1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
/*
In order to run this, you need to have a local copy of the usage data.
One way to do this is to dump and restore it using mongodump and mongorestore
*/
db = db.getSiblingDB("mongousage");
function rollupMap() {
emit(this._id.t, {total: this.value, unique: 1});
}
function rollupReduce(key, values) {
var res = {
total: 0,
unique: 0
};
for (var i = 0; i < values.length; i++) {
res.total += values[i].total;
res.unique += values[i].unique;
}
return res;
}
function mrrollups() {
res = db.gen.monthly.ip.mapReduce(rollupMap, rollupReduce, {out: "gen.monthly"});
res.find().sort({_id: -1}).forEach(printjsononeline);
res = db.gen.weekly.ip.mapReduce(rollupMap, rollupReduce, {out: "gen.weekly"});
res.find().sort({_id: -1}).forEach(printjsononeline);
}
function rollupMonthlyMR() {
resMonthlyMR = db.gen.monthly.ip.mapReduce(rollupMap, rollupReduce, {out: {inline: 1}});
}
function rollupWeeklyMR() {
resWeeklyMR = db.gen.weekly.ip.mapReduce(rollupMap, rollupReduce, {out: {inline: 1}});
}
function rollupMonthlyA() {
resMonthlyA = db.runCommand({
aggregate: "gen.monthly.ip",
pipeline:
[{$group: {_id: {month: "_id.t"}, total: {$sum: "$value"}, unique: {$sum: 1}}}]
});
}
function rollupWeeklyA() {
resWeeklyA = db.runCommand({
aggregate: "gen.weekly.ip",
pipeline:
[{$group: {_id: {month: "_id.t"}, total: {$sum: "$value"}, unique: {$sum: 1}}}]
});
}
|