shifting 1 by 33, then
    * we'll feed 33 into ishl, which will mask it off to get 1, so we'll
    * compute a single-component result of 2, which is correct for the second
    * component, but the first component needs to be 0, which we get by
    * comparing the high bits of the shift with 0 and selecting the original
    * answer or 0 for the first component (and something similar with the
    * second component). This idea is generalized here for any component count
    */
   nir_const_value min_shift[4];
   for (unsigned i = 0; i < options->ballot_components; i++)
      min_shift[i] = nir_const_value_for_int(i * options->ballot_bit_size, 32);
   nir_ssa_def *min_shift_val = nir_build_imm(b, options->ballot_components, 32, min_shift);

   nir_const_value max_shift[4];
   for (unsigned i = 0; i < options->ballot_components; i++)
      max_shift[i] = nir_const_value_for_int((i + 1) * options->ballot_bit_size, 32);
   nir_ssa_def *max_shift_val = nir_build_imm(b, options->ballot_components, 32, max_shift);

   return nir_bcsel(b, nir_ult(b, shift, max_shift_val),
                    nir_bcsel(b, nir_ult(b, shift, min_shift_val),
                              nir_imm_intN_t(b, val >> 63, result->bit_size),
                              result),
                    nir_imm_intN_t(b, 0, result->bit_size));
}

static nir_ssa_def *
build_subgroup_eq_mask(nir_builder *b,
                       const nir_lower_subgroups_options *options)
{
   nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b);

   return build_ballot_imm_ishl(b, 1, subgroup_idx, options);
}

static nir_ssa_def *
build_subgroup_ge_mask(nir_builder *b,
                       const nir_lower_subgroups_options *options)
{
   nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b);

   return build_ballot_imm_ishl(b, ~0ull, subgroup_idx, options);
}

static nir_ssa_def *
build_subgroup_gt_mask(nir_builder *b,
                       const nir_lower_subgroups_options *options)
{
   nir_ssa_def *subgroup_idx = nir_load_subgroup_invocation(b);

   return build_ballot_imm_ishl(b, ~1ull, subgroup_idx, options);
}

/* Return a mask which is 1 for threads up to the run-time subgroup size, i.e.
 * 1 for the entire subgroup. SPIR-V requires us to return 0 for indices at or
 * above the subgroup size for the masks, but gt_mask and ge_mask make them 1
 * so we have to "and" with this mask.
 */
static nir_ssa_def *
build_subgroup_mask(nir_builder *b,
                    const nir_lower_subgroups_options *options)
{
   nir_ssa_def *subgroup_size = nir_load_subgroup_size(b);

   /* First compute the result assuming one ballot component. */
   nir_ssa_def *result =
      nir_ushr(b, nir_imm_intN_t(b, ~0ull, options->ballot_bit_size),
                  nir_isub_imm(b, options->ballot_bit_size,
                               subgroup_size));

   /* Since the subgroup size and ballot bitsize are both powers of two, there
    * are two possible cases to consider:
    *
    * (1) The subgroup size is less than the ballot bitsize. We need to return
    * "result" in the first component and 0 in every other component.
    * (2) The subgroup size is a multiple of the ballot bitsize. We need to
    * return ~0 if the subgroup size divided by the ballot bitsize is less
    * than or equal to the index in the vector and 0 otherwise. For example,
    * with a target ballot type of 4 x uint32 and subgroup_size = 64 we'd need
    * to return { ~0, ~0, 0, 0 }.
    *
    * In case (2) it turns out that "result" will be ~0, because
    * "ballot_bit_size - subgroup_size" is also a multiple of
    * "ballot_bit_size" and since nir_ushr masks the shift value it will
    * shifted by 0. This means that the first component can just be "result"
    * in all cases.  The other components will also get the correct value in
    * case (1) if we just use the rule in case (2), so we'll get the correct
    * result if we just follow (2) and then replace the first component with
    * "result". 
    */ 
   nir_const_value min_idx[4];
   for (unsigned i = 0; i < options->ballot_components; i++)
      min_idx[i] = nir_const_value_for_int(i * options->ballot_bit_size, 32);
   nir_ssa_def *min_idx_val = nir_build_imm(b, options->ballot_components, 32, min_idx);

   nir_ssa_def *result_extended =
      nir_pad_vector_imm_int(b, result, ~0ull, options->ballot_components);

   return nir_bcsel(b, nir_ult(b, min_idx_val, subgroup_size),
                    result_extended, nir_imm_intN_t(b, 0, options->ballot_bit_size));
}

static nir_ssa_def *
vec_bit_count(nir_builder *b, nir_ssa_def *value)
{
   nir_ssa_def *vec_result = nir_bit_count(b, value);
   nir_ssa_def *result = nir_channel(b, vec_result, 0);
   for (unsigned i = 1; i < value->num_components; i++)
      result = nir_iadd(b, result, nir_channel(b, vec_result, i));
   return result;
}

static nir_ssa_def *
vec_find_lsb(nir_builder *b, nir_ssa_def *value)
{
   nir_ssa_def *vec_result = nir_find_lsb(b, value);
   nir_ssa_def *result = nir_imm_int(b, -1);
   for (int i = value->num_components - 1; i >= 0; i--) {
      nir_ssa_def *channel = nir_channel(b, vec_result, i);
      /* result = channel >= 0 ? (i * bitsize + channel) : result */
      result = nir_bcsel(b, nir_ige(b, channel, nir_imm_int(b, 0)),
                         nir_iadd_imm(b, channel, i * value->bit_size),
                         result);
   }
   return result;
}

static nir_ssa_def *
vec_find_msb(nir_builder *b, nir_ssa_def *value)
{
   nir_ssa_def *vec_result = nir_ufind_msb(b, value);
   nir_ssa_def *result = nir_imm_int(b, -1);
   for (unsigned i = 0; i < value->num_components; i++) {
      nir_ssa_def *channel = nir_channel(b, vec_result, i);
      /* result = channel >= 0 ? (i * bitsize + channel) : result */
      result = nir_bcsel(b, nir_ige(b, channel, nir_imm_int(b, 0)),
                         nir_iadd_imm(b, channel, i * value->bit_size),
                         result);
   }
   return result;
}

static nir_ssa_def *
lower_dynamic_quad_broadcast(nir_builder *b, nir_intrinsic_instr *intrin,
                             const nir_lower_subgroups_options *options)
{
   if (!options->lower_quad_broadcast_dynamic_to_const)
      return lower_to_shuffle(b, intrin, options);

   nir_ssa_def *dst = NULL;

   for (unsigned i = 0; i < 4; ++i) {
      nir_intrinsic_instr *qbcst =
         nir_intrinsic_instr_create(b->shader, nir_intrinsic_quad_broadcast);

      qbcst->num_components = intrin->num_components;
      qbcst->src[1] = nir_src_for_ssa(nir_imm_int(b, i));
      nir_src_copy(&qbcst->src[0], &intrin->src[0], &qbcst->instr);
      nir_ssa_dest_init(&qbcst->instr, &qbcst->dest,
                        intrin->dest.ssa.num_components,
                        intrin->dest.ssa.bit_size);

      nir_ssa_def *qbcst_dst = NULL;

      if (options->lower_to_scalar && qbcst->num_components > 1) {
         qbcst_dst = lower_subgroup_op_to_scalar(b, qbcst, false);
      } else {
         nir_builder_instr_insert(b, &qbcst->instr);
         qbcst_dst = &qbcst->dest.ssa;
      }

      if (i)
         dst = nir_bcsel(b, nir_ieq(b, intrin->src[1].ssa,
                                    nir_src_for_ssa(nir_imm_int(b, i)).ssa),
                         qbcst_dst, dst);
      else
         dst = qbcst_dst;
   }

   return dst;
}

static nir_ssa_def *
lower_read_invocation_to_cond(nir_builder *b, nir_intrinsic_instr *intrin)
{
   return nir_read_invocation_cond_ir3(b, intrin->dest.ssa.bit_size,
                                       intrin->src[0].ssa,
                                       nir_ieq(b, intrin->src[1].ssa,
                                               nir_load_subgroup_invocation(b)));
}

static nir_ssa_def *
lower_subgroups_instr(nir_builder *b, nir_instr *instr, void *_options)
{
   const nir_lower_subgroups_options *options = _options;

   nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
   switch (intrin->intrinsic) {
   case nir_intrinsic_vote_any:
   case nir_intrinsic_vote_all:
      if (options->lower_vote_trivial)
         return nir_ssa_for_src(b, intrin->src[0], 1);
      break;

   case nir_intrinsic_vote_feq:
   case nir_intrinsic_vote_ieq:
      if (options->lower_vote_trivial)
         return nir_imm_true(b);

      if (options->lower_vote_eq)
         return lower_vote_eq(b, intrin);

      if (options->lower_to_scalar && intrin->num_components > 1)
         return lower_vote_eq_to_scalar(b, intrin);
      break;

   case nir_intrinsic_load_subgroup_size:
      if (options->subgroup_size)
         return nir_imm_int(b, options->subgroup_size);
      break;

   case nir_intrinsic_read_invocation:
      if (options->lower_to_scalar && intrin->num_components > 1)
         return lower_subgroup_op_to_scalar(b, intrin, false);

      if (options->lower_read_invocation_to_cond)
         return lower_read_invocation_to_cond(b, intrin);

      break;

   case nir_intrinsic_read_first_invocation:
      if (options->lower_to_scalar && intrin->num_components > 1)
         return lower_subgroup_op_to_scalar(b, intrin, false);
      break;

   case nir_intrinsic_load_subgroup_eq_mask:
   case nir_intrinsic_load_subgroup_ge_mask:
   case nir_intrinsic_load_subgroup_gt_mask:
   case nir_intrinsic_load_subgroup_le_mask:
   case nir_intrinsic_load_subgroup_lt_mask: {
      if (!options->lower_subgroup_masks)
         return NULL;

      nir_ssa_def *val;
      switch (intrin->intrinsic) {
      case nir_intrinsic_load_subgroup_eq_mask:
         val = build_subgroup_eq_mask(b, options);
         break;
      case nir_intrinsic_load_subgroup_ge_mask:
         val = nir_iand(b, build_subgroup_ge_mask(b, options),
                           build_subgroup_mask(b, options));
         break;
      case nir_intrinsic_load_subgroup_gt_mask:
         val = nir_iand(b, build_subgroup_gt_mask(b, options),
                           build_subgroup_mask(b, options));
         break;
      case nir_intrinsic_load_subgroup_le_mask:
         val = nir_inot(b, build_subgroup_gt_mask(b, options));
         break;
      case nir_intrinsic_load_subgroup_lt_mask:
         val = nir_inot(b, build_subgroup_ge_mask(b, options));
         break;
      default:
         unreachable("you seriously can't tell this is unreachable?");
      }

      return uint_to_ballot_type(b, val,
                                 intrin->dest.ssa.num_components,
                                 intrin->dest.ssa.bit_size);
   }

   case nir_intrinsic_ballot: {
      if (intrin->dest.ssa.num_components == options->ballot_components &&
          intrin->dest.ssa.bit_size == options->ballot_bit_size)
         return NULL;

      nir_ssa_def *ballot =
         nir_ballot(b, options->ballot_components, options->ballot_bit_size,
                    intrin->src[0].ssa);

      return uint_to_ballot_type(b, ballot,
                                 intrin->dest.ssa.num_components,
                                 intrin->dest.ssa.bit_size);
   }

   case nir_intrinsic_ballot_bitfield_extract:
   case nir_intrinsic_ballot_bit_count_reduce:
   case nir_intrinsic_ballot_find_lsb:
   case nir_intrinsic_ballot_find_msb: {
      assert(intrin->src[0].is_ssa);
      nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa,
                                                 options);

      if (intrin->intrinsic != nir_intrinsic_ballot_bitfield_extract &&
          intrin->intrinsic != nir_intrinsic_ballot_find_lsb) {
         /* For OpGroupNonUniformBallotFindMSB, the SPIR-V Spec says:
          *
          *    "Find the most significant bit set to 1 in Value, considering
          *    only the bits in Value required to represent all bits of the
          *    group’s invocations.  If none of the considered bits is set to
          *    1, the result is undefined."
          *
          * It has similar text for the other three.  This means that, in case
          * the subgroup size is less than 32, we have to mask off the unused
          * bits.  If the subgroup size is fixed and greater than or equal to
          * 32, the mask will be 0xffffffff and nir_opt_algebraic will delete
          * the iand.
          *
          * We only have to worry about this for BitCount and FindMSB because
          * FindLSB counts from the bottom and BitfieldExtract selects
          * individual bits.  In either case, if run outside the range of
          * valid bits, we hit the undefined results case and we can return
          * anything we want.
          */
         int_val = nir_iand(b, int_val, build_subgroup_mask(b, options));
      }

      switch (intrin->intrinsic) {
      case nir_intrinsic_ballot_bitfield_extract: {
         assert(intrin->src[1].is_ssa);
         nir_ssa_def *idx = intrin->src[1].ssa;
         if (int_val->num_components > 1) {
            /* idx will be truncated by nir_ushr, so we just need to select
             * the right component using the bits of idx that are truncated in
             * the shift.
             */
            int_val =
               nir_vector_extract(b, int_val,
                                  nir_udiv_imm(b, idx, int_val->bit_size));
         }

         return nir_test_mask(b, nir_ushr(b, int_val, idx), 1);
      }
      case nir_intrinsic_ballot_bit_count_reduce:
         return vec_bit_count(b, int_val);
      case nir_intrinsic_ballot_find_lsb:
         return vec_find_lsb(b, int_val);
      case nir_intrinsic_ballot_find_msb:
         return vec_find_msb(b, int_val);
      default:
         unreachable("you seriously can't tell this is unreachable?");
      }
   }

   case nir_intrinsic_ballot_bit_count_exclusive:
   case nir_intrinsic_ballot_bit_count_inclusive: {
      assert(intrin->src[0].is_ssa);
      nir_ssa_def *int_val = ballot_type_to_uint(b, intrin->src[0].ssa,
                                                 options);
      if (options->lower_ballot_bit_count_to_mbcnt_amd) {
         nir_ssa_def *acc;
         if (intrin->intrinsic == nir_intrinsic_ballot_bit_count_exclusive) {
            acc = nir_imm_int(b, 0);
         } else {
            acc = nir_iand_imm(b, nir_u2u32(b, int_val), 0x1);
            int_val = nir_ushr_imm(b, int_val, 1);
         }
         return nir_mbcnt_amd(b, int_val, acc);
      }

      nir_ssa_def *mask;
      if (intrin->intrinsic == nir_intrinsic_ballot_bit_count_inclusive) {
         mask = nir_inot(b, build_subgroup_gt_mask(b, options));
      } else {
         mask = nir_inot(b, build_subgroup_ge_mask(b, options));
      }

      return vec_bit_count(b, nir_iand(b, int_val, mask));
   }

   case nir_intrinsic_elect: {
      if (!options->lower_elect)
         return NULL;

      return nir_ieq(b, nir_load_subgroup_invocation(b), nir_first_invocation(b));
   }

   case nir_intrinsic_shuffle:
      if (options->lower_shuffle)
         return lower_shuffle(b, intrin);
      else if (options->lower_to_scalar && intrin->num_components > 1)
         return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit);
      else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64)
         return lower_subgroup_op_to_32bit(b, intrin);
      break;
   case nir_intrinsic_shuffle_xor:
   case nir_intrinsic_shuffle_up:
   case nir_intrinsic_shuffle_down:
      if (options->lower_relative_shuffle)
         return lower_to_shuffle(b, intrin, options);
      else if (options->lower_to_scalar && intrin->num_components > 1)
         return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit);
      else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64)
         return lower_subgroup_op_to_32bit(b, intrin);
      break;

   case nir_intrinsic_quad_broadcast:
   case nir_intrinsic_quad_swap_horizontal:
   case nir_intrinsic_quad_swap_vertical:
   case nir_intrinsic_quad_swap_diagonal:
      if (options->lower_quad ||
          (options->lower_quad_broadcast_dynamic &&
           intrin->intrinsic == nir_intrinsic_quad_broadcast &&
           !nir_src_is_const(intrin->src[1])))
         return lower_dynamic_quad_broadcast(b, intrin, options);
      else if (options->lower_to_scalar && intrin->num_components > 1)
         return lower_subgroup_op_to_scalar(b, intrin, false);
      break;

   case nir_intrinsic_reduce: {
      nir_ssa_def *ret = NULL;
      /* A cluster size greater than the subgroup size is implemention defined */
      if (options->subgroup_size &&
          nir_intrinsic_cluster_size(intrin) >= options->subgroup_size) {
         nir_intrinsic_set_cluster_size(intrin, 0);
         ret = NIR_LOWER_INSTR_PROGRESS;
      }
      if (options->lower_to_scalar && intrin->num_components > 1)
         ret = lower_subgroup_op_to_scalar(b, intrin, false);
      return ret;
   }
   case nir_intrinsic_inclusive_scan:
   case nir_intrinsic_exclusive_scan:
      if (options->lower_to_scalar && intrin->num_components > 1)
         return lower_subgroup_op_to_scalar(b, intrin, false);
      break;

   case nir_intrinsic_rotate:
      if (nir_intrinsic_execution_scope(intrin) == NIR_SCOPE_SUBGROUP) {
         if (options->lower_rotate_to_shuffle)
            return lower_to_shuffle(b, intrin, options);
         else if (options->lower_to_scalar && intrin->num_components > 1)
            return lower_subgroup_op_to_scalar(b, intrin, options->lower_shuffle_to_32bit);
         else if (options->lower_shuffle_to_32bit && intrin->src[0].ssa->bit_size == 64)
            return lower_subgroup_op_to_32bit(b, intrin);
      }
      break;

   default:
      break;
   }

   return NULL;
}

bool
nir_lower_subgroups(nir_shader *shader,
                    const nir_lower_subgroups_options *options)
{
   return nir_shader_lower_instructions(shader,
                                        lower_subgroups_filter,
                                        lower_subgroups_instr,
                                        (void *)options);
}