summaryrefslogtreecommitdiff
path: root/src/intel/vulkan/anv_image.c
blob: 6c8d2c76aee2cfb19efc42303f936889cb65b35e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/mman.h>
#include "drm-uapi/drm_fourcc.h"

#include "anv_private.h"
#include "util/u_debug.h"
#include "vk_util.h"
#include "util/u_math.h"

#include "vk_format.h"

#define ANV_OFFSET_IMPLICIT UINT64_MAX

static const enum isl_surf_dim
vk_to_isl_surf_dim[] = {
   [VK_IMAGE_TYPE_1D] = ISL_SURF_DIM_1D,
   [VK_IMAGE_TYPE_2D] = ISL_SURF_DIM_2D,
   [VK_IMAGE_TYPE_3D] = ISL_SURF_DIM_3D,
};

static uint64_t MUST_CHECK UNUSED
memory_range_end(struct anv_image_memory_range memory_range)
{
   assert(anv_is_aligned(memory_range.offset, memory_range.alignment));
   return memory_range.offset + memory_range.size;
}

/**
 * Get binding for VkImagePlaneMemoryRequirementsInfo,
 * VkBindImagePlaneMemoryInfo and VkDeviceImageMemoryRequirements.
 */
static struct anv_image_binding *
image_aspect_to_binding(struct anv_image *image, VkImageAspectFlags aspect)
{
   uint32_t plane = 0;

   assert(image->disjoint);

   if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
      /* Spec requires special aspects for modifier images. */
      assert(aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT ||
             aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT ||
             aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT ||
             aspect == VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT);

      /* We don't advertise DISJOINT for modifiers with aux, and therefore we
       * don't handle queries of the modifier's "aux plane" here.
       */
      assert(!isl_drm_modifier_has_aux(image->vk.drm_format_mod));

      switch(aspect) {
         case VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT: plane = 0; break;
         case VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT: plane = 1; break;
         case VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT: plane = 2; break;
         case VK_IMAGE_ASPECT_MEMORY_PLANE_3_BIT_EXT: plane = 3; break;
      }
   } else {
      plane = anv_image_aspect_to_plane(image, aspect);
   }

   return &image->bindings[ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane];
}

/**
 * Extend the memory binding's range by appending a new memory range with `size`
 * and `alignment` at `offset`. Return the appended range.
 *
 * Offset is ignored if ANV_OFFSET_IMPLICIT.
 *
 * The given binding must not be ANV_IMAGE_MEMORY_BINDING_MAIN. The function
 * converts to MAIN as needed.
 */
static VkResult MUST_CHECK
image_binding_grow(const struct anv_device *device,
                   struct anv_image *image,
                   enum anv_image_memory_binding binding,
                   uint64_t offset,
                   uint64_t size,
                   uint32_t alignment,
                   struct anv_image_memory_range *out_range)
{
   /* We overwrite 'offset' but need to remember if it was implicit. */
   const bool has_implicit_offset = (offset == ANV_OFFSET_IMPLICIT);

   assert(size > 0);
   assert(util_is_power_of_two_or_zero(alignment));

   switch (binding) {
   case ANV_IMAGE_MEMORY_BINDING_MAIN:
      /* The caller must not pre-translate BINDING_PLANE_i to BINDING_MAIN. */
      unreachable("ANV_IMAGE_MEMORY_BINDING_MAIN");
   case ANV_IMAGE_MEMORY_BINDING_PLANE_0:
   case ANV_IMAGE_MEMORY_BINDING_PLANE_1:
   case ANV_IMAGE_MEMORY_BINDING_PLANE_2:
      if (!image->disjoint)
         binding = ANV_IMAGE_MEMORY_BINDING_MAIN;
      break;
   case ANV_IMAGE_MEMORY_BINDING_PRIVATE:
      assert(offset == ANV_OFFSET_IMPLICIT);
      break;
   case ANV_IMAGE_MEMORY_BINDING_END:
      unreachable("ANV_IMAGE_MEMORY_BINDING_END");
   }

   struct anv_image_memory_range *container =
      &image->bindings[binding].memory_range;

   if (has_implicit_offset) {
      offset = align64(container->offset + container->size, alignment);
   } else {
      /* Offset must be validated because it comes from
       * VkImageDrmFormatModifierExplicitCreateInfoEXT.
       */
      if (unlikely(!anv_is_aligned(offset, alignment))) {
         return vk_errorf(device,
                          VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
                          "VkImageDrmFormatModifierExplicitCreateInfoEXT::"
                          "pPlaneLayouts[]::offset is misaligned");
      }

      /* We require that surfaces be added in memory-order. This simplifies the
       * layout validation required by
       * VkImageDrmFormatModifierExplicitCreateInfoEXT,
       */
      if (unlikely(offset < container->size)) {
         return vk_errorf(device,
                          VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
                          "VkImageDrmFormatModifierExplicitCreateInfoEXT::"
                          "pPlaneLayouts[]::offset is too small");
      }
   }

   if (__builtin_add_overflow(offset, size, &container->size)) {
      if (has_implicit_offset) {
         assert(!"overflow");
         return vk_errorf(device, VK_ERROR_UNKNOWN,
                          "internal error: overflow in %s", __func__);
      } else {
         return vk_errorf(device,
                          VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
                          "VkImageDrmFormatModifierExplicitCreateInfoEXT::"
                          "pPlaneLayouts[]::offset is too large");
      }
   }

   container->alignment = MAX2(container->alignment, alignment);

   *out_range = (struct anv_image_memory_range) {
      .binding = binding,
      .offset = offset,
      .size = size,
      .alignment = alignment,
   };

   return VK_SUCCESS;
}

/**
 * Adjust range 'a' to contain range 'b'.
 *
 * For simplicity's sake, the offset of 'a' must be 0 and remains 0.
 * If 'a' and 'b' target different bindings, then no merge occurs.
 */
static void
memory_range_merge(struct anv_image_memory_range *a,
                   const struct anv_image_memory_range b)
{
   if (b.size == 0)
      return;

   if (a->binding != b.binding)
      return;

   assert(a->offset == 0);
   assert(anv_is_aligned(a->offset, a->alignment));
   assert(anv_is_aligned(b.offset, b.alignment));

   a->alignment = MAX2(a->alignment, b.alignment);
   a->size = MAX2(a->size, b.offset + b.size);
}

static isl_surf_usage_flags_t
choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
                      VkImageUsageFlags vk_usage,
                      isl_surf_usage_flags_t isl_extra_usage,
                      VkImageAspectFlagBits aspect)
{
   isl_surf_usage_flags_t isl_usage = isl_extra_usage;

   if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
      isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;

   if (vk_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)
      isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;

   if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
      isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;

   if (vk_usage & VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR)
      isl_usage |= ISL_SURF_USAGE_CPB_BIT;

   if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
      isl_usage |= ISL_SURF_USAGE_CUBE_BIT;

   /* Even if we're only using it for transfer operations, clears to depth and
    * stencil images happen as depth and stencil so they need the right ISL
    * usage bits or else things will fall apart.
    */
   switch (aspect) {
   case VK_IMAGE_ASPECT_DEPTH_BIT:
      isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
      break;
   case VK_IMAGE_ASPECT_STENCIL_BIT:
      isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
      break;
   case VK_IMAGE_ASPECT_COLOR_BIT:
   case VK_IMAGE_ASPECT_PLANE_0_BIT:
   case VK_IMAGE_ASPECT_PLANE_1_BIT:
   case VK_IMAGE_ASPECT_PLANE_2_BIT:
      break;
   default:
      unreachable("bad VkImageAspect");
   }

   if (vk_usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) {
      /* blorp implements transfers by sampling from the source image. */
      isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
   }

   if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
       aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
      /* blorp implements transfers by rendering into the destination image.
       * Only request this with color images, as we deal with depth/stencil
       * formats differently. */
      isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
   }

   return isl_usage;
}

static isl_tiling_flags_t
choose_isl_tiling_flags(const struct intel_device_info *devinfo,
                        const struct anv_image_create_info *anv_info,
                        const struct isl_drm_modifier_info *isl_mod_info,
                        bool legacy_scanout)
{
   const VkImageCreateInfo *base_info = anv_info->vk_info;
   isl_tiling_flags_t flags = 0;

   assert((isl_mod_info != NULL) ==
          (base_info->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT));

   switch (base_info->tiling) {
   default:
      unreachable("bad VkImageTiling");
   case VK_IMAGE_TILING_OPTIMAL:
      flags = ISL_TILING_ANY_MASK;
      break;
   case VK_IMAGE_TILING_LINEAR:
      flags = ISL_TILING_LINEAR_BIT;
      break;
   case VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT:
      flags = 1 << isl_mod_info->tiling;
   }

   if (anv_info->isl_tiling_flags) {
      assert(isl_mod_info == NULL);
      flags &= anv_info->isl_tiling_flags;
   }

   if (legacy_scanout) {
      isl_tiling_flags_t legacy_mask = ISL_TILING_LINEAR_BIT;
      if (devinfo->has_tiling_uapi)
         legacy_mask |= ISL_TILING_X_BIT;
      flags &= legacy_mask;
   }

   assert(flags);

   return flags;
}

/**
 * Add the surface to the binding at the given offset.
 *
 * \see image_binding_grow()
 */
static VkResult MUST_CHECK
add_surface(struct anv_device *device,
            struct anv_image *image,
            struct anv_surface *surf,
            enum anv_image_memory_binding binding,
            uint64_t offset)
{
   /* isl surface must be initialized */
   assert(surf->isl.size_B > 0);

   return image_binding_grow(device, image, binding, offset,
                             surf->isl.size_B,
                             surf->isl.alignment_B,
                             &surf->memory_range);
}

static bool
can_fast_clear_with_non_zero_color(const struct intel_device_info *devinfo,
                                   const struct anv_image *image,
                                   uint32_t plane,
                                   const VkImageFormatListCreateInfo *fmt_list)
{
   /* If we don't have an AUX surface where fast clears apply, we can return
    * early.
    */
   if (!isl_aux_usage_has_fast_clears(image->planes[plane].aux_usage))
      return false;

   /* On TGL, if a block of fragment shader outputs match the surface's clear
    * color, the HW may convert them to fast-clears (see HSD 14010672564).
    * This can lead to rendering corruptions if not handled properly. We
    * restrict the clear color to zero to avoid issues that can occur with:
    *     - Texture view rendering (including blorp_copy calls)
    *     - Images with multiple levels or array layers
    */
   if (devinfo->ver >= 12 &&
       image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E)
      return false;

   /* Non mutable image, we can fast clear with any color supported by HW.
    */
   if (!(image->vk.create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
      return true;

   /* Mutable image with no format list, we have to assume all formats */
   if (!fmt_list || fmt_list->viewFormatCount == 0)
      return false;

   enum isl_format img_format = image->planes[plane].primary_surface.isl.format;

   /* Check bit compatibility for clear color components */
   for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
      if (fmt_list->pViewFormats[i] == VK_FORMAT_UNDEFINED)
         continue;

      struct anv_format_plane view_format_plane =
         anv_get_format_plane(devinfo, fmt_list->pViewFormats[i],
                              plane, image->vk.tiling);

      enum isl_format view_format = view_format_plane.isl_format;

      if (!isl_formats_have_same_bits_per_channel(img_format, view_format))
         return false;
   }

   return true;
}

/**
 * Return true if the storage image could be used with atomics.
 *
 * If the image was created with an explicit format, we check it for typed
 * atomic support.  If MUTABLE_FORMAT_BIT is set, then we check the optional
 * format list, seeing if /any/ of the formats support typed atomics.  If no
 * list is supplied, we fall back to using the bpb, as the application could
 * make an image view with a format that does use atomics.
 */
static bool
storage_image_format_supports_atomic(const struct intel_device_info *devinfo,
                                     VkImageCreateFlags create_flags,
                                     enum isl_format format,
                                     VkImageTiling vk_tiling,
                                     const VkImageFormatListCreateInfo *fmt_list)
{
   if (isl_format_supports_typed_atomics(devinfo, format))
      return true;

   if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
      return false;

   if (fmt_list) {
      for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
         if (fmt_list->pViewFormats[i] == VK_FORMAT_UNDEFINED)
            continue;

         enum isl_format view_format =
            anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
                               VK_IMAGE_ASPECT_COLOR_BIT, vk_tiling);

         if (isl_format_supports_typed_atomics(devinfo, view_format))
            return true;
      }

      return false;
   }

   /* No explicit format list.  Any 16/32/64bpp format could be used with atomics. */
   unsigned bpb = isl_format_get_layout(format)->bpb;
   return bpb == 16 || bpb == 32 || bpb == 64;
}

static enum isl_format
anv_get_isl_format_with_usage(const struct intel_device_info *devinfo,
                              VkFormat vk_format,
                              VkImageAspectFlagBits vk_aspect,
                              VkImageUsageFlags vk_usage,
                              VkImageTiling vk_tiling)
{
   assert(util_bitcount(vk_usage) == 1);
   struct anv_format_plane format =
      anv_get_format_aspect(devinfo, vk_format, vk_aspect,
                            vk_tiling);

   return format.isl_format;
}

static bool
formats_ccs_e_compatible(const struct intel_device_info *devinfo,
                         VkImageCreateFlags create_flags,
                         enum isl_format format, VkImageTiling vk_tiling,
                         VkImageUsageFlags vk_usage,
                         const VkImageFormatListCreateInfo *fmt_list)
{
   if (!isl_format_supports_ccs_e(devinfo, format))
      return false;

   /* For images created without MUTABLE_FORMAT_BIT set, we know that they will
    * always be used with the original format. In particular, they will always
    * be used with a format that supports color compression.
    */
   if (!(create_flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
      return true;

   if (!fmt_list || fmt_list->viewFormatCount == 0)
      return false;

   for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
      if (fmt_list->pViewFormats[i] == VK_FORMAT_UNDEFINED)
         continue;

      enum isl_format view_format =
         anv_get_isl_format_with_usage(devinfo, fmt_list->pViewFormats[i],
                                       VK_IMAGE_ASPECT_COLOR_BIT, vk_usage,
                                       vk_tiling);

      if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
         return false;
   }

   return true;
}

bool
anv_formats_ccs_e_compatible(const struct intel_device_info *devinfo,
                             VkImageCreateFlags create_flags,
                             VkFormat vk_format, VkImageTiling vk_tiling,
                             VkImageUsageFlags vk_usage,
                             const VkImageFormatListCreateInfo *fmt_list)
{
   enum isl_format format =
      anv_get_isl_format_with_usage(devinfo, vk_format,
                                    VK_IMAGE_ASPECT_COLOR_BIT,
                                    VK_IMAGE_USAGE_SAMPLED_BIT, vk_tiling);

   if (!formats_ccs_e_compatible(devinfo, create_flags, format, vk_tiling,
                                 VK_IMAGE_USAGE_SAMPLED_BIT, fmt_list))
      return false;

   if (vk_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
      if (devinfo->verx10 < 125)
         return false;

      enum isl_format lower_format =
         anv_get_isl_format_with_usage(devinfo, vk_format,
                                       VK_IMAGE_ASPECT_COLOR_BIT,
                                       VK_IMAGE_USAGE_STORAGE_BIT, vk_tiling);

      if (!isl_formats_are_ccs_e_compatible(devinfo, format, lower_format))
         return false;

      if (!formats_ccs_e_compatible(devinfo, create_flags, format, vk_tiling,
                                    VK_IMAGE_USAGE_STORAGE_BIT, fmt_list))
         return false;

      /* Disable compression when surface can be potentially used for atomic
       * operation.
       */
      if (storage_image_format_supports_atomic(devinfo, create_flags, format,
                                               vk_tiling, fmt_list))
         return false;
   }

   return true;
}

/**
 * For color images that have an auxiliary surface, request allocation for an
 * additional buffer that mainly stores fast-clear values. Use of this buffer
 * allows us to access the image's subresources while being aware of their
 * fast-clear values in non-trivial cases (e.g., outside of a render pass in
 * which a fast clear has occurred).
 *
 * In order to avoid having multiple clear colors for a single plane of an
 * image (hence a single RENDER_SURFACE_STATE), we only allow fast-clears on
 * the first slice (level 0, layer 0).  At the time of our testing (Jan 17,
 * 2018), there were no known applications which would benefit from fast-
 * clearing more than just the first slice.
 *
 * The fast clear portion of the image is laid out in the following order:
 *
 *  * 1 or 4 dwords (depending on hardware generation) for the clear color
 *  * 1 dword for the anv_fast_clear_type of the clear color
 *  * On gfx9+, 1 dword per level and layer of the image (3D levels count
 *    multiple layers) in level-major order for compression state.
 *
 * For the purpose of discoverability, the algorithm used to manage
 * compression and fast-clears is described here:
 *
 *  * On a transition from UNDEFINED or PREINITIALIZED to a defined layout,
 *    all of the values in the fast clear portion of the image are initialized
 *    to default values.
 *
 *  * On fast-clear, the clear value is written into surface state and also
 *    into the buffer and the fast clear type is set appropriately.  Both
 *    setting the fast-clear value in the buffer and setting the fast-clear
 *    type happen from the GPU using MI commands.
 *
 *  * Whenever a render or blorp operation is performed with CCS_E, we call
 *    genX(cmd_buffer_mark_image_written) to set the compression state to
 *    true (which is represented by UINT32_MAX).
 *
 *  * On pipeline barrier transitions, the worst-case transition is computed
 *    from the image layouts.  The command streamer inspects the fast clear
 *    type and compression state dwords and constructs a predicate.  The
 *    worst-case resolve is performed with the given predicate and the fast
 *    clear and compression state is set accordingly.
 *
 * See anv_layout_to_aux_usage and anv_layout_to_fast_clear_type functions for
 * details on exactly what is allowed in what layouts.
 *
 * On gfx7-9, we do not have a concept of indirect clear colors in hardware.
 * In order to deal with this, we have to do some clear color management.
 *
 *  * For LOAD_OP_LOAD at the top of a renderpass, we have to copy the clear
 *    value from the buffer into the surface state with MI commands.
 *
 *  * For any blorp operations, we pass the address to the clear value into
 *    blorp and it knows to copy the clear color.
 */
static VkResult MUST_CHECK
add_aux_state_tracking_buffer(struct anv_device *device,
                              struct anv_image *image,
                              uint32_t plane)
{
   assert(image && device);
   assert(image->planes[plane].aux_usage != ISL_AUX_USAGE_NONE &&
          image->vk.aspects & (VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV |
                               VK_IMAGE_ASPECT_DEPTH_BIT));

   const unsigned clear_color_state_size = device->info->ver >= 10 ?
      device->isl_dev.ss.clear_color_state_size :
      device->isl_dev.ss.clear_value_size;

   /* Clear color and fast clear type */
   unsigned state_size = clear_color_state_size + 4;

   /* We only need to track compression on CCS_E surfaces. */
   if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
      if (image->vk.image_type == VK_IMAGE_TYPE_3D) {
         for (uint32_t l = 0; l < image->vk.mip_levels; l++)
            state_size += u_minify(image->vk.extent.depth, l) * 4;
      } else {
         state_size += image->vk.mip_levels * image->vk.array_layers * 4;
      }
   }

   enum anv_image_memory_binding binding =
      ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane;

   /* If an auxiliary surface is used for an externally-shareable image,
    * we have to hide this from the memory of the image since other
    * processes with access to the memory may not be aware of it or of
    * its current state. So put that auxiliary data into a separate
    * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
    */
   if (anv_image_is_externally_shared(image)) {
      binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
   }

   /* We believe that 256B alignment may be sufficient, but we choose 4K due to
    * lack of testing.  And MI_LOAD/STORE operations require dword-alignment.
    */
   return image_binding_grow(device, image, binding,
                             ANV_OFFSET_IMPLICIT, state_size, 4096,
                             &image->planes[plane].fast_clear_memory_range);
}

/**
 * The return code indicates whether creation of the VkImage should continue
 * or fail, not whether the creation of the aux surface succeeded.  If the aux
 * surface is not required (for example, by neither hardware nor DRM format
 * modifier), then this may return VK_SUCCESS when creation of the aux surface
 * fails.
 *
 * @param offset See add_surface()
 */
static VkResult
add_aux_surface_if_supported(struct anv_device *device,
                             struct anv_image *image,
                             uint32_t plane,
                             struct anv_format_plane plane_format,
                             const VkImageFormatListCreateInfo *fmt_list,
                             uint64_t offset,
                             uint32_t stride,
                             isl_surf_usage_flags_t isl_extra_usage_flags)
{
   VkImageAspectFlags aspect = plane_format.aspect;
   VkResult result;
   bool ok;

   /* The aux surface must not be already added. */
   assert(!anv_surface_is_valid(&image->planes[plane].aux_surface));

   if ((isl_extra_usage_flags & ISL_SURF_USAGE_DISABLE_AUX_BIT))
      return VK_SUCCESS;

   if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
      /* We don't advertise that depth buffers could be used as storage
       * images.
       */
       assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT));

      /* Allow the user to control HiZ enabling. Disable by default on gfx7
       * because resolves are not currently implemented pre-BDW.
       */
      if (!(image->vk.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
         /* It will never be used as an attachment, HiZ is pointless. */
         return VK_SUCCESS;
      }

      if (image->vk.mip_levels > 1) {
         anv_perf_warn(VK_LOG_OBJS(&image->vk.base), "Enable multi-LOD HiZ");
         return VK_SUCCESS;
      }

      if (INTEL_DEBUG(DEBUG_NO_HIZ))
         return VK_SUCCESS;

      ok = isl_surf_get_hiz_surf(&device->isl_dev,
                                 &image->planes[plane].primary_surface.isl,
                                 &image->planes[plane].aux_surface.isl);
      if (!ok)
         return VK_SUCCESS;

      if (!isl_surf_supports_ccs(&device->isl_dev,
                                 &image->planes[plane].primary_surface.isl,
                                 &image->planes[plane].aux_surface.isl)) {
         image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
      } else if (image->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
                                    VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) &&
                 image->vk.samples == 1) {
         /* If it's used as an input attachment or a texture and it's
          * single-sampled (this is a requirement for HiZ+CCS write-through
          * mode), use write-through mode so that we don't need to resolve
          * before texturing.  This will make depth testing a bit slower but
          * texturing faster.
          *
          * TODO: This is a heuristic trade-off; we haven't tuned it at all.
          */
         assert(device->info->ver >= 12);
         image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS_WT;
      } else {
         assert(device->info->ver >= 12);
         image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ_CCS;
      }

      result = add_surface(device, image, &image->planes[plane].aux_surface,
                           ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane,
                           ANV_OFFSET_IMPLICIT);
      if (result != VK_SUCCESS)
         return result;

      if (image->planes[plane].aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT)
         return add_aux_state_tracking_buffer(device, image, plane);
   } else if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT) {

      if (INTEL_DEBUG(DEBUG_NO_CCS))
         return VK_SUCCESS;

      if (!isl_surf_supports_ccs(&device->isl_dev,
                                 &image->planes[plane].primary_surface.isl,
                                 NULL))
         return VK_SUCCESS;

      image->planes[plane].aux_usage = ISL_AUX_USAGE_STC_CCS;
   } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->vk.samples == 1) {
      if (image->n_planes != 1) {
         /* Multiplanar images seem to hit a sampler bug with CCS and R16G16
          * format. (Putting the clear state a page/4096bytes further fixes
          * the issue).
          */
         return VK_SUCCESS;
      }

      if ((image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) && !image->from_wsi) {
         /* The image may alias a plane of a multiplanar image. Above we ban
          * CCS on multiplanar images.
          *
          * We must also reject aliasing of any image that uses
          * ANV_IMAGE_MEMORY_BINDING_PRIVATE. Since we're already rejecting all
          * aliasing here, there's no need to further analyze if the image needs
          * a private binding.
          */
         return VK_SUCCESS;
      }

      if (INTEL_DEBUG(DEBUG_NO_CCS))
         return VK_SUCCESS;

      ok = isl_surf_get_ccs_surf(&device->isl_dev,
                                 &image->planes[plane].primary_surface.isl,
                                 NULL,
                                 &image->planes[plane].aux_surface.isl,
                                 stride);
      if (!ok)
         return VK_SUCCESS;

      /* Choose aux usage */
      if (anv_formats_ccs_e_compatible(device->info, image->vk.create_flags,
                                       image->vk.format, image->vk.tiling,
                                       image->vk.usage, fmt_list)) {
         image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
      } else if (device->info->ver >= 12) {
         anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
                       "The CCS_D aux mode is not yet handled on "
                       "Gfx12+. Not allocating a CCS buffer.");
         image->planes[plane].aux_surface.isl.size_B = 0;
         return VK_SUCCESS;
      } else {
         image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_D;
      }

      if (!device->physical->has_implicit_ccs) {
         enum anv_image_memory_binding binding =
            ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane;

         if (image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID &&
             !isl_drm_modifier_has_aux(image->vk.drm_format_mod))
            binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;

         result = add_surface(device, image, &image->planes[plane].aux_surface,
                              binding, offset);
         if (result != VK_SUCCESS)
            return result;
      }

      return add_aux_state_tracking_buffer(device, image, plane);
   } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && image->vk.samples > 1) {
      assert(!(image->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT));
      ok = isl_surf_get_mcs_surf(&device->isl_dev,
                                 &image->planes[plane].primary_surface.isl,
                                 &image->planes[plane].aux_surface.isl);
      if (!ok)
         return VK_SUCCESS;

      image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;

      result = add_surface(device, image, &image->planes[plane].aux_surface,
                           ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane,
                           ANV_OFFSET_IMPLICIT);
      if (result != VK_SUCCESS)
         return result;

      return add_aux_state_tracking_buffer(device, image, plane);
   }

   return VK_SUCCESS;
}

static VkResult
add_video_buffers(struct anv_device *device,
                  struct anv_image *image,
                  const struct VkVideoProfileListInfoKHR *profile_list)
{
   ASSERTED bool ok;
   unsigned size = 0;

   for (unsigned i = 0; i < profile_list->profileCount; i++) {
      if (profile_list->pProfiles[i].videoCodecOperation == VK_VIDEO_CODEC_OPERATION_DECODE_H264_BIT_KHR) {
         unsigned w_mb = DIV_ROUND_UP(image->vk.extent.width, ANV_MB_WIDTH);
         unsigned h_mb = DIV_ROUND_UP(image->vk.extent.height, ANV_MB_HEIGHT);
         size = w_mb * h_mb * 128;
      }
   }

   if (size == 0)
      return VK_SUCCESS;

   ok = image_binding_grow(device, image, ANV_IMAGE_MEMORY_BINDING_PRIVATE,
                           ANV_OFFSET_IMPLICIT, size, 65536, &image->vid_dmv_top_surface);
   return ok;
}

/**
 * Initialize the anv_image::*_surface selected by \a aspect. Then update the
 * image's memory requirements (that is, the image's size and alignment).
 *
 * @param offset See add_surface()
 */
static VkResult
add_primary_surface(struct anv_device *device,
                    struct anv_image *image,
                    uint32_t plane,
                    struct anv_format_plane plane_format,
                    uint64_t offset,
                    uint32_t stride,
                    isl_tiling_flags_t isl_tiling_flags,
                    isl_surf_usage_flags_t isl_usage)
{
   struct anv_surface *anv_surf = &image->planes[plane].primary_surface;
   bool ok;

   uint32_t width = image->vk.extent.width;
   uint32_t height = image->vk.extent.height;
   const struct vk_format_ycbcr_info *ycbcr_info =
      vk_format_get_ycbcr_info(image->vk.format);
   if (ycbcr_info) {
      assert(plane < ycbcr_info->n_planes);
      width /= ycbcr_info->planes[plane].denominator_scales[0];
      height /= ycbcr_info->planes[plane].denominator_scales[1];
   }

   ok = isl_surf_init(&device->isl_dev, &anv_surf->isl,
      .dim = vk_to_isl_surf_dim[image->vk.image_type],
      .format = plane_format.isl_format,
      .width = width,
      .height = height,
      .depth = image->vk.extent.depth,
      .levels = image->vk.mip_levels,
      .array_len = image->vk.array_layers,
      .samples = image->vk.samples,
      .min_alignment_B = 0,
      .row_pitch_B = stride,
      .usage = isl_usage,
      .tiling_flags = isl_tiling_flags);

   if (!ok) {
      /* TODO: Should return
       * VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT in come cases.
       */
      return VK_ERROR_OUT_OF_DEVICE_MEMORY;
   }

   image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;

   return add_surface(device, image, anv_surf,
                      ANV_IMAGE_MEMORY_BINDING_PLANE_0 + plane, offset);
}

#ifndef NDEBUG
static bool MUST_CHECK
memory_range_is_aligned(struct anv_image_memory_range memory_range)
{
   return anv_is_aligned(memory_range.offset, memory_range.alignment);
}

static bool MUST_CHECK
memory_ranges_equal(struct anv_image_memory_range a,
                    struct anv_image_memory_range b)
{
   return a.binding == b.binding &&
          a.offset == b.offset &&
          a.size == b.size &&
          a.alignment == b.alignment;
}
#endif

struct check_memory_range_params {
   struct anv_image_memory_range *accum_ranges;
   const struct anv_surface *test_surface;
   const struct anv_image_memory_range *test_range;
   enum anv_image_memory_binding expect_binding;
};

#define check_memory_range(...) \
   check_memory_range_s(&(struct check_memory_range_params) { __VA_ARGS__ })

static void UNUSED
check_memory_range_s(const struct check_memory_range_params *p)
{
   assert((p->test_surface == NULL) != (p->test_range == NULL));

   const struct anv_image_memory_range *test_range =
      p->test_range ?: &p->test_surface->memory_range;

   struct anv_image_memory_range *accum_range =
      &p->accum_ranges[p->expect_binding];

   assert(test_range->binding == p->expect_binding);
   assert(test_range->offset >= memory_range_end(*accum_range));
   assert(memory_range_is_aligned(*test_range));

   if (p->test_surface) {
      assert(anv_surface_is_valid(p->test_surface));
      assert(p->test_surface->memory_range.alignment ==
             p->test_surface->isl.alignment_B);
   }

   memory_range_merge(accum_range, *test_range);
}

/**
 * Validate the image's memory bindings *after* all its surfaces and memory
 * ranges are final.
 *
 * For simplicity's sake, we do not validate free-form layout of the image's
 * memory bindings. We validate the layout described in the comments of struct
 * anv_image.
 */
static void
check_memory_bindings(const struct anv_device *device,
                     const struct anv_image *image)
{
#ifdef DEBUG
   /* As we inspect each part of the image, we merge the part's memory range
    * into these accumulation ranges.
    */
   struct anv_image_memory_range accum_ranges[ANV_IMAGE_MEMORY_BINDING_END];
   for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) {
      accum_ranges[i] = (struct anv_image_memory_range) {
         .binding = i,
      };
   }

   for (uint32_t p = 0; p < image->n_planes; ++p) {
      const struct anv_image_plane *plane = &image->planes[p];

      /* The binding that must contain the plane's primary surface. */
      const enum anv_image_memory_binding primary_binding = image->disjoint
         ? ANV_IMAGE_MEMORY_BINDING_PLANE_0 + p
         : ANV_IMAGE_MEMORY_BINDING_MAIN;

      /* Aliasing is incompatible with the private binding because it does not
       * live in a VkDeviceMemory.  The one exception is swapchain images.
       */
      assert(!(image->vk.create_flags & VK_IMAGE_CREATE_ALIAS_BIT) ||
             image->from_wsi ||
             image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].memory_range.size == 0);

      /* Check primary surface */
      check_memory_range(accum_ranges,
                         .test_surface = &plane->primary_surface,
                         .expect_binding = primary_binding);

      /* Check aux_surface */
      if (anv_surface_is_valid(&plane->aux_surface)) {
         enum anv_image_memory_binding binding = primary_binding;

         /* If an auxiliary surface is used for an externally-shareable image,
          * we have to hide this from the memory of the image since other
          * processes with access to the memory may not be aware of it or of
          * its current state. So put that auxiliary data into a separate
          * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
          */
         if (anv_image_is_externally_shared(image) &&
             !isl_drm_modifier_has_aux(image->vk.drm_format_mod)) {
            binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
         }

         /* Display hardware requires that the aux surface start at
          * a higher address than the primary surface. The 3D hardware
          * doesn't care, but we enforce the display requirement in case
          * the image is sent to display.
          */
         check_memory_range(accum_ranges,
                            .test_surface = &plane->aux_surface,
                            .expect_binding = binding);
      }

      /* Check fast clear state */
      if (plane->fast_clear_memory_range.size > 0) {
         enum anv_image_memory_binding binding = primary_binding;

         /* If an auxiliary surface is used for an externally-shareable image,
          * we have to hide this from the memory of the image since other
          * processes with access to the memory may not be aware of it or of
          * its current state. So put that auxiliary data into a separate
          * buffer (ANV_IMAGE_MEMORY_BINDING_PRIVATE).
          */
         if (anv_image_is_externally_shared(image)) {
            binding = ANV_IMAGE_MEMORY_BINDING_PRIVATE;
         }

         /* We believe that 256B alignment may be sufficient, but we choose 4K
          * due to lack of testing.  And MI_LOAD/STORE operations require
          * dword-alignment.
          */
         assert(plane->fast_clear_memory_range.alignment == 4096);
         check_memory_range(accum_ranges,
                            .test_range = &plane->fast_clear_memory_range,
                            .expect_binding = binding);
      }
   }
#endif
}

/**
 * Check that the fully-initialized anv_image is compatible with its DRM format
 * modifier.
 *
 * Checking compatibility at the end of image creation is prudent, not
 * superfluous, because usage of modifiers triggers numerous special cases
 * throughout queries and image creation, and because
 * vkGetPhysicalDeviceImageFormatProperties2 has difficulty detecting all
 * incompatibilities.
 *
 * Return VK_ERROR_UNKNOWN if the incompatibility is difficult to detect in
 * vkGetPhysicalDeviceImageFormatProperties2.  Otherwise, assert fail.
 *
 * Ideally, if vkGetPhysicalDeviceImageFormatProperties2() succeeds with a given
 * modifier, then vkCreateImage() produces an image that is compatible with the
 * modifier. However, it is difficult to reconcile the two functions to agree
 * due to their complexity. For example, isl_surf_get_ccs_surf() may
 * unexpectedly fail in vkCreateImage(), eliminating the image's aux surface
 * even when the modifier requires one. (Maybe we should reconcile the two
 * functions despite the difficulty).
 */
static VkResult MUST_CHECK
check_drm_format_mod(const struct anv_device *device,
                     const struct anv_image *image)
{
   /* Image must have a modifier if and only if it has modifier tiling. */
   assert((image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID) ==
          (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT));

   if (image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID)
      return VK_SUCCESS;

   const struct isl_drm_modifier_info *isl_mod_info =
      isl_drm_modifier_get_info(image->vk.drm_format_mod);

   /* Driver must support the modifier. */
   assert(isl_drm_modifier_get_score(device->info, isl_mod_info->modifier));

   /* Enforced by us, not the Vulkan spec. */
   assert(image->vk.image_type == VK_IMAGE_TYPE_2D);
   assert(!(image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT));
   assert(!(image->vk.aspects & VK_IMAGE_ASPECT_STENCIL_BIT));
   assert(image->vk.mip_levels == 1);
   assert(image->vk.array_layers == 1);
   assert(image->vk.samples == 1);

   for (int i = 0; i < image->n_planes; ++i) {
      const struct anv_image_plane *plane = &image->planes[i];
      ASSERTED const struct isl_format_layout *isl_layout =
         isl_format_get_layout(plane->primary_surface.isl.format);

      /* Enforced by us, not the Vulkan spec. */
      assert(isl_layout->txc == ISL_TXC_NONE);
      assert(isl_layout->colorspace == ISL_COLORSPACE_LINEAR ||
             isl_layout->colorspace == ISL_COLORSPACE_SRGB);

      if (isl_mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
         /* Reject DISJOINT for consistency with the GL driver. */
         assert(!image->disjoint);

         /* The modifier's required aux usage mandates the image's aux usage.
          * The inverse, however, does not hold; if the modifier has no aux
          * usage, then we may enable a private aux surface.
          */
         if (plane->aux_usage != isl_mod_info->aux_usage) {
            return vk_errorf(device, VK_ERROR_UNKNOWN,
                             "image with modifier unexpectedly has wrong aux "
                             "usage");
         }
      }
   }

   return VK_SUCCESS;
}

/**
 * Use when the app does not provide
 * VkImageDrmFormatModifierExplicitCreateInfoEXT.
 */
static VkResult MUST_CHECK
add_all_surfaces_implicit_layout(
   struct anv_device *device,
   struct anv_image *image,
   const VkImageFormatListCreateInfo *format_list_info,
   uint32_t stride,
   isl_tiling_flags_t isl_tiling_flags,
   isl_surf_usage_flags_t isl_extra_usage_flags)
{
   const struct intel_device_info *devinfo = device->info;
   VkResult result;

   u_foreach_bit(b, image->vk.aspects) {
      VkImageAspectFlagBits aspect = 1 << b;
      const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
      const  struct anv_format_plane plane_format =
         anv_get_format_plane(devinfo, image->vk.format, plane, image->vk.tiling);

      VkImageUsageFlags vk_usage = vk_image_usage(&image->vk, aspect);
      isl_surf_usage_flags_t isl_usage =
         choose_isl_surf_usage(image->vk.create_flags, vk_usage,
                               isl_extra_usage_flags, aspect);

      result = add_primary_surface(device, image, plane, plane_format,
                                   ANV_OFFSET_IMPLICIT, stride,
                                   isl_tiling_flags, isl_usage);
      if (result != VK_SUCCESS)
         return result;

      /* Disable aux if image supports export without modifiers. */
      if (image->vk.external_handle_types != 0 &&
          image->vk.tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT)
         continue;

      result = add_aux_surface_if_supported(device, image, plane, plane_format,
                                            format_list_info,
                                            ANV_OFFSET_IMPLICIT, stride,
                                            isl_extra_usage_flags);
      if (result != VK_SUCCESS)
         return result;
   }

   return VK_SUCCESS;
}

/**
 * Use when the app provides VkImageDrmFormatModifierExplicitCreateInfoEXT.
 */
static VkResult
add_all_surfaces_explicit_layout(
   struct anv_device *device,
   struct anv_image *image,
   const VkImageFormatListCreateInfo *format_list_info,
   const VkImageDrmFormatModifierExplicitCreateInfoEXT *drm_info,
   isl_tiling_flags_t isl_tiling_flags,
   isl_surf_usage_flags_t isl_extra_usage_flags)
{
   const struct intel_device_info *devinfo = device->info;
   const uint32_t mod_plane_count = drm_info->drmFormatModifierPlaneCount;
   const bool mod_has_aux =
      isl_drm_modifier_has_aux(drm_info->drmFormatModifier);
   VkResult result;

   /* About valid usage in the Vulkan spec:
    *
    * Unlike vanilla vkCreateImage, which produces undefined behavior on user
    * error, here the spec requires the implementation to return
    * VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT if the app provides
    * a bad plane layout. However, the spec does require
    * drmFormatModifierPlaneCount to be valid.
    *
    * Most validation of plane layout occurs in add_surface().
    */

   /* We support a restricted set of images with modifiers.
    *
    * With aux usage,
    * - Format plane count must be 1.
    * - Memory plane count must be 2.
    * Without aux usage,
    * - Each format plane must map to a distint memory plane.
    *
    * For the other cases, currently there is no way to properly map memory
    * planes to format planes and aux planes due to the lack of defined ABI
    * for external multi-planar images.
    */
   if (image->n_planes == 1)
      assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);
   else
      assert(!(image->vk.aspects & ~VK_IMAGE_ASPECT_PLANES_BITS_ANV));

   if (mod_has_aux)
      assert(image->n_planes == 1 && mod_plane_count == 2);
   else
      assert(image->n_planes == mod_plane_count);

   /* Reject special values in the app-provided plane layouts. */
   for (uint32_t i = 0; i < mod_plane_count; ++i) {
      if (drm_info->pPlaneLayouts[i].rowPitch == 0) {
         return vk_errorf(device,
                          VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
                          "VkImageDrmFormatModifierExplicitCreateInfoEXT::"
                          "pPlaneLayouts[%u]::rowPitch is 0", i);
      }

      if (drm_info->pPlaneLayouts[i].offset == ANV_OFFSET_IMPLICIT) {
         return vk_errorf(device,
                          VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT,
                          "VkImageDrmFormatModifierExplicitCreateInfoEXT::"
                          "pPlaneLayouts[%u]::offset is %" PRIu64,
                          i, ANV_OFFSET_IMPLICIT);
      }
   }

   u_foreach_bit(b, image->vk.aspects) {
      const VkImageAspectFlagBits aspect = 1 << b;
      const uint32_t plane = anv_image_aspect_to_plane(image, aspect);
      const struct anv_format_plane format_plane =
         anv_get_format_plane(devinfo, image->vk.format, plane, image->vk.tiling);
      const VkSubresourceLayout *primary_layout = &drm_info->pPlaneLayouts[plane];

      result = add_primary_surface(device, image, plane,
                                   format_plane,
                                   primary_layout->offset,
                                   primary_layout->rowPitch,
                                   isl_tiling_flags,
                                   isl_extra_usage_flags);
      if (result != VK_SUCCESS)
         return result;

      if (mod_has_aux) {
         const VkSubresourceLayout *aux_layout = &drm_info->pPlaneLayouts[1];
         result = add_aux_surface_if_supported(device, image, plane,
                                               format_plane,
                                               format_list_info,
                                               aux_layout->offset,
                                               aux_layout->rowPitch,
                                               isl_extra_usage_flags);
         if (result != VK_SUCCESS)
            return result;
      }
   }

   return VK_SUCCESS;
}

static const struct isl_drm_modifier_info *
choose_drm_format_mod(const struct anv_physical_device *device,
                      uint32_t modifier_count, const uint64_t *modifiers)
{
   uint64_t best_mod = UINT64_MAX;
   uint32_t best_score = 0;

   for (uint32_t i = 0; i < modifier_count; ++i) {
      uint32_t score = isl_drm_modifier_get_score(&device->info, modifiers[i]);
      if (score > best_score) {
         best_mod = modifiers[i];
         best_score = score;
      }
   }

   if (best_score > 0)
      return isl_drm_modifier_get_info(best_mod);
   else
      return NULL;
}

static VkImageUsageFlags
anv_image_create_usage(const VkImageCreateInfo *pCreateInfo,
                       VkImageUsageFlags usage)
{
   /* Add TRANSFER_SRC usage for multisample attachment images. This is
    * because we might internally use the TRANSFER_SRC layout on them for
    * blorp operations associated with resolving those into other attachments
    * at the end of a subpass.
    *
    * Without this additional usage, we compute an incorrect AUX state in
    * anv_layout_to_aux_state().
    */
   if (pCreateInfo->samples > VK_SAMPLE_COUNT_1_BIT &&
       (usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
                 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)))
      usage |= VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
   return usage;
}

static VkResult MUST_CHECK
alloc_private_binding(struct anv_device *device,
                      struct anv_image *image,
                      const VkImageCreateInfo *create_info)
{
   struct anv_image_binding *binding =
      &image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE];

   if (binding->memory_range.size == 0)
      return VK_SUCCESS;

   const VkImageSwapchainCreateInfoKHR *swapchain_info =
      vk_find_struct_const(create_info->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);

   if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) {
      /* The image will be bound to swapchain memory. */
      return VK_SUCCESS;
   }

   VkResult result = anv_device_alloc_bo(device, "image-binding-private",
                                         binding->memory_range.size, 0, 0,
                                         &binding->address.bo);
   if (result == VK_SUCCESS) {
      pthread_mutex_lock(&device->mutex);
      list_addtail(&image->link, &device->image_private_objects);
      pthread_mutex_unlock(&device->mutex);
   }

   return result;
}

VkResult
anv_image_init(struct anv_device *device, struct anv_image *image,
               const struct anv_image_create_info *create_info)
{
   const VkImageCreateInfo *pCreateInfo = create_info->vk_info;
   const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_explicit_info = NULL;
   const struct isl_drm_modifier_info *isl_mod_info = NULL;
   VkResult r;

   vk_image_init(&device->vk, &image->vk, pCreateInfo);

   image->vk.usage = anv_image_create_usage(pCreateInfo, image->vk.usage);
   image->vk.stencil_usage =
      anv_image_create_usage(pCreateInfo, image->vk.stencil_usage);

   if (pCreateInfo->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
      assert(!image->vk.wsi_legacy_scanout);
      mod_explicit_info =
         vk_find_struct_const(pCreateInfo->pNext,
                              IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
      if (mod_explicit_info) {
         isl_mod_info = isl_drm_modifier_get_info(mod_explicit_info->drmFormatModifier);
      } else {
         const struct VkImageDrmFormatModifierListCreateInfoEXT *mod_list_info =
            vk_find_struct_const(pCreateInfo->pNext,
                                 IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
         isl_mod_info = choose_drm_format_mod(device->physical,
                                              mod_list_info->drmFormatModifierCount,
                                              mod_list_info->pDrmFormatModifiers);
      }

      assert(isl_mod_info);
      assert(image->vk.drm_format_mod == DRM_FORMAT_MOD_INVALID);
      image->vk.drm_format_mod = isl_mod_info->modifier;
   }

   for (int i = 0; i < ANV_IMAGE_MEMORY_BINDING_END; ++i) {
      image->bindings[i] = (struct anv_image_binding) {
         .memory_range = { .binding = i },
      };
   }

   /* In case of AHardwareBuffer import, we don't know the layout yet */
   if (image->vk.external_handle_types &
       VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID) {
      image->from_ahb = true;
#ifdef ANDROID
      image->vk.ahb_format = anv_ahb_format_for_vk_format(image->vk.format);
#endif
      return VK_SUCCESS;
   }

   image->n_planes = anv_get_format_planes(image->vk.format);

   image->from_wsi =
      vk_find_struct_const(pCreateInfo->pNext, WSI_IMAGE_CREATE_INFO_MESA) != NULL;

   /* The Vulkan 1.2.165 glossary says:
    *
    *    A disjoint image consists of multiple disjoint planes, and is created
    *    with the VK_IMAGE_CREATE_DISJOINT_BIT bit set.
    */
   image->disjoint = image->n_planes > 1 &&
                     (pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT);

   const isl_tiling_flags_t isl_tiling_flags =
      choose_isl_tiling_flags(device->info, create_info, isl_mod_info,
                              image->vk.wsi_legacy_scanout);

   const VkImageFormatListCreateInfo *fmt_list =
      vk_find_struct_const(pCreateInfo->pNext,
                           IMAGE_FORMAT_LIST_CREATE_INFO);

   if (mod_explicit_info) {
      r = add_all_surfaces_explicit_layout(device, image, fmt_list,
                                           mod_explicit_info, isl_tiling_flags,
                                           create_info->isl_extra_usage_flags);
   } else {
      r = add_all_surfaces_implicit_layout(device, image, fmt_list, create_info->stride,
                                           isl_tiling_flags,
                                           create_info->isl_extra_usage_flags);
   }

   if (r != VK_SUCCESS)
      goto fail;

   const VkVideoProfileListInfoKHR *video_profile =
      vk_find_struct_const(pCreateInfo->pNext,
                           VIDEO_PROFILE_LIST_INFO_KHR);
   if (video_profile) {
      r = add_video_buffers(device, image, video_profile);
      if (r != VK_SUCCESS)
         goto fail;
   }

   r = alloc_private_binding(device, image, pCreateInfo);
   if (r != VK_SUCCESS)
      goto fail;

   check_memory_bindings(device, image);

   r = check_drm_format_mod(device, image);
   if (r != VK_SUCCESS)
      goto fail;

   /* Once we have all the bindings, determine whether we can do non 0 fast
    * clears for each plane.
    */
   for (uint32_t p = 0; p < image->n_planes; p++) {
      image->planes[p].can_non_zero_fast_clear =
         can_fast_clear_with_non_zero_color(device->info, image, p, fmt_list);
   }

   return VK_SUCCESS;

fail:
   vk_image_finish(&image->vk);
   return r;
}

void
anv_image_finish(struct anv_image *image)
{
   struct anv_device *device =
      container_of(image->vk.base.device, struct anv_device, vk);

   if (image->from_gralloc) {
      assert(!image->disjoint);
      assert(image->n_planes == 1);
      assert(image->planes[0].primary_surface.memory_range.binding ==
             ANV_IMAGE_MEMORY_BINDING_MAIN);
      assert(image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo != NULL);
      anv_device_release_bo(device, image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address.bo);
   }

   struct anv_bo *private_bo = image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo;
   if (private_bo) {
      pthread_mutex_lock(&device->mutex);
      list_del(&image->link);
      pthread_mutex_unlock(&device->mutex);
      anv_device_release_bo(device, private_bo);
   }

   vk_image_finish(&image->vk);
}

static struct anv_image *
anv_swapchain_get_image(VkSwapchainKHR swapchain,
                        uint32_t index)
{
   VkImage image = wsi_common_get_image(swapchain, index);
   return anv_image_from_handle(image);
}

static VkResult
anv_image_init_from_create_info(struct anv_device *device,
                                struct anv_image *image,
                                const VkImageCreateInfo *pCreateInfo)
{
   const VkNativeBufferANDROID *gralloc_info =
      vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
   if (gralloc_info)
      return anv_image_init_from_gralloc(device, image, pCreateInfo,
                                         gralloc_info);

   struct anv_image_create_info create_info = {
      .vk_info = pCreateInfo,
   };

   /* For dmabuf imports, configure the primary surface without support for
    * compression if the modifier doesn't specify it. This helps to create
    * VkImages with memory requirements that are compatible with the buffers
    * apps provide.
    */
   const struct VkImageDrmFormatModifierExplicitCreateInfoEXT *mod_explicit_info =
      vk_find_struct_const(pCreateInfo->pNext,
                           IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
   if (mod_explicit_info &&
       !isl_drm_modifier_has_aux(mod_explicit_info->drmFormatModifier))
      create_info.isl_extra_usage_flags |= ISL_SURF_USAGE_DISABLE_AUX_BIT;

   return anv_image_init(device, image, &create_info);
}

VkResult anv_CreateImage(
    VkDevice                                    _device,
    const VkImageCreateInfo*                    pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkImage*                                    pImage)
{
   ANV_FROM_HANDLE(anv_device, device, _device);

#ifndef VK_USE_PLATFORM_ANDROID_KHR
   /* Ignore swapchain creation info on Android. Since we don't have an
    * implementation in Mesa, we're guaranteed to access an Android object
    * incorrectly.
    */
   const VkImageSwapchainCreateInfoKHR *swapchain_info =
      vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
   if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE) {
      return wsi_common_create_swapchain_image(&device->physical->wsi_device,
                                               pCreateInfo,
                                               swapchain_info->swapchain,
                                               pImage);
   }
#endif

   struct anv_image *image =
      vk_object_zalloc(&device->vk, pAllocator, sizeof(*image),
                       VK_OBJECT_TYPE_IMAGE);
   if (!image)
      return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);

   VkResult result = anv_image_init_from_create_info(device, image,
                                                     pCreateInfo);
   if (result != VK_SUCCESS) {
      vk_object_free(&device->vk, pAllocator, image);
      return result;
   }

   *pImage = anv_image_to_handle(image);

   return result;
}

void
anv_DestroyImage(VkDevice _device, VkImage _image,
                 const VkAllocationCallbacks *pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_image, image, _image);

   if (!image)
      return;

   assert(&device->vk == image->vk.base.device);
   anv_image_finish(image);

   vk_free2(&device->vk.alloc, pAllocator, image);
}

/* We are binding AHardwareBuffer. Get a description, resolve the
 * format and prepare anv_image properly.
 */
static void
resolve_ahw_image(struct anv_device *device,
                  struct anv_image *image,
                  struct anv_device_memory *mem)
{
#if defined(ANDROID) && ANDROID_API_LEVEL >= 26
   assert(mem->vk.ahardware_buffer);
   AHardwareBuffer_Desc desc;
   AHardwareBuffer_describe(mem->vk.ahardware_buffer, &desc);
   VkResult result;

   /* Check tiling. */
   enum isl_tiling tiling;
   result = anv_device_get_bo_tiling(device, mem->bo, &tiling);
   assert(result == VK_SUCCESS);

   VkImageTiling vk_tiling =
      tiling == ISL_TILING_LINEAR ? VK_IMAGE_TILING_LINEAR :
                                    VK_IMAGE_TILING_OPTIMAL;
   isl_tiling_flags_t isl_tiling_flags = (1u << tiling);

   /* Check format. */
   VkFormat vk_format = vk_format_from_android(desc.format, desc.usage);
   enum isl_format isl_fmt = anv_get_isl_format(device->info,
                                                vk_format,
                                                VK_IMAGE_ASPECT_COLOR_BIT,
                                                vk_tiling);
   assert(isl_fmt != ISL_FORMAT_UNSUPPORTED);

   /* Handle RGB(X)->RGBA fallback. */
   switch (desc.format) {
   case AHARDWAREBUFFER_FORMAT_R8G8B8_UNORM:
   case AHARDWAREBUFFER_FORMAT_R8G8B8X8_UNORM:
      if (isl_format_is_rgb(isl_fmt))
         isl_fmt = isl_format_rgb_to_rgba(isl_fmt);
      break;
   }

   /* Now we are able to fill anv_image fields properly and create
    * isl_surface for it.
    */
   vk_image_set_format(&image->vk, vk_format);
   image->n_planes = anv_get_format_planes(image->vk.format);

   uint32_t stride = desc.stride *
                     (isl_format_get_layout(isl_fmt)->bpb / 8);

   result = add_all_surfaces_implicit_layout(device, image, NULL, stride,
                                             isl_tiling_flags,
                                             ISL_SURF_USAGE_DISABLE_AUX_BIT);
   assert(result == VK_SUCCESS);
#endif
}

void
anv_image_get_memory_requirements(struct anv_device *device,
                                  struct anv_image *image,
                                  VkImageAspectFlags aspects,
                                  VkMemoryRequirements2 *pMemoryRequirements)
{
   /* The Vulkan spec (git aaed022) says:
    *
    *    memoryTypeBits is a bitfield and contains one bit set for every
    *    supported memory type for the resource. The bit `1<<i` is set if and
    *    only if the memory type `i` in the VkPhysicalDeviceMemoryProperties
    *    structure for the physical device is supported.
    *
    * All types are currently supported for images.
    */
   uint32_t memory_types = (1ull << device->physical->memory.type_count) - 1;

   vk_foreach_struct(ext, pMemoryRequirements->pNext) {
      switch (ext->sType) {
      case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS: {
         VkMemoryDedicatedRequirements *requirements = (void *)ext;
         if (image->vk.wsi_legacy_scanout || image->from_ahb) {
            /* If we need to set the tiling for external consumers, we need a
             * dedicated allocation.
             *
             * See also anv_AllocateMemory.
             */
            requirements->prefersDedicatedAllocation = true;
            requirements->requiresDedicatedAllocation = true;
         } else {
            requirements->prefersDedicatedAllocation = false;
            requirements->requiresDedicatedAllocation = false;
         }
         break;
      }

      default:
         anv_debug_ignored_stype(ext->sType);
         break;
      }
   }

   /* If the image is disjoint, then we must return the memory requirements for
    * the single plane specified in VkImagePlaneMemoryRequirementsInfo. If
    * non-disjoint, then exactly one set of memory requirements exists for the
    * whole image.
    *
    * This is enforced by the Valid Usage for VkImageMemoryRequirementsInfo2,
    * which requires that the app provide VkImagePlaneMemoryRequirementsInfo if
    * and only if the image is disjoint (that is, multi-planar format and
    * VK_IMAGE_CREATE_DISJOINT_BIT).
    */
   const struct anv_image_binding *binding;
   if (image->disjoint) {
      assert(util_bitcount(aspects) == 1);
      assert(aspects & image->vk.aspects);
      binding = image_aspect_to_binding(image, aspects);
   } else {
      assert(aspects == image->vk.aspects);
      binding = &image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN];
   }

   pMemoryRequirements->memoryRequirements = (VkMemoryRequirements) {
      .size = binding->memory_range.size,
      .alignment = binding->memory_range.alignment,
      .memoryTypeBits = memory_types,
   };
}

void anv_GetImageMemoryRequirements2(
    VkDevice                                    _device,
    const VkImageMemoryRequirementsInfo2*       pInfo,
    VkMemoryRequirements2*                      pMemoryRequirements)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_image, image, pInfo->image);

   VkImageAspectFlags aspects = image->vk.aspects;

   vk_foreach_struct_const(ext, pInfo->pNext) {
      switch (ext->sType) {
      case VK_STRUCTURE_TYPE_IMAGE_PLANE_MEMORY_REQUIREMENTS_INFO: {
         assert(image->disjoint);
         const VkImagePlaneMemoryRequirementsInfo *plane_reqs =
            (const VkImagePlaneMemoryRequirementsInfo *) ext;
         aspects = plane_reqs->planeAspect;
         break;
      }

      default:
         anv_debug_ignored_stype(ext->sType);
         break;
      }
   }

   anv_image_get_memory_requirements(device, image, aspects,
                                     pMemoryRequirements);
}

void anv_GetDeviceImageMemoryRequirementsKHR(
    VkDevice                                    _device,
    const VkDeviceImageMemoryRequirements*   pInfo,
    VkMemoryRequirements2*                      pMemoryRequirements)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_image image = { 0 };

   ASSERTED VkResult result =
      anv_image_init_from_create_info(device, &image, pInfo->pCreateInfo);
   assert(result == VK_SUCCESS);

   VkImageAspectFlags aspects =
      image.disjoint ? pInfo->planeAspect : image.vk.aspects;

   anv_image_get_memory_requirements(device, &image, aspects,
                                     pMemoryRequirements);
}

void anv_GetImageSparseMemoryRequirements(
    VkDevice                                    device,
    VkImage                                     image,
    uint32_t*                                   pSparseMemoryRequirementCount,
    VkSparseImageMemoryRequirements*            pSparseMemoryRequirements)
{
   *pSparseMemoryRequirementCount = 0;
}

void anv_GetImageSparseMemoryRequirements2(
    VkDevice                                    device,
    const VkImageSparseMemoryRequirementsInfo2* pInfo,
    uint32_t*                                   pSparseMemoryRequirementCount,
    VkSparseImageMemoryRequirements2*           pSparseMemoryRequirements)
{
   *pSparseMemoryRequirementCount = 0;
}

void anv_GetDeviceImageSparseMemoryRequirementsKHR(
    VkDevice                                    device,
    const VkDeviceImageMemoryRequirements* pInfo,
    uint32_t*                                   pSparseMemoryRequirementCount,
    VkSparseImageMemoryRequirements2*           pSparseMemoryRequirements)
{
   *pSparseMemoryRequirementCount = 0;
}

VkResult anv_BindImageMemory2(
    VkDevice                                    _device,
    uint32_t                                    bindInfoCount,
    const VkBindImageMemoryInfo*                pBindInfos)
{
   ANV_FROM_HANDLE(anv_device, device, _device);

   for (uint32_t i = 0; i < bindInfoCount; i++) {
      const VkBindImageMemoryInfo *bind_info = &pBindInfos[i];
      ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
      ANV_FROM_HANDLE(anv_image, image, bind_info->image);
      bool did_bind = false;

      /* Resolve will alter the image's aspects, do this first. */
      if (mem && mem->vk.ahardware_buffer)
         resolve_ahw_image(device, image, mem);

      vk_foreach_struct_const(s, bind_info->pNext) {
         switch (s->sType) {
         case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO: {
            const VkBindImagePlaneMemoryInfo *plane_info =
               (const VkBindImagePlaneMemoryInfo *) s;

            /* Workaround for possible spec bug.
             *
             * Unlike VkImagePlaneMemoryRequirementsInfo, which requires that
             * the image be disjoint (that is, multi-planar format and
             * VK_IMAGE_CREATE_DISJOINT_BIT), VkBindImagePlaneMemoryInfo allows
             * the image to be non-disjoint and requires only that the image
             * have the DISJOINT flag. In this case, regardless of the value of
             * VkImagePlaneMemoryRequirementsInfo::planeAspect, the behavior is
             * the same as if VkImagePlaneMemoryRequirementsInfo were omitted.
             */
            if (!image->disjoint)
               break;

            struct anv_image_binding *binding =
               image_aspect_to_binding(image, plane_info->planeAspect);

            binding->address = (struct anv_address) {
               .bo = mem->bo,
               .offset = bind_info->memoryOffset,
            };

            did_bind = true;
            break;
         }
         case VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_SWAPCHAIN_INFO_KHR: {
            /* Ignore this struct on Android, we cannot access swapchain
             * structures there.
             */
#ifndef VK_USE_PLATFORM_ANDROID_KHR
            const VkBindImageMemorySwapchainInfoKHR *swapchain_info =
               (const VkBindImageMemorySwapchainInfoKHR *) s;
            struct anv_image *swapchain_image =
               anv_swapchain_get_image(swapchain_info->swapchain,
                                       swapchain_info->imageIndex);
            assert(swapchain_image);
            assert(image->vk.aspects == swapchain_image->vk.aspects);
            assert(mem == NULL);

            for (int j = 0; j < ARRAY_SIZE(image->bindings); ++j) {
               assert(memory_ranges_equal(image->bindings[j].memory_range,
                                          swapchain_image->bindings[j].memory_range));
               image->bindings[j].address = swapchain_image->bindings[j].address;
            }

            /* We must bump the private binding's bo's refcount because, unlike the other
             * bindings, its lifetime is not application-managed.
             */
            struct anv_bo *private_bo =
               image->bindings[ANV_IMAGE_MEMORY_BINDING_PRIVATE].address.bo;
            if (private_bo)
               anv_bo_ref(private_bo);

            did_bind = true;
#endif
            break;
         }
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch"
         case VK_STRUCTURE_TYPE_NATIVE_BUFFER_ANDROID: {
            const VkNativeBufferANDROID *gralloc_info =
               (const VkNativeBufferANDROID *)s;
            VkResult result = anv_image_bind_from_gralloc(device, image,
                                                          gralloc_info);
            if (result != VK_SUCCESS)
               return result;
            did_bind = true;
            break;
         }
#pragma GCC diagnostic pop
         default:
            anv_debug_ignored_stype(s->sType);
            break;
         }
      }

      if (!did_bind) {
         assert(!image->disjoint);

         image->bindings[ANV_IMAGE_MEMORY_BINDING_MAIN].address =
            (struct anv_address) {
               .bo = mem->bo,
               .offset = bind_info->memoryOffset,
            };

         did_bind = true;
      }

      /* On platforms that use implicit CCS, if the plane's bo lacks implicit
       * CCS then disable compression on the plane.
       */
      for (int p = 0; p < image->n_planes; ++p) {
         enum anv_image_memory_binding binding =
            image->planes[p].primary_surface.memory_range.binding;
         const struct anv_bo *bo =
            image->bindings[binding].address.bo;

         if (!bo || bo->has_implicit_ccs)
            continue;

         if (!device->physical->has_implicit_ccs)
            continue;

         if (!isl_aux_usage_has_ccs(image->planes[p].aux_usage))
            continue;

         anv_perf_warn(VK_LOG_OBJS(&image->vk.base),
                       "BO lacks implicit CCS. Disabling the CCS aux usage.");

         if (image->planes[p].aux_surface.memory_range.size > 0) {
            assert(image->planes[p].aux_usage == ISL_AUX_USAGE_HIZ_CCS ||
                   image->planes[p].aux_usage == ISL_AUX_USAGE_HIZ_CCS_WT);
            image->planes[p].aux_usage = ISL_AUX_USAGE_HIZ;
         } else {
            assert(image->planes[p].aux_usage == ISL_AUX_USAGE_CCS_E ||
                   image->planes[p].aux_usage == ISL_AUX_USAGE_STC_CCS);
            image->planes[p].aux_usage = ISL_AUX_USAGE_NONE;
         }
      }
   }

   return VK_SUCCESS;
}

void anv_GetImageSubresourceLayout(
    VkDevice                                    device,
    VkImage                                     _image,
    const VkImageSubresource*                   subresource,
    VkSubresourceLayout*                        layout)
{
   ANV_FROM_HANDLE(anv_image, image, _image);
   const struct anv_surface *surface;

   assert(__builtin_popcount(subresource->aspectMask) == 1);

   /* The Vulkan spec requires that aspectMask be
    * VK_IMAGE_ASPECT_MEMORY_PLANE_i_BIT_EXT if tiling is
    * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
    *
    * For swapchain images, the Vulkan spec says that every swapchain image has
    * tiling VK_IMAGE_TILING_OPTIMAL, but we may choose
    * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT internally.  Vulkan doesn't allow
    * vkGetImageSubresourceLayout for images with VK_IMAGE_TILING_OPTIMAL,
    * therefore it's invalid for the application to call this on a swapchain
    * image.  The WSI code, however, knows when it has internally created
    * a swapchain image with VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT,
    * so it _should_ correctly use VK_IMAGE_ASPECT_MEMORY_PLANE_* in that case.
    * But it incorrectly uses VK_IMAGE_ASPECT_PLANE_*, so we have a temporary
    * workaround.
    */
   if (image->vk.tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
      /* TODO(chadv): Drop this workaround when WSI gets fixed. */
      uint32_t mem_plane;
      switch (subresource->aspectMask) {
      case VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT:
      case VK_IMAGE_ASPECT_PLANE_0_BIT:
         mem_plane = 0;
         break;
      case VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT:
      case VK_IMAGE_ASPECT_PLANE_1_BIT:
         mem_plane = 1;
         break;
      case VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT:
      case VK_IMAGE_ASPECT_PLANE_2_BIT:
         mem_plane = 2;
         break;
      default:
         unreachable("bad VkImageAspectFlags");
      }

      if (mem_plane == 1 && isl_drm_modifier_has_aux(image->vk.drm_format_mod)) {
         assert(image->n_planes == 1);
         /* If the memory binding differs between primary and aux, then the
          * returned offset will be incorrect.
          */
         assert(image->planes[0].aux_surface.memory_range.binding ==
                image->planes[0].primary_surface.memory_range.binding);
         surface = &image->planes[0].aux_surface;
      } else {
         assert(mem_plane < image->n_planes);
         surface = &image->planes[mem_plane].primary_surface;
      }
   } else {
      const uint32_t plane =
         anv_image_aspect_to_plane(image, subresource->aspectMask);
      surface = &image->planes[plane].primary_surface;
   }

   layout->offset = surface->memory_range.offset;
   layout->rowPitch = surface->isl.row_pitch_B;
   layout->depthPitch = isl_surf_get_array_pitch(&surface->isl);
   layout->arrayPitch = isl_surf_get_array_pitch(&surface->isl);

   if (subresource->mipLevel > 0 || subresource->arrayLayer > 0) {
      assert(surface->isl.tiling == ISL_TILING_LINEAR);

      uint64_t offset_B;
      isl_surf_get_image_offset_B_tile_sa(&surface->isl,
                                          subresource->mipLevel,
                                          subresource->arrayLayer,
                                          0 /* logical_z_offset_px */,
                                          &offset_B, NULL, NULL);
      layout->offset += offset_B;
      layout->size = layout->rowPitch * u_minify(image->vk.extent.height,
                                                 subresource->mipLevel) *
                     image->vk.extent.depth;
   } else {
      layout->size = surface->memory_range.size;
   }
}

/**
 * This function returns the assumed isl_aux_state for a given VkImageLayout.
 * Because Vulkan image layouts don't map directly to isl_aux_state enums, the
 * returned enum is the assumed worst case.
 *
 * @param devinfo The device information of the Intel GPU.
 * @param image The image that may contain a collection of buffers.
 * @param aspect The aspect of the image to be accessed.
 * @param layout The current layout of the image aspect(s).
 *
 * @return The primary buffer that should be used for the given layout.
 */
enum isl_aux_state ATTRIBUTE_PURE
anv_layout_to_aux_state(const struct intel_device_info * const devinfo,
                        const struct anv_image * const image,
                        const VkImageAspectFlagBits aspect,
                        const VkImageLayout layout)
{
   /* Validate the inputs. */

   /* The devinfo is needed as the optimal buffer varies across generations. */
   assert(devinfo != NULL);

   /* The layout of a NULL image is not properly defined. */
   assert(image != NULL);

   /* The aspect must be exactly one of the image aspects. */
   assert(util_bitcount(aspect) == 1 && (aspect & image->vk.aspects));

   /* Determine the optimal buffer. */

   const uint32_t plane = anv_image_aspect_to_plane(image, aspect);

   /* If we don't have an aux buffer then aux state makes no sense */
   const enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
   assert(aux_usage != ISL_AUX_USAGE_NONE);

   /* All images that use an auxiliary surface are required to be tiled. */
   assert(image->planes[plane].primary_surface.isl.tiling != ISL_TILING_LINEAR);

   /* Handle a few special cases */
   switch (layout) {
   /* Invalid layouts */
   case VK_IMAGE_LAYOUT_MAX_ENUM:
      unreachable("Invalid image layout.");

   /* Undefined layouts
    *
    * The pre-initialized layout is equivalent to the undefined layout for
    * optimally-tiled images.  We can only do color compression (CCS or HiZ)
    * on tiled images.
    */
   case VK_IMAGE_LAYOUT_UNDEFINED:
   case VK_IMAGE_LAYOUT_PREINITIALIZED:
      return ISL_AUX_STATE_AUX_INVALID;

   case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: {
      assert(image->vk.aspects == VK_IMAGE_ASPECT_COLOR_BIT);

      enum isl_aux_state aux_state =
         isl_drm_modifier_get_default_aux_state(image->vk.drm_format_mod);

      switch (aux_state) {
      case ISL_AUX_STATE_AUX_INVALID:
         /* The modifier does not support compression. But, if we arrived
          * here, then we have enabled compression on it anyway, in which case
          * we must resolve the aux surface before we release ownership to the
          * presentation engine (because, having no modifier, the presentation
          * engine will not be aware of the aux surface). The presentation
          * engine will not access the aux surface (because it is unware of
          * it), and so the aux surface will still be resolved when we
          * re-acquire ownership.
          *
          * Therefore, at ownership transfers in either direction, there does
          * exist an aux surface despite the lack of modifier and its state is
          * pass-through.
          */
         return ISL_AUX_STATE_PASS_THROUGH;
      case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
         return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
      default:
         unreachable("unexpected isl_aux_state");
      }
   }

   default:
      break;
   }

   const bool read_only = vk_image_layout_is_read_only(layout, aspect);

   const VkImageUsageFlags image_aspect_usage =
      vk_image_usage(&image->vk, aspect);
   const VkImageUsageFlags usage =
      vk_image_layout_to_usage_flags(layout, aspect) & image_aspect_usage;

   bool aux_supported = true;
   bool clear_supported = isl_aux_usage_has_fast_clears(aux_usage);

   if ((usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT) && !read_only) {
      /* This image could be used as both an input attachment and a render
       * target (depth, stencil, or color) at the same time and this can cause
       * corruption.
       *
       * We currently only disable aux in this way for depth even though we
       * disable it for color in GL.
       *
       * TODO: Should we be disabling this in more cases?
       */
      if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT && devinfo->ver <= 9) {
         aux_supported = false;
         clear_supported = false;
      }
   }

   if (usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
                VK_IMAGE_USAGE_SAMPLED_BIT |
                VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
      switch (aux_usage) {
      case ISL_AUX_USAGE_HIZ:
         if (!anv_can_sample_with_hiz(devinfo, image)) {
            aux_supported = false;
            clear_supported = false;
         }
         break;

      case ISL_AUX_USAGE_HIZ_CCS:
         aux_supported = false;
         clear_supported = false;
         break;

      case ISL_AUX_USAGE_HIZ_CCS_WT:
         break;

      case ISL_AUX_USAGE_CCS_D:
         aux_supported = false;
         clear_supported = false;
         break;

      case ISL_AUX_USAGE_MCS:
         if (!anv_can_sample_mcs_with_clear(devinfo, image))
            clear_supported = false;
         break;

      case ISL_AUX_USAGE_CCS_E:
      case ISL_AUX_USAGE_STC_CCS:
         break;

      default:
         unreachable("Unsupported aux usage");
      }
   }

   switch (aux_usage) {
   case ISL_AUX_USAGE_HIZ:
   case ISL_AUX_USAGE_HIZ_CCS:
   case ISL_AUX_USAGE_HIZ_CCS_WT:
      if (aux_supported) {
         assert(clear_supported);
         return ISL_AUX_STATE_COMPRESSED_CLEAR;
      } else if (read_only) {
         return ISL_AUX_STATE_RESOLVED;
      } else {
         return ISL_AUX_STATE_AUX_INVALID;
      }

   case ISL_AUX_USAGE_CCS_D:
      /* We only support clear in exactly one state */
      if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL ||
          layout == VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL) {
         assert(aux_supported);
         assert(clear_supported);
         return ISL_AUX_STATE_PARTIAL_CLEAR;
      } else {
         return ISL_AUX_STATE_PASS_THROUGH;
      }

   case ISL_AUX_USAGE_CCS_E:
      if (aux_supported) {
         assert(clear_supported);
         return ISL_AUX_STATE_COMPRESSED_CLEAR;
      } else {
         return ISL_AUX_STATE_PASS_THROUGH;
      }

   case ISL_AUX_USAGE_MCS:
      assert(aux_supported);
      if (clear_supported) {
         return ISL_AUX_STATE_COMPRESSED_CLEAR;
      } else {
         return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
      }

   case ISL_AUX_USAGE_STC_CCS:
      assert(aux_supported);
      assert(!clear_supported);
      return ISL_AUX_STATE_COMPRESSED_NO_CLEAR;

   default:
      unreachable("Unsupported aux usage");
   }
}

/**
 * This function determines the optimal buffer to use for a given
 * VkImageLayout and other pieces of information needed to make that
 * determination. This does not determine the optimal buffer to use
 * during a resolve operation.
 *
 * @param devinfo The device information of the Intel GPU.
 * @param image The image that may contain a collection of buffers.
 * @param aspect The aspect of the image to be accessed.
 * @param usage The usage which describes how the image will be accessed.
 * @param layout The current layout of the image aspect(s).
 *
 * @return The primary buffer that should be used for the given layout.
 */
enum isl_aux_usage ATTRIBUTE_PURE
anv_layout_to_aux_usage(const struct intel_device_info * const devinfo,
                        const struct anv_image * const image,
                        const VkImageAspectFlagBits aspect,
                        const VkImageUsageFlagBits usage,
                        const VkImageLayout layout)
{
   const uint32_t plane = anv_image_aspect_to_plane(image, aspect);

   /* If there is no auxiliary surface allocated, we must use the one and only
    * main buffer.
    */
   if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
      return ISL_AUX_USAGE_NONE;

   enum isl_aux_state aux_state =
      anv_layout_to_aux_state(devinfo, image, aspect, layout);

   switch (aux_state) {
   case ISL_AUX_STATE_CLEAR:
      unreachable("We never use this state");

   case ISL_AUX_STATE_PARTIAL_CLEAR:
      assert(image->vk.aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
      assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D);
      assert(image->vk.samples == 1);
      return ISL_AUX_USAGE_CCS_D;

   case ISL_AUX_STATE_COMPRESSED_CLEAR:
   case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
      return image->planes[plane].aux_usage;

   case ISL_AUX_STATE_RESOLVED:
      /* We can only use RESOLVED in read-only layouts because any write will
       * either land us in AUX_INVALID or COMPRESSED_NO_CLEAR.  We can do
       * writes in PASS_THROUGH without destroying it so that is allowed.
       */
      assert(vk_image_layout_is_read_only(layout, aspect));
      assert(util_is_power_of_two_or_zero(usage));
      if (usage == VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
         /* If we have valid HiZ data and are using the image as a read-only
          * depth/stencil attachment, we should enable HiZ so that we can get
          * faster depth testing.
          */
         return image->planes[plane].aux_usage;
      } else {
         return ISL_AUX_USAGE_NONE;
      }

   case ISL_AUX_STATE_PASS_THROUGH:
   case ISL_AUX_STATE_AUX_INVALID:
      return ISL_AUX_USAGE_NONE;
   }

   unreachable("Invalid isl_aux_state");
}

/**
 * This function returns the level of unresolved fast-clear support of the
 * given image in the given VkImageLayout.
 *
 * @param devinfo The device information of the Intel GPU.
 * @param image The image that may contain a collection of buffers.
 * @param aspect The aspect of the image to be accessed.
 * @param usage The usage which describes how the image will be accessed.
 * @param layout The current layout of the image aspect(s).
 */
enum anv_fast_clear_type ATTRIBUTE_PURE
anv_layout_to_fast_clear_type(const struct intel_device_info * const devinfo,
                              const struct anv_image * const image,
                              const VkImageAspectFlagBits aspect,
                              const VkImageLayout layout)
{
   if (INTEL_DEBUG(DEBUG_NO_FAST_CLEAR))
      return ANV_FAST_CLEAR_NONE;

   const uint32_t plane = anv_image_aspect_to_plane(image, aspect);

   /* If there is no auxiliary surface allocated, there are no fast-clears */
   if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
      return ANV_FAST_CLEAR_NONE;

   enum isl_aux_state aux_state =
      anv_layout_to_aux_state(devinfo, image, aspect, layout);

   const VkImageUsageFlags layout_usage =
      vk_image_layout_to_usage_flags(layout, aspect);

   switch (aux_state) {
   case ISL_AUX_STATE_CLEAR:
      unreachable("We never use this state");

   case ISL_AUX_STATE_PARTIAL_CLEAR:
   case ISL_AUX_STATE_COMPRESSED_CLEAR:
      if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
         return ANV_FAST_CLEAR_DEFAULT_VALUE;
      } else if (layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL ||
                 layout == VK_IMAGE_LAYOUT_ATTACHMENT_OPTIMAL) {
         /* The image might not support non zero fast clears when mutable. */
         if (!image->planes[plane].can_non_zero_fast_clear)
            return ANV_FAST_CLEAR_DEFAULT_VALUE;

         /* When we're in a render pass we have the clear color data from the
          * VkRenderPassBeginInfo and we can use arbitrary clear colors.  They
          * must get partially resolved before we leave the render pass.
          */
         return ANV_FAST_CLEAR_ANY;
      } else if (layout_usage & (VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
                                 VK_IMAGE_USAGE_TRANSFER_DST_BIT)) {
         /* Fast clear with non zero color is not supported during transfer
          * operations since transfer may do format reinterpretation.
          */
         return ANV_FAST_CLEAR_DEFAULT_VALUE;
      } else if (image->planes[plane].aux_usage == ISL_AUX_USAGE_MCS ||
                 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
         if (devinfo->ver >= 11) {
            /* The image might not support non zero fast clears when mutable. */
            if (!image->planes[plane].can_non_zero_fast_clear)
               return ANV_FAST_CLEAR_DEFAULT_VALUE;

            /* On ICL and later, the sampler hardware uses a copy of the clear
             * value that is encoded as a pixel value.  Therefore, we can use
             * any clear color we like for sampling.
             */
            return ANV_FAST_CLEAR_ANY;
         } else {
            /* If the image has MCS or CCS_E enabled all the time then we can
             * use fast-clear as long as the clear color is the default value
             * of zero since this is the default value we program into every
             * surface state used for texturing.
             */
            return ANV_FAST_CLEAR_DEFAULT_VALUE;
         }
      } else {
         return ANV_FAST_CLEAR_NONE;
      }

   case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
   case ISL_AUX_STATE_RESOLVED:
   case ISL_AUX_STATE_PASS_THROUGH:
   case ISL_AUX_STATE_AUX_INVALID:
      return ANV_FAST_CLEAR_NONE;
   }

   unreachable("Invalid isl_aux_state");
}


static struct anv_state
alloc_bindless_surface_state(struct anv_device *device)
{
   return anv_state_pool_alloc(&device->bindless_surface_state_pool, 64, 64);
}

static enum isl_channel_select
remap_swizzle(VkComponentSwizzle swizzle,
              struct isl_swizzle format_swizzle)
{
   switch (swizzle) {
   case VK_COMPONENT_SWIZZLE_ZERO:  return ISL_CHANNEL_SELECT_ZERO;
   case VK_COMPONENT_SWIZZLE_ONE:   return ISL_CHANNEL_SELECT_ONE;
   case VK_COMPONENT_SWIZZLE_R:     return format_swizzle.r;
   case VK_COMPONENT_SWIZZLE_G:     return format_swizzle.g;
   case VK_COMPONENT_SWIZZLE_B:     return format_swizzle.b;
   case VK_COMPONENT_SWIZZLE_A:     return format_swizzle.a;
   default:
      unreachable("Invalid swizzle");
   }
}

void
anv_image_fill_surface_state(struct anv_device *device,
                             const struct anv_image *image,
                             VkImageAspectFlagBits aspect,
                             const struct isl_view *view_in,
                             isl_surf_usage_flags_t view_usage,
                             enum isl_aux_usage aux_usage,
                             const union isl_color_value *clear_color,
                             enum anv_image_view_state_flags flags,
                             struct anv_surface_state *state_inout)
{
   const uint32_t plane = anv_image_aspect_to_plane(image, aspect);

   const struct anv_surface *surface = &image->planes[plane].primary_surface,
      *aux_surface = &image->planes[plane].aux_surface;

   struct isl_view view = *view_in;
   view.usage |= view_usage;

   if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
      view.swizzle = anv_swizzle_for_render(view.swizzle);

   /* If this is a HiZ buffer we can sample from with a programmable clear
    * value (SKL+), define the clear value to the optimal constant.
    */
   union isl_color_value default_clear_color = { .u32 = { 0, } };
   if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT)
      default_clear_color.f32[0] = ANV_HZ_FC_VAL;
   if (!clear_color)
      clear_color = &default_clear_color;

   const struct anv_address address =
      anv_image_address(image, &surface->memory_range);

   const struct isl_surf *isl_surf = &surface->isl;

   struct isl_surf tmp_surf;
   uint64_t offset_B = 0;
   uint32_t tile_x_sa = 0, tile_y_sa = 0;
   if (isl_format_is_compressed(surface->isl.format) &&
       !isl_format_is_compressed(view.format)) {
      /* We're creating an uncompressed view of a compressed surface. This is
       * allowed but only for a single level/layer.
       */
      assert(surface->isl.samples == 1);
      assert(view.levels == 1);
      assert(surface->isl.dim == ISL_SURF_DIM_3D || view.array_len == 1);

      ASSERTED bool ok =
         isl_surf_get_uncompressed_surf(&device->isl_dev, isl_surf, &view,
                                        &tmp_surf, &view,
                                        &offset_B, &tile_x_sa, &tile_y_sa);
      assert(ok);
      isl_surf = &tmp_surf;
   }

   state_inout->address = anv_address_add(address, offset_B);

   struct anv_address aux_address = ANV_NULL_ADDRESS;
   if (aux_usage != ISL_AUX_USAGE_NONE)
      aux_address = anv_image_address(image, &aux_surface->memory_range);
   state_inout->aux_address = aux_address;

   struct anv_address clear_address = ANV_NULL_ADDRESS;
   if (device->info->ver >= 10 && isl_aux_usage_has_fast_clears(aux_usage)) {
      clear_address = anv_image_get_clear_color_addr(device, image, aspect);
   }
   state_inout->clear_address = clear_address;

   isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
                       .surf = isl_surf,
                       .view = &view,
                       .address = anv_address_physical(state_inout->address),
                       .clear_color = *clear_color,
                       .aux_surf = &aux_surface->isl,
                       .aux_usage = aux_usage,
                       .aux_address = anv_address_physical(aux_address),
                       .clear_address = anv_address_physical(clear_address),
                       .use_clear_address = !anv_address_is_null(clear_address),
                       .mocs = anv_mocs(device, state_inout->address.bo,
                                        view_usage),
                       .x_offset_sa = tile_x_sa,
                       .y_offset_sa = tile_y_sa,
                       .robust_image_access =
                          device->vk.enabled_features.robustImageAccess ||
                          device->vk.enabled_features.robustImageAccess2);

   /* With the exception of gfx8, the bottom 12 bits of the MCS base address
    * are used to store other information. This should be ok, however, because
    * the surface buffer addresses are always 4K page aligned.
    */
   if (!anv_address_is_null(aux_address)) {
      uint32_t *aux_addr_dw = state_inout->state.map +
         device->isl_dev.ss.aux_addr_offset;
      assert((aux_address.offset & 0xfff) == 0);
      state_inout->aux_address.offset |= *aux_addr_dw & 0xfff;
   }

   if (device->info->ver >= 10 && clear_address.bo) {
      uint32_t *clear_addr_dw = state_inout->state.map +
         device->isl_dev.ss.clear_color_state_offset;
      assert((clear_address.offset & 0x3f) == 0);
      state_inout->clear_address.offset |= *clear_addr_dw & 0x3f;
   }
}

static uint32_t
anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
{
   anv_assert_valid_aspect_set(aspect_mask);
   return util_bitcount(aspect_mask);
}

bool
anv_can_hiz_clear_ds_view(struct anv_device *device,
                          const struct anv_image_view *iview,
                          VkImageLayout layout,
                          VkImageAspectFlags clear_aspects,
                          float depth_clear_value,
                          VkRect2D render_area)
{
   /* If we're just clearing stencil, we can always HiZ clear */
   if (!(clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
      return true;

   /* We must have depth in order to have HiZ */
   if (!(iview->image->vk.aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
      return false;

   const enum isl_aux_usage clear_aux_usage =
      anv_layout_to_aux_usage(device->info, iview->image,
                              VK_IMAGE_ASPECT_DEPTH_BIT,
                              VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
                              layout);
   if (!blorp_can_hiz_clear_depth(device->info,
                                  &iview->image->planes[0].primary_surface.isl,
                                  clear_aux_usage,
                                  iview->planes[0].isl.base_level,
                                  iview->planes[0].isl.base_array_layer,
                                  render_area.offset.x,
                                  render_area.offset.y,
                                  render_area.offset.x +
                                  render_area.extent.width,
                                  render_area.offset.y +
                                  render_area.extent.height))
      return false;

   if (depth_clear_value != ANV_HZ_FC_VAL)
      return false;

   /* If we got here, then we can fast clear */
   return true;
}

static bool
isl_color_value_requires_conversion(union isl_color_value color,
                                    const struct isl_surf *surf,
                                    const struct isl_view *view)
{
   if (surf->format == view->format && isl_swizzle_is_identity(view->swizzle))
      return false;

   uint32_t surf_pack[4] = { 0, 0, 0, 0 };
   isl_color_value_pack(&color, surf->format, surf_pack);

   uint32_t view_pack[4] = { 0, 0, 0, 0 };
   union isl_color_value swiz_color =
      isl_color_value_swizzle_inv(color, view->swizzle);
   isl_color_value_pack(&swiz_color, view->format, view_pack);

   return memcmp(surf_pack, view_pack, sizeof(surf_pack)) != 0;
}

bool
anv_can_fast_clear_color_view(struct anv_device *device,
                              struct anv_image_view *iview,
                              VkImageLayout layout,
                              union isl_color_value clear_color,
                              uint32_t num_layers,
                              VkRect2D render_area)
{
   if (iview->planes[0].isl.base_array_layer >=
       anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
                            iview->planes[0].isl.base_level))
      return false;

   /* Start by getting the fast clear type.  We use the first subpass
    * layout here because we don't want to fast-clear if the first subpass
    * to use the attachment can't handle fast-clears.
    */
   enum anv_fast_clear_type fast_clear_type =
      anv_layout_to_fast_clear_type(device->info, iview->image,
                                    VK_IMAGE_ASPECT_COLOR_BIT,
                                    layout);
   switch (fast_clear_type) {
   case ANV_FAST_CLEAR_NONE:
      return false;
   case ANV_FAST_CLEAR_DEFAULT_VALUE:
      if (!isl_color_value_is_zero(clear_color, iview->planes[0].isl.format))
         return false;
      break;
   case ANV_FAST_CLEAR_ANY:
      break;
   }

   /* Potentially, we could do partial fast-clears but doing so has crazy
    * alignment restrictions.  It's easier to just restrict to full size
    * fast clears for now.
    */
   if (render_area.offset.x != 0 ||
       render_area.offset.y != 0 ||
       render_area.extent.width != iview->vk.extent.width ||
       render_area.extent.height != iview->vk.extent.height)
      return false;

   /* If the clear color is one that would require non-trivial format
    * conversion on resolve, we don't bother with the fast clear.  This
    * shouldn't be common as most clear colors are 0/1 and the most common
    * format re-interpretation is for sRGB.
    */
   if (isl_color_value_requires_conversion(clear_color,
                                           &iview->image->planes[0].primary_surface.isl,
                                           &iview->planes[0].isl)) {
      anv_perf_warn(VK_LOG_OBJS(&iview->vk.base),
                    "Cannot fast-clear to colors which would require "
                    "format conversion on resolve");
      return false;
   }

   /* We only allow fast clears to the first slice of an image (level 0,
    * layer 0) and only for the entire slice.  This guarantees us that, at
    * any given time, there is only one clear color on any given image at
    * any given time.  At the time of our testing (Jan 17, 2018), there
    * were no known applications which would benefit from fast-clearing
    * more than just the first slice.
    */
   if (iview->planes[0].isl.base_level > 0 ||
       iview->planes[0].isl.base_array_layer > 0) {
      anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
                    "Rendering with multi-lod or multi-layer framebuffer "
                    "with LOAD_OP_LOAD and baseMipLevel > 0 or "
                    "baseArrayLayer > 0.  Not fast clearing.");
      return false;
   }

   if (num_layers > 1) {
      anv_perf_warn(VK_LOG_OBJS(&iview->image->vk.base),
                    "Rendering to a multi-layer framebuffer with "
                    "LOAD_OP_CLEAR.  Only fast-clearing the first slice");
   }

   return true;
}

VkResult
anv_CreateImageView(VkDevice _device,
                    const VkImageViewCreateInfo *pCreateInfo,
                    const VkAllocationCallbacks *pAllocator,
                    VkImageView *pView)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
   struct anv_image_view *iview;

   iview = vk_image_view_create(&device->vk, false, pCreateInfo,
                                pAllocator, sizeof(*iview));
   if (iview == NULL)
      return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);

   iview->image = image;
   iview->n_planes = anv_image_aspect_get_planes(iview->vk.aspects);

   /* Now go through the underlying image selected planes and map them to
    * planes in the image view.
    */
   anv_foreach_image_aspect_bit(iaspect_bit, image, iview->vk.aspects) {
      const uint32_t iplane =
         anv_aspect_to_plane(image->vk.aspects, 1UL << iaspect_bit);
      const uint32_t vplane =
         anv_aspect_to_plane(iview->vk.aspects, 1UL << iaspect_bit);
      struct anv_format_plane format;
      format = anv_get_format_plane(device->info, iview->vk.view_format,
                                    vplane, image->vk.tiling);

      iview->planes[vplane].image_plane = iplane;

      iview->planes[vplane].isl = (struct isl_view) {
         .format = format.isl_format,
         .base_level = iview->vk.base_mip_level,
         .levels = iview->vk.level_count,
         .base_array_layer = iview->vk.base_array_layer,
         .array_len = iview->vk.layer_count,
         .min_lod_clamp = iview->vk.min_lod,
         .swizzle = {
            .r = remap_swizzle(iview->vk.swizzle.r, format.swizzle),
            .g = remap_swizzle(iview->vk.swizzle.g, format.swizzle),
            .b = remap_swizzle(iview->vk.swizzle.b, format.swizzle),
            .a = remap_swizzle(iview->vk.swizzle.a, format.swizzle),
         },
      };

      if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
         iview->planes[vplane].isl.base_array_layer = 0;
         iview->planes[vplane].isl.array_len = iview->vk.extent.depth;
      }

      if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
          pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
         iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
      } else {
         iview->planes[vplane].isl.usage = 0;
      }

      if (iview->vk.usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
                             VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT)) {
         iview->planes[vplane].optimal_sampler_surface_state.state =
            alloc_bindless_surface_state(device);
         iview->planes[vplane].general_sampler_surface_state.state =
            alloc_bindless_surface_state(device);

         enum isl_aux_usage general_aux_usage =
            anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
                                    VK_IMAGE_USAGE_SAMPLED_BIT,
                                    VK_IMAGE_LAYOUT_GENERAL);
         enum isl_aux_usage optimal_aux_usage =
            anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
                                    VK_IMAGE_USAGE_SAMPLED_BIT,
                                    VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);

         anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
                                      &iview->planes[vplane].isl,
                                      ISL_SURF_USAGE_TEXTURE_BIT,
                                      optimal_aux_usage, NULL,
                                      ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
                                      &iview->planes[vplane].optimal_sampler_surface_state);

         anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
                                      &iview->planes[vplane].isl,
                                      ISL_SURF_USAGE_TEXTURE_BIT,
                                      general_aux_usage, NULL,
                                      0,
                                      &iview->planes[vplane].general_sampler_surface_state);
      }

      /* NOTE: This one needs to go last since it may stomp isl_view.format */
      if (iview->vk.usage & VK_IMAGE_USAGE_STORAGE_BIT) {
         struct isl_view storage_view = iview->planes[vplane].isl;
         if (iview->vk.view_type == VK_IMAGE_VIEW_TYPE_3D) {
            storage_view.base_array_layer = iview->vk.storage.z_slice_offset;
            storage_view.array_len = iview->vk.storage.z_slice_count;
         }

         enum isl_aux_usage general_aux_usage =
            anv_layout_to_aux_usage(device->info, image, 1UL << iaspect_bit,
                                    VK_IMAGE_USAGE_STORAGE_BIT,
                                    VK_IMAGE_LAYOUT_GENERAL);
         iview->planes[vplane].storage_surface_state.state =
            alloc_bindless_surface_state(device);

         anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
                                      &storage_view,
                                      ISL_SURF_USAGE_STORAGE_BIT,
                                      general_aux_usage, NULL,
                                      0,
                                      &iview->planes[vplane].storage_surface_state);
      }
   }

   *pView = anv_image_view_to_handle(iview);

   return VK_SUCCESS;
}

void
anv_DestroyImageView(VkDevice _device, VkImageView _iview,
                     const VkAllocationCallbacks *pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_image_view, iview, _iview);

   if (!iview)
      return;

   for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
      if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size) {
         anv_state_pool_free(&device->bindless_surface_state_pool,
                             iview->planes[plane].optimal_sampler_surface_state.state);
      }

      if (iview->planes[plane].general_sampler_surface_state.state.alloc_size) {
         anv_state_pool_free(&device->bindless_surface_state_pool,
                             iview->planes[plane].general_sampler_surface_state.state);
      }

      if (iview->planes[plane].storage_surface_state.state.alloc_size) {
         anv_state_pool_free(&device->bindless_surface_state_pool,
                             iview->planes[plane].storage_surface_state.state);
      }
   }

   vk_image_view_destroy(&device->vk, pAllocator, &iview->vk);
}


VkResult
anv_CreateBufferView(VkDevice _device,
                     const VkBufferViewCreateInfo *pCreateInfo,
                     const VkAllocationCallbacks *pAllocator,
                     VkBufferView *pView)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_buffer, buffer, pCreateInfo->buffer);
   struct anv_buffer_view *view;

   view = vk_object_alloc(&device->vk, pAllocator, sizeof(*view),
                          VK_OBJECT_TYPE_BUFFER_VIEW);
   if (!view)
      return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);

   struct anv_format_plane format;
   format = anv_get_format_plane(device->info, pCreateInfo->format,
                                 0, VK_IMAGE_TILING_LINEAR);

   const uint32_t format_bs = isl_format_get_layout(format.isl_format)->bpb / 8;
   view->range = vk_buffer_range(&buffer->vk, pCreateInfo->offset,
                                              pCreateInfo->range);
   view->range = align_down_npot_u32(view->range, format_bs);

   view->address = anv_address_add(buffer->address, pCreateInfo->offset);

   if (buffer->vk.usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
      view->surface_state = alloc_bindless_surface_state(device);

      anv_fill_buffer_surface_state(device, view->surface_state,
                                    format.isl_format, format.swizzle,
                                    ISL_SURF_USAGE_TEXTURE_BIT,
                                    view->address, view->range, format_bs);
   } else {
      view->surface_state = (struct anv_state){ 0 };
   }

   if (buffer->vk.usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
      view->storage_surface_state = alloc_bindless_surface_state(device);

      anv_fill_buffer_surface_state(device, view->storage_surface_state,
                                    format.isl_format, format.swizzle,
                                    ISL_SURF_USAGE_STORAGE_BIT,
                                    view->address, view->range, format_bs);
   } else {
      view->storage_surface_state = (struct anv_state){ 0 };
   }

   *pView = anv_buffer_view_to_handle(view);

   return VK_SUCCESS;
}

void
anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
                      const VkAllocationCallbacks *pAllocator)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   ANV_FROM_HANDLE(anv_buffer_view, view, bufferView);

   if (!view)
      return;

   if (view->surface_state.alloc_size > 0)
      anv_state_pool_free(&device->bindless_surface_state_pool,
                          view->surface_state);

   if (view->storage_surface_state.alloc_size > 0)
      anv_state_pool_free(&device->bindless_surface_state_pool,
                          view->storage_surface_state);

   vk_object_free(&device->vk, pAllocator, view);
}