1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
// balancer_policy.cpp
/**
* Copyright (C) 2010 10gen Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License, version 3,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "pch.h"
#include "config.h"
#include "../client/dbclient.h"
#include "../util/stringutils.h"
#include "../util/unittest.h"
#include "balancer_policy.h"
namespace mongo {
BalancerPolicy::ChunkInfo* BalancerPolicy::balance( const string& ns,
const ShardToLimitsMap& shardToLimitsMap,
const ShardToChunksMap& shardToChunksMap,
int balancedLastTime ){
pair<string,unsigned> min("",numeric_limits<unsigned>::max());
pair<string,unsigned> max("",0);
vector<string> drainingShards;
for (ShardToChunksIter i = shardToChunksMap.begin(); i!=shardToChunksMap.end(); ++i ){
// Find whether this shard has reached its size cap or whether it is being removed.
const string& shard = i->first;
BSONObj shardLimits;
ShardToLimitsIter it = shardToLimitsMap.find( shard );
if ( it != shardToLimitsMap.end() ) shardLimits = it->second;
const bool maxedOut = isSizeMaxed( shardLimits );
const bool draining = isDraining( shardLimits );
// Check whether this shard is a better chunk receiver then the current one.
// Maxed out shards or draining shards cannot be considered receivers.
const unsigned size = i->second.size();
if ( ! maxedOut && ! draining ){
if ( size < min.second ){
min = make_pair( shard , size );
}
}
// Check whether this shard is a better chunk donor then the current one.
// Draining shards take a lower priority than overloaded shards.
if ( size > max.second ){
max = make_pair( shard , size );
}
if ( draining && (size > 0)){
drainingShards.push_back( shard );
}
}
// If there is no candidate chunk receiver -- they may have all been maxed out,
// draining, ... -- there's not much that the policy can do.
if ( min.second == numeric_limits<unsigned>::max() ){
log() << "no availalable shards to take chunks" << endl;
return NULL;
}
log(1) << "collection : " << ns << endl;
log(1) << "donor : " << max.second << " chunks on " << max.first << endl;
log(1) << "receiver : " << min.second << " chunks on " << min.first << endl;
if ( ! drainingShards.empty() ){
string drainingStr;
joinStringDelim( drainingShards, &drainingStr, ',' );
log(1) << "draining : " << ! drainingShards.empty() << "(" << drainingShards.size() << ")" << endl;
}
// Solving imbalances takes a higher priority than draining shards. Many shards can
// be draining at once but we choose only one of them to cater to per round.
const int imbalance = max.second - min.second;
const int threshold = balancedLastTime ? 2 : 8;
string from, to;
if ( imbalance >= threshold ){
from = max.first;
to = min.first;
} else if ( ! drainingShards.empty() ){
from = drainingShards[ rand() % drainingShards.size() ];
to = min.first;
} else {
// Everything is balanced here!
return NULL;
}
const vector<BSONObj>& chunksFrom = shardToChunksMap.find( from )->second;
const vector<BSONObj>& chunksTo = shardToChunksMap.find( to )->second;
BSONObj chunkToMove = pickChunk( chunksFrom , chunksTo );
log() << "chose [" << from << "] to [" << to << "] " << chunkToMove << endl;
return new ChunkInfo( ns, to, from, chunkToMove );
}
BSONObj BalancerPolicy::pickChunk( const vector<BSONObj>& from, const vector<BSONObj>& to ){
// It is possible for a donor ('from') shard to have less chunks than a recevier one ('to')
// if the donor is in draining mode.
if ( to.size() == 0 )
return from[0];
if ( from[0]["min"].Obj().woCompare( to[to.size()-1]["max"].Obj() , BSONObj() , false ) == 0 )
return from[0];
if ( from[from.size()-1]["max"].Obj().woCompare( to[0]["min"].Obj() , BSONObj() , false ) == 0 )
return from[from.size()-1];
return from[0];
}
bool BalancerPolicy::isSizeMaxed( BSONObj limits ){
// If there's no limit information for the shard, assume it can be a chunk receiver
// (i.e., there's not bound on space utilization)
if ( limits.isEmpty() ){
return false;
}
long long maxUsage = limits[ ShardFields::maxSize.name() ].Long();
if ( maxUsage == 0 ){
return false;
}
long long currUsage = limits[ ShardFields::currSize.name() ].Long();
if ( currUsage < maxUsage ){
return false;
}
return true;
}
bool BalancerPolicy::isDraining( BSONObj limits ){
BSONElement draining = limits[ ShardFields::draining.name() ];
if ( draining.eoo() || ! draining.Bool() ){
return false;
}
return true;
}
class PolicyObjUnitTest : public UnitTest {
public:
typedef ShardFields sf; // convenience alias
void caseSizeMaxedShard(){
BSONObj shard0 = BSON( sf::maxSize(0LL) << sf::currSize(0LL) );
assert( ! BalancerPolicy::isSizeMaxed( shard0 ) );
BSONObj shard1 = BSON( sf::maxSize(100LL) << sf::currSize(80LL) );
assert( ! BalancerPolicy::isSizeMaxed( shard1 ) );
BSONObj shard2 = BSON( sf::maxSize(100LL) << sf::currSize(110LL) );
assert( BalancerPolicy::isSizeMaxed( shard2 ) );
BSONObj empty;
assert( ! BalancerPolicy::isSizeMaxed( empty ) );
}
void caseDrainingShard(){
BSONObj shard0 = BSON( sf::draining(true) );
assert( BalancerPolicy::isDraining( shard0 ) );
BSONObj shard1 = BSON( sf::draining(false) );
assert( ! BalancerPolicy::isDraining( shard1 ) );
BSONObj empty;
assert( ! BalancerPolicy::isDraining( empty ) );
}
void caseBalanceNormal(){
// 2 chunks and 0 chunk shards
BalancerPolicy::ShardToChunksMap chunkMap;
vector<BSONObj> chunks;
chunks.push_back(BSON( "min" << BSON( "x" << BSON( "$minKey"<<1) ) <<
"max" << BSON( "x" << 49 )));
chunks.push_back(BSON( "min" << BSON( "x" << 49 ) <<
"max" << BSON( "x" << BSON( "$maxkey"<<1 ))));
chunkMap["shard0"] = chunks;
chunks.clear();
chunkMap["shard1"] = chunks;
// no limits
BalancerPolicy::ShardToLimitsMap limitsMap;
BSONObj limits0 = BSON( sf::maxSize(0LL) << sf::currSize(2LL) << sf::draining(false) );
BSONObj limits1 = BSON( sf::maxSize(0LL) << sf::currSize(0LL) << sf::draining(false) );
limitsMap["shard0"] = limits0;
limitsMap["shard1"] = limits1;
BalancerPolicy::ChunkInfo* c = NULL;
c = BalancerPolicy::balance( "ns", limitsMap, chunkMap, 1 );
assert( c != NULL );
}
void caseBalanceDraining(){
// one normal, one draining
// 2 chunks and 0 chunk shards
BalancerPolicy::ShardToChunksMap chunkMap;
vector<BSONObj> chunks;
chunks.push_back(BSON( "min" << BSON( "x" << BSON( "$minKey"<<1) ) <<
"max" << BSON( "x" << 49 )));
chunkMap["shard0"] = chunks;
chunks.clear();
chunks.push_back(BSON( "min" << BSON( "x" << 49 ) <<
"max" << BSON( "x" << BSON( "$maxkey"<<1 ))));
chunkMap["shard1"] = chunks;
// shard0 is draining
BalancerPolicy::ShardToLimitsMap limitsMap;
BSONObj limits0 = BSON( sf::maxSize(0LL) << sf::currSize(2LL) << sf::draining(true) );
BSONObj limits1 = BSON( sf::maxSize(0LL) << sf::currSize(0LL) << sf::draining(false) );
limitsMap["shard0"] = limits0;
limitsMap["shard1"] = limits1;
BalancerPolicy::ChunkInfo* c = NULL;
c = BalancerPolicy::balance( "ns", limitsMap, chunkMap, 0 );
assert( c != NULL );
assert( c->to == "shard1" );
assert( c->from == "shard0" );
assert( ! c->chunk.isEmpty() );
}
void caseBalanceEndedDraining(){
// 2 chunks and 0 chunk (drain completed) shards
BalancerPolicy::ShardToChunksMap chunkMap;
vector<BSONObj> chunks;
chunks.push_back(BSON( "min" << BSON( "x" << BSON( "$minKey"<<1) ) <<
"max" << BSON( "x" << 49 )));
chunks.push_back(BSON( "min" << BSON( "x" << 49 ) <<
"max" << BSON( "x" << BSON( "$maxkey"<<1 ))));
chunkMap["shard0"] = chunks;
chunks.clear();
chunkMap["shard1"] = chunks;
// no limits
BalancerPolicy::ShardToLimitsMap limitsMap;
BSONObj limits0 = BSON( sf::maxSize(0LL) << sf::currSize(2LL) << sf::draining(false) );
BSONObj limits1 = BSON( sf::maxSize(0LL) << sf::currSize(0LL) << sf::draining(true) );
limitsMap["shard0"] = limits0;
limitsMap["shard1"] = limits1;
BalancerPolicy::ChunkInfo* c = NULL;
c = BalancerPolicy::balance( "ns", limitsMap, chunkMap, 0 );
assert( c == NULL );
}
void caseBalanceImpasse(){
// one maxed out, one draining
// 2 chunks and 0 chunk shards
BalancerPolicy::ShardToChunksMap chunkMap;
vector<BSONObj> chunks;
chunks.push_back(BSON( "min" << BSON( "x" << BSON( "$minKey"<<1) ) <<
"max" << BSON( "x" << 49 )));
chunkMap["shard0"] = chunks;
chunks.clear();
chunks.push_back(BSON( "min" << BSON( "x" << 49 ) <<
"max" << BSON( "x" << BSON( "$maxkey"<<1 ))));
chunkMap["shard1"] = chunks;
// shard0 is draining, shard1 is maxed out
BalancerPolicy::ShardToLimitsMap limitsMap;
BSONObj limits0 = BSON( sf::maxSize(0LL) << sf::currSize(2LL) << sf::draining(true) );
BSONObj limits1 = BSON( sf::maxSize(1LL) << sf::currSize(1LL) << sf::draining(false) );
limitsMap["shard0"] = limits0;
limitsMap["shard1"] = limits1;
BalancerPolicy::ChunkInfo* c = NULL;
c = BalancerPolicy::balance( "ns", limitsMap, chunkMap, 0 );
assert( c == NULL );
}
void run(){
caseSizeMaxedShard();
caseDrainingShard();
caseBalanceNormal();
caseBalanceDraining();
caseBalanceImpasse();
log(1) << "policyObjUnitTest passed" << endl;
}
} policyObjUnitTest;
} // namespace mongo
|