summaryrefslogtreecommitdiff
path: root/src/compiler/nir/nir_opt_loop_unroll.c
blob: f8741ea6c50646dfced53ec03eb6e4a10fbd760e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include "nir.h"
#include "nir_builder.h"
#include "nir_control_flow.h"
#include "nir_loop_analyze.h"


/* This limit is chosen fairly arbitrarily.  GLSL IR max iteration is 32
 * instructions. (Multiply counting nodes and magic number 5.)  But there is
 * no 1:1 mapping between GLSL IR and NIR so 25 was picked because it seemed
 * to give about the same results. Around 5 instructions per node.  But some
 * loops that would unroll with GLSL IR fail to unroll if we set this to 25 so
 * we set it to 26.
 */
#define LOOP_UNROLL_LIMIT 26

/* Prepare this loop for unrolling by first converting to lcssa and then
 * converting the phis from the top level of the loop body to regs.
 * Partially converting out of SSA allows us to unroll the loop without having
 * to keep track of and update phis along the way which gets tricky and
 * doesn't add much value over converting to regs.
 *
 * The loop may have a jump instruction at the end of the loop which does
 * nothing.  Once we're out of SSA, we can safely delete it so we don't have
 * to deal with it later.
 */
static void
loop_prepare_for_unroll(nir_loop *loop)
{
   nir_rematerialize_derefs_in_use_blocks_impl(
      nir_cf_node_get_function(&loop->cf_node));

   nir_convert_loop_to_lcssa(loop);

   /* Lower phis at the top level of the loop body */
   foreach_list_typed_safe(nir_cf_node, node, node, &loop->body) {
      if (nir_cf_node_block == node->type) {
         nir_lower_phis_to_regs_block(nir_cf_node_as_block(node));
      }
   }

   /* Lower phis after the loop */
   nir_block *block_after_loop =
      nir_cf_node_as_block(nir_cf_node_next(&loop->cf_node));

   nir_lower_phis_to_regs_block(block_after_loop);

   /* Remove jump if it's the last instruction in the loop */
   nir_instr *last_instr = nir_block_last_instr(nir_loop_last_block(loop));
   if (last_instr && last_instr->type == nir_instr_type_jump) {
      nir_instr_remove(last_instr);
   }
}

static void
get_first_blocks_in_terminator(nir_loop_terminator *term,
                               nir_block **first_break_block,
                               nir_block **first_continue_block)
{
   if (term->continue_from_then) {
      *first_continue_block = nir_if_first_then_block(term->nif);
      *first_break_block = nir_if_first_else_block(term->nif);
   } else {
      *first_continue_block = nir_if_first_else_block(term->nif);
      *first_break_block = nir_if_first_then_block(term->nif);
   }
}

/**
 * Unroll a loop where we know exactly how many iterations there are and there
 * is only a single exit point.  Note here we can unroll loops with multiple
 * theoretical exits that only have a single terminating exit that we always
 * know is the "real" exit.
 *
 *     loop {
 *         ...instrs...
 *     }
 *
 * And the iteration count is 3, the output will be:
 *
 *     ...instrs... ...instrs... ...instrs...
 */
static void
simple_unroll(nir_loop *loop)
{
   nir_loop_terminator *limiting_term = loop->info->limiting_terminator;
   assert(nir_is_trivial_loop_if(limiting_term->nif,
                                 limiting_term->break_block));

   loop_prepare_for_unroll(loop);

   /* Skip over loop terminator and get the loop body. */
   list_for_each_entry(nir_loop_terminator, terminator,
                       &loop->info->loop_terminator_list,
                       loop_terminator_link) {

      /* Remove all but the limiting terminator as we know the other exit
       * conditions can never be met. Note we need to extract any instructions
       * in the continue from branch and insert then into the loop body before
       * removing it.
       */
      if (terminator->nif != limiting_term->nif) {
         nir_block *first_break_block;
         nir_block *first_continue_block;
         get_first_blocks_in_terminator(terminator, &first_break_block,
                                        &first_continue_block);

         assert(nir_is_trivial_loop_if(terminator->nif,
                                       terminator->break_block));

         nir_cf_list continue_from_lst;
         nir_cf_extract(&continue_from_lst,
                        nir_before_block(first_continue_block),
                        nir_after_block(terminator->continue_from_block));
         nir_cf_reinsert(&continue_from_lst,
                         nir_after_cf_node(&terminator->nif->cf_node));

         nir_cf_node_remove(&terminator->nif->cf_node);
      }
   }

   nir_block *first_break_block;
   nir_block *first_continue_block;
   get_first_blocks_in_terminator(limiting_term, &first_break_block,
                                  &first_continue_block);

   /* Pluck out the loop header */
   nir_block *header_blk = nir_loop_first_block(loop);
   nir_cf_list lp_header;
   nir_cf_extract(&lp_header, nir_before_block(header_blk),
                  nir_before_cf_node(&limiting_term->nif->cf_node));

   /* Add the continue from block of the limiting terminator to the loop body
    */
   nir_cf_list continue_from_lst;
   nir_cf_extract(&continue_from_lst, nir_before_block(first_continue_block),
                  nir_after_block(limiting_term->continue_from_block));
   nir_cf_reinsert(&continue_from_lst,
                   nir_after_cf_node(&limiting_term->nif->cf_node));

   /* Pluck out the loop body */
   nir_cf_list loop_body;
   nir_cf_extract(&loop_body, nir_after_cf_node(&limiting_term->nif->cf_node),
                  nir_after_block(nir_loop_last_block(loop)));

   struct hash_table *remap_table = _mesa_pointer_hash_table_create(NULL);

   /* Clone the loop header and insert before the loop */
   nir_cf_list_clone_and_reinsert(&lp_header, loop->cf_node.parent,
                                  nir_before_cf_node(&loop->cf_node),
                                  remap_table);

   for (unsigned i = 0; i < loop->info->max_trip_count; i++) {
      /* Clone loop body and insert before the loop */
      nir_cf_list_clone_and_reinsert(&loop_body, loop->cf_node.parent,
                                     nir_before_cf_node(&loop->cf_node),
                                     remap_table);

      /* Clone loop header and insert after loop body */
      nir_cf_list_clone_and_reinsert(&lp_header, loop->cf_node.parent,
                                     nir_before_cf_node(&loop->cf_node),
                                     remap_table);
   }

   /* Remove the break from the loop terminator and add instructions from
    * the break block after the unrolled loop.
    */
   nir_instr *break_instr = nir_block_last_instr(limiting_term->break_block);
   nir_instr_remove(break_instr);
   nir_cf_list break_list;
   nir_cf_extract(&break_list, nir_before_block(first_break_block),
                  nir_after_block(limiting_term->break_block));

   /* Clone so things get properly remapped */
   nir_cf_list_clone_and_reinsert(&break_list, loop->cf_node.parent,
                                  nir_before_cf_node(&loop->cf_node),
                                  remap_table);

   /* Remove the loop */
   nir_cf_node_remove(&loop->cf_node);

   /* Delete the original loop body, break block & header */
   nir_cf_delete(&lp_header);
   nir_cf_delete(&loop_body);
   nir_cf_delete(&break_list);

   _mesa_hash_table_destroy(remap_table, NULL);
}

static void
move_cf_list_into_loop_term(nir_cf_list *lst, nir_loop_terminator *term)
{
   /* Move the rest of the loop inside the continue-from-block */
   nir_cf_reinsert(lst, nir_after_block(term->continue_from_block));

   /* Remove the break */
   nir_instr_remove(nir_block_last_instr(term->break_block));
}

static nir_cursor
get_complex_unroll_insert_location(nir_cf_node *node, bool continue_from_then)
{
   if (node->type == nir_cf_node_loop) {
      return nir_before_cf_node(node);
   } else {
      nir_if *if_stmt = nir_cf_node_as_if(node);
      if (continue_from_then) {
         return nir_after_block(nir_if_last_then_block(if_stmt));
      } else {
         return nir_after_block(nir_if_last_else_block(if_stmt));
      }
   }
}

static nir_cf_node *
complex_unroll_loop_body(nir_loop *loop, nir_loop_terminator *unlimit_term,
                         nir_cf_list *lp_header, nir_cf_list *lp_body,
                         struct hash_table *remap_table,
                         unsigned num_times_to_clone)
{
   /* In the terminator that we have no trip count for move everything after
    * the terminator into the continue from branch.
    */
   nir_cf_list loop_end;
   nir_cf_extract(&loop_end, nir_after_cf_node(&unlimit_term->nif->cf_node),
                  nir_after_block(nir_loop_last_block(loop)));
   move_cf_list_into_loop_term(&loop_end, unlimit_term);

   /* Pluck out the loop body. */
   nir_cf_extract(lp_body, nir_before_block(nir_loop_first_block(loop)),
                  nir_after_block(nir_loop_last_block(loop)));

   /* Set unroll_loc to the loop as we will insert the unrolled loop before it
    */
   nir_cf_node *unroll_loc = &loop->cf_node;

   /* Temp list to store the cloned loop as we unroll */
   nir_cf_list unrolled_lp_body;

   for (unsigned i = 0; i < num_times_to_clone; i++) {

      nir_cursor cursor =
         get_complex_unroll_insert_location(unroll_loc,
                                            unlimit_term->continue_from_then);

      /* Clone loop header and insert in if branch */
      nir_cf_list_clone_and_reinsert(lp_header, loop->cf_node.parent,
                                     cursor, remap_table);

      cursor =
         get_complex_unroll_insert_location(unroll_loc,
                                            unlimit_term->continue_from_then);

      /* Clone loop body */
      nir_cf_list_clone(&unrolled_lp_body, lp_body, loop->cf_node.parent,
                        remap_table);

      unroll_loc = exec_node_data(nir_cf_node,
                                  exec_list_get_tail(&unrolled_lp_body.list),
                                  node);
      assert(unroll_loc->type == nir_cf_node_block &&
             exec_list_is_empty(&nir_cf_node_as_block(unroll_loc)->instr_list));

      /* Get the unrolled if node */
      unroll_loc = nir_cf_node_prev(unroll_loc);

      /* Insert unrolled loop body */
      nir_cf_reinsert(&unrolled_lp_body, cursor);
   }

   return unroll_loc;
}

/**
 * Unroll a loop with two exists when the trip count of one of the exits is
 * unknown.  If continue_from_then is true, the loop is repeated only when the
 * "then" branch of the if is taken; otherwise it is repeated only
 * when the "else" branch of the if is taken.
 *
 * For example, if the input is:
 *
 *      loop {
 *         ...phis/condition...
 *         if condition {
 *            ...then instructions...
 *         } else {
 *            ...continue instructions...
 *            break
 *         }
 *         ...body...
 *      }
 *
 * And the iteration count is 3, and unlimit_term->continue_from_then is true,
 * then the output will be:
 *
 *      ...condition...
 *      if condition {
 *         ...then instructions...
 *         ...body...
 *         if condition {
 *            ...then instructions...
 *            ...body...
 *            if condition {
 *               ...then instructions...
 *               ...body...
 *            } else {
 *               ...continue instructions...
 *            }
 *         } else {
 *            ...continue instructions...
 *         }
 *      } else {
 *         ...continue instructions...
 *      }
 */
static void
complex_unroll(nir_loop *loop, nir_loop_terminator *unlimit_term,
               bool limiting_term_second)
{
   assert(nir_is_trivial_loop_if(unlimit_term->nif,
                                 unlimit_term->break_block));

   nir_loop_terminator *limiting_term = loop->info->limiting_terminator;
   assert(nir_is_trivial_loop_if(limiting_term->nif,
                                 limiting_term->break_block));

   loop_prepare_for_unroll(loop);

   nir_block *header_blk = nir_loop_first_block(loop);

   nir_cf_list lp_header;
   nir_cf_list limit_break_list;
   unsigned num_times_to_clone;
   if (limiting_term_second) {
      /* Pluck out the loop header */
      nir_cf_extract(&lp_header, nir_before_block(header_blk),
                     nir_before_cf_node(&unlimit_term->nif->cf_node));

      /* We need some special handling when its the second terminator causing
       * us to exit the loop for example:
       *
       *   for (int i = 0; i < uniform_lp_count; i++) {
       *      colour = vec4(0.0, 1.0, 0.0, 1.0);
       *
       *      if (i == 1) {
       *         break;
       *      }
       *      ... any further code is unreachable after i == 1 ...
       *   }
       */
      nir_cf_list after_lt;
      nir_if *limit_if = limiting_term->nif;
      nir_cf_extract(&after_lt, nir_after_cf_node(&limit_if->cf_node),
                     nir_after_block(nir_loop_last_block(loop)));
      move_cf_list_into_loop_term(&after_lt, limiting_term);

      /* Because the trip count is the number of times we pass over the entire
       * loop before hitting a break when the second terminator is the
       * limiting terminator we can actually execute code inside the loop when
       * trip count == 0 e.g. the code above the break.  So we need to bump
       * the trip_count in order for the code below to clone anything.  When
       * trip count == 1 we execute the code above the break twice and the
       * code below it once so we need clone things twice and so on.
       */
      num_times_to_clone = loop->info->max_trip_count + 1;
   } else {
      /* Pluck out the loop header */
      nir_cf_extract(&lp_header, nir_before_block(header_blk),
                     nir_before_cf_node(&limiting_term->nif->cf_node));

      nir_block *first_break_block;
      nir_block *first_continue_block;
      get_first_blocks_in_terminator(limiting_term, &first_break_block,
                                     &first_continue_block);

      /* Remove the break then extract instructions from the break block so we
       * can insert them in the innermost else of the unrolled loop.
       */
      nir_instr *break_instr = nir_block_last_instr(limiting_term->break_block);
      nir_instr_remove(break_instr);
      nir_cf_extract(&limit_break_list, nir_before_block(first_break_block),
                     nir_after_block(limiting_term->break_block));

      nir_cf_list continue_list;
      nir_cf_extract(&continue_list, nir_before_block(first_continue_block),
                     nir_after_block(limiting_term->continue_from_block));

      nir_cf_reinsert(&continue_list,
                      nir_after_cf_node(&limiting_term->nif->cf_node));

      nir_cf_node_remove(&limiting_term->nif->cf_node);

      num_times_to_clone = loop->info->max_trip_count;
   }

   struct hash_table *remap_table = _mesa_pointer_hash_table_create(NULL);

   nir_cf_list lp_body;
   nir_cf_node *unroll_loc =
      complex_unroll_loop_body(loop, unlimit_term, &lp_header, &lp_body,
                               remap_table, num_times_to_clone);

   if (!limiting_term_second) {
      assert(unroll_loc->type == nir_cf_node_if);

      nir_cursor cursor =
         get_complex_unroll_insert_location(unroll_loc,
                                            unlimit_term->continue_from_then);

      /* Clone loop header and insert in if branch */
      nir_cf_list_clone_and_reinsert(&lp_header, loop->cf_node.parent,
                                     cursor, remap_table);

      cursor =
         get_complex_unroll_insert_location(unroll_loc,
                                            unlimit_term->continue_from_then);

      /* Clone so things get properly remapped, and insert break block from
       * the limiting terminator.
       */
      nir_cf_list_clone_and_reinsert(&limit_break_list, loop->cf_node.parent,
                                     cursor, remap_table);

      nir_cf_delete(&limit_break_list);
   }

   /* The loop has been unrolled so remove it. */
   nir_cf_node_remove(&loop->cf_node);

   /* Delete the original loop header and body */
   nir_cf_delete(&lp_header);
   nir_cf_delete(&lp_body);

   _mesa_hash_table_destroy(remap_table, NULL);
}

/**
 * Unroll loops where we only have a single terminator but the exact trip
 * count is unknown. For example:
 *
 *    for (int i = 0; i < imin(x, 4); i++)
 *       ...
 */
static void
complex_unroll_single_terminator(nir_loop *loop)
{
   assert(list_length(&loop->info->loop_terminator_list) == 1);
   assert(loop->info->limiting_terminator);
   assert(nir_is_trivial_loop_if(loop->info->limiting_terminator->nif,
                                 loop->info->limiting_terminator->break_block));

   nir_loop_terminator *terminator = loop->info->limiting_terminator;

   loop_prepare_for_unroll(loop);

   /* Pluck out the loop header */
   nir_cf_list lp_header;
   nir_cf_extract(&lp_header, nir_before_block(nir_loop_first_block(loop)),
                  nir_before_cf_node(&terminator->nif->cf_node));

   struct hash_table *remap_table =
      _mesa_hash_table_create(NULL, _mesa_hash_pointer,
                              _mesa_key_pointer_equal);

   /* We need to clone the loop one extra time in order to clone the lcssa
    * vars for the last iteration (they are inside the following ifs break
    * branch). We leave other passes to clean up this redundant if.
    */
   unsigned num_times_to_clone = loop->info->max_trip_count + 1;

   nir_cf_list lp_body;
   UNUSED nir_cf_node *unroll_loc =
      complex_unroll_loop_body(loop, terminator, &lp_header, &lp_body,
                               remap_table, num_times_to_clone);

   /* Delete the original loop header and body */
   nir_cf_delete(&lp_header);
   nir_cf_delete(&lp_body);

   /* The original loop has been replaced so remove it. */
   nir_cf_node_remove(&loop->cf_node);

   _mesa_hash_table_destroy(remap_table, NULL);
}

/* Unrolls the classic wrapper loops e.g
 *
 *    do {
 *        // ...
 *    } while (false)
 */
static bool
wrapper_unroll(nir_loop *loop)
{
   if (!list_is_empty(&loop->info->loop_terminator_list)) {

      /* Unrolling a loop with a large number of exits can result in a
       * large inrease in register pressure. For now we just skip
       * unrolling if we have more than 3 exits (not including the break
       * at the end of the loop).
       *
       * TODO: Most loops that fit this pattern are simply switch
       * statements that are converted to a loop to take advantage of
       * exiting jump instruction handling. In this case we could make
       * use of a binary seach pattern like we do in
       * nir_lower_indirect_derefs(), this should allow us to unroll the
       * loops in an optimal way and should also avoid some of the
       * register pressure that comes from simply nesting the
       * terminators one after the other.
       */
      if (list_length(&loop->info->loop_terminator_list) > 3)
         return false;

      loop_prepare_for_unroll(loop);

      nir_cursor loop_end = nir_after_block(nir_loop_last_block(loop));
      list_for_each_entry(nir_loop_terminator, terminator,
                          &loop->info->loop_terminator_list,
                          loop_terminator_link) {

         /* Remove break from the terminator */
         nir_instr *break_instr =
            nir_block_last_instr(terminator->break_block);
         nir_instr_remove(break_instr);

         /* Pluck out the loop body. */
         nir_cf_list loop_body;
         nir_cf_extract(&loop_body,
                        nir_after_cf_node(&terminator->nif->cf_node),
                        loop_end);

         /* Reinsert loop body into continue from block */
         nir_cf_reinsert(&loop_body,
                         nir_after_block(terminator->continue_from_block));

         loop_end = terminator->continue_from_then ?
           nir_after_block(nir_if_last_then_block(terminator->nif)) :
           nir_after_block(nir_if_last_else_block(terminator->nif));
      }
   } else {
      loop_prepare_for_unroll(loop);
   }

   /* Pluck out the loop body. */
   nir_cf_list loop_body;
   nir_cf_extract(&loop_body, nir_before_block(nir_loop_first_block(loop)),
                  nir_after_block(nir_loop_last_block(loop)));

   /* Reinsert loop body after the loop */
   nir_cf_reinsert(&loop_body, nir_after_cf_node(&loop->cf_node));

   /* The loop has been unrolled so remove it. */
   nir_cf_node_remove(&loop->cf_node);

   return true;
}

static bool
is_access_out_of_bounds(nir_loop_terminator *term, nir_deref_instr *deref,
                        unsigned trip_count)
{
   for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
      if (d->deref_type != nir_deref_type_array)
         continue;

      nir_alu_instr *alu = nir_instr_as_alu(term->conditional_instr);
      nir_src src = term->induction_rhs ? alu->src[1].src : alu->src[0].src;
      if (!nir_srcs_equal(d->arr.index, src))
         continue;

      nir_deref_instr *parent = nir_deref_instr_parent(d);
      assert(glsl_type_is_array(parent->type) ||
             glsl_type_is_matrix(parent->type));

      /* We have already unrolled the loop and the new one will be imbedded in
       * the innermost continue branch. So unless the array is greater than
       * the trip count any iteration over the loop will be an out of bounds
       * access of the array.
       */
      return glsl_get_length(parent->type) <= trip_count;
   }

   return false;
}

/* If we know an array access is going to be out of bounds remove or replace
 * the access with an undef. This can later result in the entire loop being
 * removed by nir_opt_dead_cf().
 */
static void
remove_out_of_bounds_induction_use(nir_shader *shader, nir_loop *loop,
                                   nir_loop_terminator *term,
                                   nir_cf_list *lp_header,
                                   nir_cf_list *lp_body,
                                   unsigned trip_count)
{
   if (!loop->info->guessed_trip_count)
      return;

   /* Temporarily recreate the original loop so we can alter it */
   nir_cf_reinsert(lp_header, nir_after_block(nir_loop_last_block(loop)));
   nir_cf_reinsert(lp_body, nir_after_block(nir_loop_last_block(loop)));

   nir_builder b;
   nir_builder_init(&b, nir_cf_node_get_function(&loop->cf_node));

   nir_foreach_block_in_cf_node(block, &loop->cf_node) {
      nir_foreach_instr_safe(instr, block) {
         if (instr->type != nir_instr_type_intrinsic)
            continue;

         nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);

         /* Check for arrays variably-indexed by a loop induction variable.
          * If this access is out of bounds remove the instruction or replace
          * its use with an undefined instruction.
          * If the loop is no longer useful we leave it for the appropriate
          * pass to clean it up for us.
          */
         if (intrin->intrinsic == nir_intrinsic_load_deref ||
             intrin->intrinsic == nir_intrinsic_store_deref ||
             intrin->intrinsic == nir_intrinsic_copy_deref) {

            if (is_access_out_of_bounds(term, nir_src_as_deref(intrin->src[0]),
                                        trip_count)) {
               if (intrin->intrinsic == nir_intrinsic_load_deref) {
                  nir_ssa_def *undef =
                     nir_ssa_undef(&b, intrin->dest.ssa.num_components,
                                   intrin->dest.ssa.bit_size);
                  nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
                                           nir_src_for_ssa(undef));
               } else {
                  nir_instr_remove(instr);
                  continue;
               }
            }

            if (intrin->intrinsic == nir_intrinsic_copy_deref &&
                is_access_out_of_bounds(term, nir_src_as_deref(intrin->src[1]),
                                        trip_count)) {
               nir_instr_remove(instr);
            }
         }
      }
   }

   /* Now that we are done extract the loop header and body again */
   nir_cf_extract(lp_header, nir_before_block(nir_loop_first_block(loop)),
                  nir_before_cf_node(&term->nif->cf_node));
   nir_cf_extract(lp_body, nir_before_block(nir_loop_first_block(loop)),
                  nir_after_block(nir_loop_last_block(loop)));
}

/* Partially unrolls loops that don't have a known trip count.
 */
static void
partial_unroll(nir_shader *shader, nir_loop *loop, unsigned trip_count)
{
   assert(list_length(&loop->info->loop_terminator_list) == 1);

   nir_loop_terminator *terminator =
      list_first_entry(&loop->info->loop_terminator_list,
                        nir_loop_terminator, loop_terminator_link);

   assert(nir_is_trivial_loop_if(terminator->nif, terminator->break_block));

   loop_prepare_for_unroll(loop);

   /* Pluck out the loop header */
   nir_cf_list lp_header;
   nir_cf_extract(&lp_header, nir_before_block(nir_loop_first_block(loop)),
                  nir_before_cf_node(&terminator->nif->cf_node));

   struct hash_table *remap_table =
      _mesa_hash_table_create(NULL, _mesa_hash_pointer,
                              _mesa_key_pointer_equal);

   nir_cf_list lp_body;
   nir_cf_node *unroll_loc =
      complex_unroll_loop_body(loop, terminator, &lp_header, &lp_body,
                               remap_table, trip_count);

   /* Attempt to remove out of bounds array access */
   remove_out_of_bounds_induction_use(shader, loop, terminator, &lp_header,
                                      &lp_body, trip_count);

   nir_cursor cursor =
      get_complex_unroll_insert_location(unroll_loc,
                                         terminator->continue_from_then);

   /* Reinsert the loop in the innermost nested continue branch of the unrolled
    * loop.
    */
   nir_loop *new_loop = nir_loop_create(shader);
   nir_cf_node_insert(cursor, &new_loop->cf_node);
   new_loop->partially_unrolled = true;

   /* Clone loop header and insert into new loop */
   nir_cf_list_clone_and_reinsert(&lp_header, loop->cf_node.parent,
                                  nir_after_cf_list(&new_loop->body),
                                  remap_table);

   /* Clone loop body and insert into new loop */
   nir_cf_list_clone_and_reinsert(&lp_body, loop->cf_node.parent,
                                  nir_after_cf_list(&new_loop->body),
                                  remap_table);

   /* Insert break back into terminator */
   nir_jump_instr *brk = nir_jump_instr_create(shader, nir_jump_break);
   nir_if *nif = nir_block_get_following_if(nir_loop_first_block(new_loop));
   if (terminator->continue_from_then) {
      nir_instr_insert_after_block(nir_if_last_else_block(nif), &brk->instr);
   } else {
      nir_instr_insert_after_block(nir_if_last_then_block(nif), &brk->instr);
   }

   /* Delete the original loop header and body */
   nir_cf_delete(&lp_header);
   nir_cf_delete(&lp_body);

   /* The original loop has been replaced so remove it. */
   nir_cf_node_remove(&loop->cf_node);

   _mesa_hash_table_destroy(remap_table, NULL);
}

/*
 * Returns true if we should unroll the loop, otherwise false.
 */
static bool
check_unrolling_restrictions(nir_shader *shader, nir_loop *loop)
{
   if (loop->control == nir_loop_control_unroll)
      return true;

   if (loop->control == nir_loop_control_dont_unroll)
      return false;

   nir_loop_info *li = loop->info;
   unsigned max_iter = shader->options->max_unroll_iterations;
   unsigned trip_count =
      li->max_trip_count ? li->max_trip_count : li->guessed_trip_count;

   if (trip_count > max_iter)
      return false;

   if (li->force_unroll && !li->guessed_trip_count)
      return true;

   bool loop_not_too_large =
      li->instr_cost * trip_count <= max_iter * LOOP_UNROLL_LIMIT;

   return loop_not_too_large;
}

static bool
process_loops(nir_shader *sh, nir_cf_node *cf_node, bool *has_nested_loop_out,
              bool *unrolled_this_block);

static bool
process_loops_in_block(nir_shader *sh, struct exec_list *block,
                       bool *has_nested_loop_out)
{
   /* We try to unroll as many loops in one pass as possible.
    * E.g. we can safely unroll both loops in this block:
    *
    *    if (...) {
    *       loop {...}
    *    }
    *
    *    if (...) {
    *       loop {...}
    *    }
    *
    * Unrolling one loop doesn't affect the other one.
    *
    * On the other hand for block with:
    *
    *    loop {...}
    *    ...
    *    loop {...}
    *
    * It is unsafe to unroll both loops in one pass without taking
    * complicating precautions, since the structure of the block would
    * change after unrolling the first loop. So in such a case we leave
    * the second loop for the next iteration of unrolling to handle.
    */

   bool progress = false;
   bool unrolled_this_block = false;

   foreach_list_typed(nir_cf_node, nested_node, node, block) {
      if (process_loops(sh, nested_node,
                        has_nested_loop_out, &unrolled_this_block)) {
         progress = true;

         /* If current node is unrolled we could not safely continue
          * our iteration since we don't know the next node
          * and it's hard to guarantee that we won't end up unrolling
          * inner loop of the currently unrolled one, if such exists.
          */
         if (unrolled_this_block) {
            break;
         }
      }
   }

   return progress;
}

static bool
process_loops(nir_shader *sh, nir_cf_node *cf_node, bool *has_nested_loop_out,
              bool *unrolled_this_block)
{
   bool progress = false;
   bool has_nested_loop = false;
   nir_loop *loop;

   switch (cf_node->type) {
   case nir_cf_node_block:
      return progress;
   case nir_cf_node_if: {
      nir_if *if_stmt = nir_cf_node_as_if(cf_node);
      progress |= process_loops_in_block(sh, &if_stmt->then_list,
                                         has_nested_loop_out);
      progress |= process_loops_in_block(sh, &if_stmt->else_list,
                                         has_nested_loop_out);
      return progress;
   }
   case nir_cf_node_loop: {
      loop = nir_cf_node_as_loop(cf_node);
      progress |= process_loops_in_block(sh, &loop->body, &has_nested_loop);

      break;
   }
   default:
      unreachable("unknown cf node type");
   }

   const bool unrolled_child_block = progress;

   /* Don't attempt to unroll a second inner loop in this pass, wait until the
    * next pass as we have altered the cf.
    */
   if (!progress && loop->control != nir_loop_control_dont_unroll) {

      /* Check for the classic
       *
       *    do {
       *        // ...
       *    } while (false)
       *
       * that is used to wrap multi-line macros. GLSL IR also wraps switch
       * statements in a loop like this.
       */
      if (loop->info->limiting_terminator == NULL &&
          !loop->info->complex_loop) {

         nir_block *last_loop_blk = nir_loop_last_block(loop);
         if (nir_block_ends_in_break(last_loop_blk)) {
            progress = wrapper_unroll(loop);
            goto exit;
         }

         /* If we were able to guess the loop iteration based on array access
          * then do a partial unroll.
          */
         unsigned num_lt = list_length(&loop->info->loop_terminator_list);
         if (!has_nested_loop && num_lt == 1 && !loop->partially_unrolled &&
             loop->info->guessed_trip_count &&
             check_unrolling_restrictions(sh, loop)) {
            partial_unroll(sh, loop, loop->info->guessed_trip_count);
            progress = true;
         }
      }

      if (has_nested_loop || !loop->info->limiting_terminator)
         goto exit;

      if (!check_unrolling_restrictions(sh, loop))
         goto exit;

      if (loop->info->exact_trip_count_known) {
         simple_unroll(loop);
         progress = true;
      } else {
         /* Attempt to unroll loops with two terminators. */
         unsigned num_lt = list_length(&loop->info->loop_terminator_list);
         if (num_lt == 2 &&
             !loop->info->limiting_terminator->exact_trip_count_unknown) {
            bool limiting_term_second = true;
            nir_loop_terminator *terminator =
               list_first_entry(&loop->info->loop_terminator_list,
                                nir_loop_terminator, loop_terminator_link);


            if (terminator->nif == loop->info->limiting_terminator->nif) {
               limiting_term_second = false;
               terminator =
                  list_last_entry(&loop->info->loop_terminator_list,
                                  nir_loop_terminator, loop_terminator_link);
            }

            /* If the first terminator has a trip count of zero and is the
             * limiting terminator just do a simple unroll as the second
             * terminator can never be reached.
             */
            if (loop->info->max_trip_count == 0 && !limiting_term_second) {
               simple_unroll(loop);
            } else {
               complex_unroll(loop, terminator, limiting_term_second);
            }
            progress = true;
         }

         if (num_lt == 1) {
            assert(loop->info->limiting_terminator->exact_trip_count_unknown);
            complex_unroll_single_terminator(loop);
            progress = true;
         }
      }
   }

exit:
   *has_nested_loop_out = true;
   if (progress && !unrolled_child_block)
      *unrolled_this_block = true;

   return progress;
}

static bool
nir_opt_loop_unroll_impl(nir_function_impl *impl,
                         nir_variable_mode indirect_mask)
{
   bool progress = false;
   nir_metadata_require(impl, nir_metadata_loop_analysis, indirect_mask);
   nir_metadata_require(impl, nir_metadata_block_index);

   bool has_nested_loop = false;
   progress |= process_loops_in_block(impl->function->shader, &impl->body,
                                      &has_nested_loop);

   if (progress)
      nir_lower_regs_to_ssa_impl(impl);

   return progress;
}

/**
 * indirect_mask specifies which type of indirectly accessed variables
 * should force loop unrolling.
 */
bool
nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask)
{
   bool progress = false;

   nir_foreach_function(function, shader) {
      if (function->impl) {
         progress |= nir_opt_loop_unroll_impl(function->impl, indirect_mask);
      }
   }
   return progress;
}