1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/**
* Copyright (C) 2014 MongoDB Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License, version 3,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the GNU Affero General Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#include "mongo/db/exec/distinct_scan.h"
#include "mongo/db/exec/filter.h"
#include "mongo/db/exec/scoped_timer.h"
#include "mongo/db/exec/working_set_computed_data.h"
#include "mongo/db/index/index_access_method.h"
#include "mongo/db/index/index_cursor.h"
#include "mongo/db/index/index_descriptor.h"
namespace mongo {
// static
const char* DistinctScan::kStageType = "DISTINCT";
DistinctScan::DistinctScan(OperationContext* txn, const DistinctParams& params, WorkingSet* workingSet)
: _txn(txn),
_workingSet(workingSet),
_descriptor(params.descriptor),
_iam(params.descriptor->getIndexCatalog()->getIndex(params.descriptor)),
_btreeCursor(NULL),
_scanState(INITIALIZING),
_params(params),
_commonStats(kStageType) {
_specificStats.keyPattern = _params.descriptor->keyPattern();
}
void DistinctScan::initIndexCursor() {
// This function transitions from the initializing state to CHECKING_END. If
// the initialization fails, however, then the state transitions to HIT_END.
invariant(INITIALIZING == _scanState);
// Create an IndexCursor over the btree we're distinct-ing over.
CursorOptions cursorOptions;
if (1 == _params.direction) {
cursorOptions.direction = CursorOptions::INCREASING;
}
else {
cursorOptions.direction = CursorOptions::DECREASING;
}
IndexCursor *cursor;
Status s = _iam->newCursor(_txn, cursorOptions, &cursor);
verify(s.isOK());
verify(cursor);
// Is this assumption always valid? See SERVER-12397
_btreeCursor.reset(static_cast<BtreeIndexCursor*>(cursor));
// Create a new bounds checker. The bounds checker gets our start key and assists in
// executing the scan and staying within the required bounds.
_checker.reset(new IndexBoundsChecker(&_params.bounds,
_descriptor->keyPattern(),
_params.direction));
int nFields = _descriptor->keyPattern().nFields();
// The start key is dumped into these two.
vector<const BSONElement*> key;
vector<bool> inc;
key.resize(nFields);
inc.resize(nFields);
if (_checker->getStartKey(&key, &inc)) {
_btreeCursor->seek(key, inc);
_keyElts.resize(nFields);
_keyEltsInc.resize(nFields);
}
else {
_scanState = HIT_END;
}
// This method may throw an exception while it's doing initialization. If we've gotten
// here, then we've done all the initialization without an exception being thrown. This
// means it is safe to transition to the CHECKING_END state. In error cases, we transition
// to HIT_END, so we should not change state again here.
if (HIT_END != _scanState) {
_scanState = CHECKING_END;
}
}
PlanStage::StageState DistinctScan::work(WorkingSetID* out) {
++_commonStats.works;
// Adds the amount of time taken by work() to executionTimeMillis.
ScopedTimer timer(&_commonStats.executionTimeMillis);
if (INITIALIZING == _scanState) {
invariant(NULL == _btreeCursor.get());
initIndexCursor();
}
if (CHECKING_END == _scanState) {
checkEnd();
}
if (isEOF()) {
_commonStats.isEOF = true;
return PlanStage::IS_EOF;
}
if (GETTING_NEXT == _scanState) {
// Grab the next (key, value) from the index.
BSONObj ownedKeyObj = _btreeCursor->getKey().getOwned();
DiskLoc loc = _btreeCursor->getValue();
// The underlying IndexCursor points at the *next* thing we want to return. We do this
// so that if we're scanning an index looking for docs to delete we don't continually
// clobber the thing we're pointing at.
// We skip to the next value of the _params.fieldNo-th field in the index key pattern.
// This is the field we're distinct-ing over.
_btreeCursor->skip(_btreeCursor->getKey(),
_params.fieldNo + 1,
true,
_keyElts,
_keyEltsInc);
// On the next call to work, make sure that the cursor is still within the bounds.
_scanState = CHECKING_END;
// Package up the result for the caller.
WorkingSetID id = _workingSet->allocate();
WorkingSetMember* member = _workingSet->get(id);
member->loc = loc;
member->keyData.push_back(IndexKeyDatum(_descriptor->keyPattern(), ownedKeyObj));
member->state = WorkingSetMember::LOC_AND_IDX;
*out = id;
++_commonStats.advanced;
return PlanStage::ADVANCED;
}
++_commonStats.needTime;
return PlanStage::NEED_TIME;
}
bool DistinctScan::isEOF() {
if (INITIALIZING == _scanState) {
// Have to call work() at least once.
return false;
}
return HIT_END == _scanState || _btreeCursor->isEOF();
}
void DistinctScan::saveState() {
++_commonStats.yields;
if (HIT_END == _scanState || INITIALIZING == _scanState) { return; }
// We save these so that we know if the cursor moves during the yield. If it moves, we have
// to make sure its ending position is valid w.r.t. our bounds.
if (!_btreeCursor->isEOF()) {
_savedKey = _btreeCursor->getKey().getOwned();
_savedLoc = _btreeCursor->getValue();
}
_btreeCursor->savePosition();
}
void DistinctScan::restoreState(OperationContext* opCtx) {
_txn = opCtx;
++_commonStats.unyields;
if (HIT_END == _scanState || INITIALIZING == _scanState) { return; }
// We can have a valid position before we check isEOF(), restore the position, and then be
// EOF upon restore.
if (!_btreeCursor->restorePosition( opCtx ).isOK() || _btreeCursor->isEOF()) {
_scanState = HIT_END;
return;
}
if (!_savedKey.binaryEqual(_btreeCursor->getKey()) || _savedLoc != _btreeCursor->getValue()) {
// Our restored position might be past endKey, see if we've hit the end.
_scanState = CHECKING_END;
}
}
void DistinctScan::invalidate(OperationContext* txn, const DiskLoc& dl, InvalidationType type) {
++_commonStats.invalidates;
}
void DistinctScan::checkEnd() {
if (isEOF()) {
_commonStats.isEOF = true;
return;
}
// Use _checker to see how things are.
IndexBoundsChecker::KeyState keyState;
keyState = _checker->checkKey(_btreeCursor->getKey(),
&_keyEltsToUse,
&_movePastKeyElts,
&_keyElts,
&_keyEltsInc);
if (IndexBoundsChecker::DONE == keyState) {
_scanState = HIT_END;
return;
}
// This seems weird but it's the old definition of nscanned.
++_specificStats.keysExamined;
if (IndexBoundsChecker::VALID == keyState) {
_scanState = GETTING_NEXT;
return;
}
verify(IndexBoundsChecker::MUST_ADVANCE == keyState);
_btreeCursor->skip(_btreeCursor->getKey(), _keyEltsToUse, _movePastKeyElts,
_keyElts, _keyEltsInc);
// Must check underlying cursor EOF after every cursor movement.
if (_btreeCursor->isEOF()) {
_scanState = HIT_END;
}
}
vector<PlanStage*> DistinctScan::getChildren() const {
vector<PlanStage*> empty;
return empty;
}
PlanStageStats* DistinctScan::getStats() {
_commonStats.isEOF = isEOF();
auto_ptr<PlanStageStats> ret(new PlanStageStats(_commonStats, STAGE_DISTINCT));
ret->specific.reset(new DistinctScanStats(_specificStats));
return ret.release();
}
const CommonStats* DistinctScan::getCommonStats() {
return &_commonStats;
}
const SpecificStats* DistinctScan::getSpecificStats() {
return &_specificStats;
}
} // namespace mongo
|