summaryrefslogtreecommitdiff
path: root/buildscripts/cost_model/ce_data_settings.py
blob: 53465b5fa18db0f61bdc5c165ac545dec22360a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# Copyright (C) 2022-present MongoDB, Inc.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the Server Side Public License, version 1,
# as published by MongoDB, Inc.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# Server Side Public License for more details.
#
# You should have received a copy of the Server Side Public License
# along with this program. If not, see
# <http://www.mongodb.com/licensing/server-side-public-license>.
#
# As a special exception, the copyright holders give permission to link the
# code of portions of this program with the OpenSSL library under certain
# conditions as described in each individual source file and distribute
# linked combinations including the program with the OpenSSL library. You
# must comply with the Server Side Public License in all respects for
# all of the code used other than as permitted herein. If you modify file(s)
# with this exception, you may extend this exception to your version of the
# file(s), but you are not obligated to do so. If you do not wish to do so,
# delete this exception statement from your version. If you delete this
# exception statement from all source files in the program, then also delete
# it in the license file.
#
"""Configuration of data generation for CE accuracy testing."""

from pathlib import Path
from datetime import datetime
import random
from typing import Sequence
import config
from random_generator import RangeGenerator, RandomDistribution, ArrayRandomDistribution, DataType, DistributionType

__all__ = ['database_config', 'data_generator_config']

################################################################################
# Data distributions
################################################################################


def add_distribution(distr_set: Sequence[RandomDistribution], distr_type: DistributionType,
                     rg: RangeGenerator):
    distr = None
    if distr_type == DistributionType.UNIFORM:
        distr = RandomDistribution.uniform(rg)
    elif distr_type == DistributionType.NORMAL:
        distr = RandomDistribution.normal(rg)
    elif distr_type == DistributionType.CHI2:
        distr = RandomDistribution.noncentral_chisquare(rg)
    else:
        raise ValueError("Unknown distribution")
    distr_set.append(distr)


# Ranges
int_ranges_1 = [
    # 1K unique integers with different distances
    RangeGenerator(DataType.INTEGER, 0, 1000, 1),
    RangeGenerator(DataType.INTEGER, 0, 10000, 10),
    RangeGenerator(DataType.INTEGER, 0, 100000, 100),
    # 10K unique integers with different distances
    RangeGenerator(DataType.INTEGER, 0, 10000, 1),
    RangeGenerator(DataType.INTEGER, 0, 1000000, 10),
    RangeGenerator(DataType.INTEGER, 0, 10000000, 100),
]

int_ranges_2 = [
    # 1K unique integers with different distances
    RangeGenerator(DataType.INTEGER, 7000, 8000, 1),
    RangeGenerator(DataType.INTEGER, 70000, 80000, 10),
    RangeGenerator(DataType.INTEGER, 700000, 800000, 100),
    # 10K unique integers with different distances
    RangeGenerator(DataType.INTEGER, 70000, 80000, 1),
    RangeGenerator(DataType.INTEGER, 700000, 800000, 10),
    RangeGenerator(DataType.INTEGER, 7000000, 8000000, 100),
]

#######################
# Integer distributions

int_distributions = []

for range_gen in int_ranges_1:
    add_distribution(int_distributions, DistributionType.UNIFORM, range_gen)
    add_distribution(int_distributions, DistributionType.NORMAL, range_gen)
    add_distribution(int_distributions, DistributionType.CHI2, range_gen)

# Distributions to be used only in other mixed distributions
int_distributions_offset = []
for range_gen in int_ranges_2:
    add_distribution(int_distributions_offset, DistributionType.UNIFORM, range_gen)
    add_distribution(int_distributions_offset, DistributionType.NORMAL, range_gen)
    add_distribution(int_distributions_offset, DistributionType.CHI2, range_gen)

# Mixes of distributions with different NDV and value distances
int_distributions.append(
    RandomDistribution.mixed(
        children=[int_distributions[0], int_distributions_offset[0], int_distributions[4]],
        weight=[1, 1, 1]))

int_distributions.append(
    RandomDistribution.mixed(
        children=[int_distributions[1], int_distributions[4], int_distributions[7]],
        weight=[1, 1, 1]))

int_distributions.append(
    RandomDistribution.mixed(
        children=[
            int_distributions[1], int_distributions_offset[1], int_distributions[3],
            int_distributions[2], int_distributions_offset[2]
        ], weight=[1, 1, 1, 1, 1]))

int_distributions.append(
    RandomDistribution.mixed(
        children=[
            int_distributions[2], int_distributions[3], int_distributions[6],
            int_distributions_offset[1], int_distributions_offset[2], int_distributions_offset[5]
        ], weight=[1, 1, 1, 1, 1, 1]))

#############################
# Double number distributions

dbl_ranges = [
    # 1K unique doubles with different distances
    RangeGenerator(DataType.DOUBLE, 0.0, 100.0, 0.1),
    RangeGenerator(DataType.DOUBLE, 0.0, 10000.0, 10),
    RangeGenerator(DataType.DOUBLE, 0.0, 1000000.0, 1000),
    # 10K unique doubles with different distances
    RangeGenerator(DataType.DOUBLE, 0.0, 1000.0, 0.1),
    RangeGenerator(DataType.DOUBLE, 0.0, 100000.0, 10),
    RangeGenerator(DataType.DOUBLE, 0.0, 10000000.0, 1000)
]

dbl_distributions = []

for range_gen in dbl_ranges:
    add_distribution(dbl_distributions, DistributionType.UNIFORM, range_gen)
    add_distribution(dbl_distributions, DistributionType.NORMAL, range_gen)

dbl_distributions.append(
    RandomDistribution.mixed(
        children=[dbl_distributions[0], dbl_distributions[3], dbl_distributions[10]],
        weight=[1, 1, 1]))

dbl_distributions.append(
    RandomDistribution.mixed(
        children=[
            dbl_distributions[0],
            dbl_distributions[4],
            RandomDistribution.normal(RangeGenerator(DataType.DOUBLE, 500.0, 600.0, 0.1)),
            RandomDistribution.normal(RangeGenerator(DataType.DOUBLE, 3000200.0, 5000100.0, 3030)),
        ], weight=[1, 1, 1, 1]))

#############################
# Date distributions

MINUTE = 60
HOUR = MINUTE * 60
DAY = HOUR * 24
MONTH = DAY * 30

range_dtt_1y = RangeGenerator(DataType.DATE, datetime(2007, 1, 1), datetime(2008, 1, 1), HOUR)
range_dtt_1m_1 = RangeGenerator(DataType.DATE, datetime(2007, 2, 1), datetime(2008, 3, 1), HOUR)
range_dtt_1m_2 = RangeGenerator(DataType.DATE, datetime(2007, 6, 1), datetime(2008, 7, 1), HOUR)
range_dtt_1m_3 = RangeGenerator(DataType.DATE, datetime(2007, 10, 1), datetime(2008, 11, 1), HOUR)
range_dtt_10y_1 = RangeGenerator(DataType.DATE, datetime(2006, 1, 1), datetime(2016, 1, 1), DAY)
range_dtt_10y_2 = RangeGenerator(DataType.DATE, datetime(1995, 1, 1), datetime(2005, 1, 1), DAY)
range_dtt_20y = RangeGenerator(DataType.DATE, datetime(1997, 10, 1), datetime(2017, 11, 1), MONTH)

dt_distributions = []

add_distribution(dt_distributions, DistributionType.UNIFORM, range_dtt_1y)
add_distribution(dt_distributions, DistributionType.NORMAL, range_dtt_10y_1)

dt_distributions.append(
    RandomDistribution.mixed([
        RandomDistribution.uniform(range_dtt_1y),
        RandomDistribution.uniform(range_dtt_1m_1),
        RandomDistribution.uniform(range_dtt_1m_2),
        RandomDistribution.uniform(range_dtt_1m_3)
    ], [1, 1, 1, 1]))

dt_distributions.append(
    RandomDistribution.mixed([
        RandomDistribution.uniform(range_dtt_10y_1),
        RandomDistribution.uniform(range_dtt_10y_2),
        RandomDistribution.uniform(range_dtt_20y)
    ], [1, 1, 1]))

#######################
# String distributions

PRINTED_CHAR_MIN_CODE = ord('0')
PRINTED_CHAR_MAX_CODE = ord('~')

ascii_printable_chars = [
    chr(code) for code in range(PRINTED_CHAR_MIN_CODE, PRINTED_CHAR_MAX_CODE + 1)
]


def next_char(char: str, distance: int, min_char_code: int, max_char_code: int):
    char_code = ord(char)
    assert (min_char_code <= char_code <= max_char_code
            ), f'char_code "{char_code}" is out of range ({min_char_code}, {max_char_code})'
    number_of_chars = max_char_code - min_char_code + 1
    new_char_code = ((char_code - min_char_code + distance) % number_of_chars) + min_char_code
    assert (min_char_code <= new_char_code <=
            max_char_code), f'new char code "{new_char_code}" is out of range'
    return chr(new_char_code)


def generate_str_by_distance(num_strings: int, seed_str: str, distance_distr_0: RandomDistribution,
                             distance_distr_1: RandomDistribution,
                             distance_distr_2: RandomDistribution,
                             distance_distr_3: RandomDistribution):
    """
    Generate a set of unique strings with different string distances.

    The generation starts with a seed string 'seed_str', and each subsequent string is generated
    by producing the next character at each string position according to the distance generator
    'distance_distr_i' for the corresponding position.

    Given that the current histogram and CE implementation takes into account only the first 4
    characters, the length of the strings is limited to 4.
    """
    str_set = set()
    distances_0 = distance_distr_0.generate(num_strings)
    distances_1 = distance_distr_1.generate(num_strings)
    distances_2 = distance_distr_2.generate(num_strings)
    distances_3 = distance_distr_3.generate(num_strings)
    cur_str = seed_str
    str_set.add(cur_str)
    for i in range(1, num_strings):
        new_str = next_char(cur_str[0], distances_0[i], PRINTED_CHAR_MIN_CODE,
                            PRINTED_CHAR_MAX_CODE)
        new_str += next_char(cur_str[1], distances_1[i], PRINTED_CHAR_MIN_CODE,
                             PRINTED_CHAR_MAX_CODE)
        new_str += next_char(cur_str[2], distances_2[i], PRINTED_CHAR_MIN_CODE,
                             PRINTED_CHAR_MAX_CODE)
        new_str += next_char(cur_str[3], distances_3[i], PRINTED_CHAR_MIN_CODE,
                             PRINTED_CHAR_MAX_CODE)
        str_set.add(new_str)
        cur_str = new_str
    return list(str_set)


# Ranges of distances between string characters
range_int_1_1 = RangeGenerator(DataType.INTEGER, 1, 2, 1)
range_int_1_7 = RangeGenerator(DataType.INTEGER, 1, 8, 3)
range_int_6_12 = RangeGenerator(DataType.INTEGER, 6, 13, 3)
range_int_1_16 = RangeGenerator(DataType.INTEGER, 1, 20, 5)
range_int_20_30 = RangeGenerator(DataType.INTEGER, 20, 31, 3)
# Data distributions of ranges between string characters
d1 = RandomDistribution.uniform(range_int_1_1)
d2 = RandomDistribution.uniform(range_int_1_7)
d3 = RandomDistribution.uniform(range_int_6_12)
d4 = RandomDistribution.uniform(range_int_20_30)

# Sets of strings where characters at different positions have different distances
string_sets = {}
# 250 unique strings
string_sets['set_1112_250'] = generate_str_by_distance(250, 'xxxx', d1, d1, d1, d2)
string_sets['set_2221_250'] = generate_str_by_distance(250, 'azay', d2, d2, d3, d1)
string_sets['set_5555_250'] = generate_str_by_distance(250, 'axbz', d4, d4, d4, d4)
# 1000 unique strings
string_sets['set_1112_1000'] = generate_str_by_distance(1000, 'xxxx', d1, d1, d1, d2)
string_sets['set_2221_1000'] = generate_str_by_distance(1000, 'azay', d2, d2, d3, d1)
string_sets['set_5555_1000'] = generate_str_by_distance(1000, 'axbz', d4, d4, d4, d4)
# 10000 unique strings
string_sets['set_1112_10000'] = generate_str_by_distance(10000, 'xxxx', d1, d1, d1, d2)
string_sets['set_2221_10000'] = generate_str_by_distance(10000, 'azay', d2, d2, d3, d1)
string_sets['set_5555_10000'] = generate_str_by_distance(10000, 'axbz', d4, d4, d4, d4)

# Weights with different variance. For instance if the smallest weight is 1, and the biggest weight is 5
# then some values in a choice distribution will be picked with at most 5 times higher probability.

# 5% variance in choice probability - all strings are chosen with almost the same probability.
weight_range_s = RangeGenerator(DataType.INTEGER, 95, 101, 1)
# 30% variance in choice probability
# weight_range_m = RangeGenerator(DataType.INTEGER, 65, 101, 2)
# 70% variance in choice probability
weight_range_l = RangeGenerator(DataType.INTEGER, 25, 101, 2)

weights = {}
weights['weight_unif_s'] = RandomDistribution.uniform(weight_range_s)
weights['weight_unif_l'] = RandomDistribution.uniform(weight_range_l)

#weights['weight_norm_s'] = RandomDistribution.normal(weight_range_s)
#weights['weight_norm_l'] = RandomDistribution.normal(weight_range_l)

#weights['chi2_s'] = RandomDistribution.noncentral_chisquare(weight_range_s)
#weights['chi2_l'] = RandomDistribution.noncentral_chisquare(weight_range_l)


def add_choice_distr(distr_set: Sequence[RandomDistribution], str_set: Sequence[str],
                     weight_distr: RandomDistribution, v_name: str, w_name: str):
    distr = RandomDistribution.choice(str_set, weight_distr.generate(len(str_set)), v_name, w_name)
    distr_set.append(distr)


# String data distributions to be used for string generation

str_distributions = []

for set_name, cur_set in string_sets.items():
    for weight_name, cur_weight in weights.items():
        add_choice_distr(str_distributions, cur_set, cur_weight, set_name, weight_name)

#######################
# Array distributions

# array lenght distributions - they are all uniform
arr_len_dist_s = RandomDistribution.uniform(RangeGenerator(DataType.INTEGER, 1, 6, 1))
arr_len_dist_m = RandomDistribution.uniform(RangeGenerator(DataType.INTEGER, 90, 110, 3))
arr_len_dist_l = RandomDistribution.uniform(RangeGenerator(DataType.INTEGER, 900, 1100, 10))


def add_array_distr(distr_set: Sequence[RandomDistribution], lengths_distr: RandomDistribution,
                    value_distr: RandomDistribution):
    distr_set.append(ArrayRandomDistribution(lengths_distr, value_distr))


arr_distributions = []

# Arrays with integers
add_array_distr(arr_distributions, arr_len_dist_s, int_distributions[0])
add_array_distr(arr_distributions, arr_len_dist_m, int_distributions[0])
add_array_distr(arr_distributions, arr_len_dist_l, int_distributions[0])
add_array_distr(arr_distributions, arr_len_dist_s, int_distributions[10])
add_array_distr(arr_distributions, arr_len_dist_m, int_distributions[10])
add_array_distr(arr_distributions, arr_len_dist_l, int_distributions[10])

# Arrays with strings
add_array_distr(arr_distributions, arr_len_dist_s, str_distributions[1])
add_array_distr(arr_distributions, arr_len_dist_m, str_distributions[1])
add_array_distr(arr_distributions, arr_len_dist_l, str_distributions[1])
add_array_distr(arr_distributions, arr_len_dist_s, str_distributions[-1])
add_array_distr(arr_distributions, arr_len_dist_m, str_distributions[-1])
add_array_distr(arr_distributions, arr_len_dist_l, str_distributions[-1])

# 30% scalars, 70% arrays
arr_distributions.append(
    RandomDistribution.mixed([int_distributions[0], arr_distributions[0]], [0.3, 0.7]))
arr_distributions.append(
    RandomDistribution.mixed([int_distributions[-1], arr_distributions[-1]], [0.3, 0.7]))
# 70% scalars, 30% arrays
arr_distributions.append(
    RandomDistribution.mixed([int_distributions[0], arr_distributions[0]], [0.7, 0.3]))
arr_distributions.append(
    RandomDistribution.mixed([int_distributions[-1], arr_distributions[-1]], [0.7, 0.3]))

arr_zero_size = RandomDistribution.uniform(RangeGenerator(DataType.INTEGER, 0, 1, 1))
arr_empty_distr = ArrayRandomDistribution(arr_zero_size, int_distributions[0])

# 20% empty arrays
arr_distributions.append(
    RandomDistribution.mixed([arr_empty_distr, arr_distributions[2]], [0.2, 0.8]))
# 80% empty arrays
arr_distributions.append(
    RandomDistribution.mixed([arr_empty_distr, arr_distributions[2]], [0.8, 0.2]))

###############################
# Mixed data type distributions

mix_distributions = []

# Integers + strings
int_str_mix_1 = [int_distributions[0], str_distributions[0]]
int_str_mix_2 = [int_distributions_offset[7], str_distributions[-1]]

mix_distributions.append(RandomDistribution.mixed(children=int_str_mix_1, weight=[0.5, 0.5]))
mix_distributions.append(RandomDistribution.mixed(children=int_str_mix_2, weight=[0.5, 0.5]))

mix_distributions.append(RandomDistribution.mixed(children=int_str_mix_1, weight=[0.1, 0.9]))
mix_distributions.append(RandomDistribution.mixed(children=int_str_mix_1, weight=[0.9, 0.1]))
mix_distributions.append(RandomDistribution.mixed(children=int_str_mix_2, weight=[0.1, 0.9]))
mix_distributions.append(RandomDistribution.mixed(children=int_str_mix_2, weight=[0.9, 0.1]))

# Doubles and strings
dbl_ascii_range = RangeGenerator(DataType.DOUBLE, float(PRINTED_CHAR_MIN_CODE),
                                 float(PRINTED_CHAR_MAX_CODE), 0.01)
ascii_double_range_distr = RandomDistribution.normal(dbl_ascii_range)

dbl_str_mix_1 = [ascii_double_range_distr, str_distributions[1]]
mix_distributions.append(RandomDistribution.mixed(children=dbl_str_mix_1, weight=[0.5, 0.5]))
mix_distributions.append(RandomDistribution.mixed(children=dbl_str_mix_1, weight=[0.1, 0.9]))
mix_distributions.append(RandomDistribution.mixed(children=dbl_str_mix_1, weight=[0.9, 0.1]))

dbl_str_mix_2 = [dbl_distributions[5], str_distributions[0]]
mix_distributions.append(RandomDistribution.mixed(children=dbl_str_mix_2, weight=[0.5, 0.5]))

dbl_str_mix_3 = [dbl_distributions[5], str_distributions[5]]
mix_distributions.append(RandomDistribution.mixed(children=dbl_str_mix_3, weight=[0.5, 0.5]))

# Doubles and/or strings and dates

dbl_str_dt_mix_1 = [ascii_double_range_distr, str_distributions[4], dt_distributions[0]]
mix_distributions.append(
    RandomDistribution.mixed(children=dbl_str_dt_mix_1, weight=[0.5, 0.5, 0.5]))

str_dt_mix_1 = [str_distributions[0], dt_distributions[-1]]
mix_distributions.append(RandomDistribution.mixed(children=str_dt_mix_1, weight=[0.5, 0.5]))
str_dt_mix_2 = [str_distributions[-1], dt_distributions[0]]
mix_distributions.append(RandomDistribution.mixed(children=str_dt_mix_2, weight=[0.5, 0.5]))

################################################################################
# Collection templates
################################################################################
# In order to enable quicker Evergreen testing, and to reduce the size of the generated file
# that is committed to git, by default we generate only 100 and 1000 document collections.
# These are not sufficient for actual CE accuracy testing. Whenever one needs to estimate CE
# accuracy, they should generate larger datasets offline. To achieve this, set
# collection_cardinalities = [1000, 10000, 100000]
# Notice that such sizes result in several minutes load time on the JS test side.
collection_cardinalities = [500]

field_templates = [
    config.FieldTemplate(name=f'{str(dist)}', data_type=config.DataType.INTEGER, distribution=dist,
                         indexed=False) for dist in int_distributions
]
field_templates += [
    config.FieldTemplate(name=f'{str(dist)}', data_type=config.DataType.STRING, distribution=dist,
                         indexed=False) for dist in str_distributions
]
field_templates += [
    config.FieldTemplate(name=f'{str(dist)}', data_type=config.DataType.ARRAY, distribution=dist,
                         indexed=False) for dist in arr_distributions
]
field_templates += [
    config.FieldTemplate(name=f'{str(dist)}', data_type=config.DataType.DOUBLE, distribution=dist,
                         indexed=False) for dist in dbl_distributions
]
field_templates += [
    config.FieldTemplate(name=f'{str(dist)}', data_type=config.DataType.DATE, distribution=dist,
                         indexed=False) for dist in dt_distributions
]
field_templates += [
    config.FieldTemplate(name=f'{str(dist)}', data_type=config.DataType.MIXDATA, distribution=dist,
                         indexed=False) for dist in mix_distributions
]

ce_data = config.CollectionTemplate(name="ce_data", fields=field_templates, compound_indexes=[],
                                    cardinalities=collection_cardinalities)

################################################################################
# Database settings
################################################################################

database_config = config.DatabaseConfig(
    connection_string='mongodb://localhost', database_name='ce_accuracy_test', dump_path=Path(
        '..', '..', 'jstests', 'query_golden', 'libs', 'data'),
    restore_from_dump=config.RestoreMode.NEVER, dump_on_exit=False)

################################################################################
# Data Generator settings
################################################################################

data_generator_config = config.DataGeneratorConfig(
    enabled=True, create_indexes=False, batch_size=10000, collection_templates=[ce_data],
    write_mode=config.WriteMode.REPLACE, collection_name_with_card=True)