1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
|
/**
* Copyright (C) 2019-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#include "mongo/db/exec/projection_executor.h"
namespace mongo::projection_executor_utils {
bool applyProjectionToOneField(projection_executor::ProjectionExecutor* executor,
StringData field) {
const FieldPath fp{field};
MutableDocument md;
md.setNestedField(fp, Value{1.0});
auto output = executor->applyTransformation(md.freeze());
return !output.getNestedField(fp).missing();
return false;
}
stdx::unordered_set<std::string> applyProjectionToFields(
projection_executor::ProjectionExecutor* executor,
const stdx::unordered_set<std::string>& fields) {
stdx::unordered_set<std::string> out;
for (const auto& field : fields) {
if (applyProjectionToOneField(executor, field)) {
out.insert(field);
}
}
return out;
}
namespace {
/**
* Holds various parameters required to apply a $slice projection. Populated from the arguments
* to 'applySliceProjection()'.
*/
struct SliceParams {
const FieldPath& path;
const boost::optional<int> skip;
const int limit;
};
/**
* Extracts an element from the array 'arr' at position 'elemIndex'. The 'elemIndex' string
* parameter must hold a value which can be converted to an unsigned integer. If 'elemIndex' is not
* within array boundaries, an empty Value is returned.
*/
Value extractArrayElement(const Value& arr, const std::string& elemIndex) {
auto index = str::parseUnsignedBase10Integer(elemIndex);
invariant(index);
return arr[*index];
}
Value applyFindSliceProjectionHelper(const Document& input,
const SliceParams& params,
size_t fieldPathIndex);
/**
* Returns a portion of the 'array', skipping a number of elements as indicated by the 'skip'
* parameter, either from the beginning of the array (if 'skip' is positive), or from the end
* of the array (if 'skip' is negative). The 'limit' indicates the number of items to return.
* If 'limit' is negative, the last 'limit' number of items in the array are returned.
*
* If the 'skip' is specified, the 'limit' cannot be negative.
*/
Value sliceArray(const std::vector<Value>& array, boost::optional<int> skip, int limit) {
auto start = 0ll;
auto forward = 0ll;
const long long len = array.size();
if (!skip) {
if (limit < 0) {
start = std::max(0ll, len + limit);
forward = len - start;
} else {
forward = std::min(len, static_cast<long long>(limit));
}
} else {
// We explicitly disallow a negative limit when skip is specified.
invariant(limit >= 0);
if (*skip < 0) {
start = std::max(0ll, len + *skip);
forward = std::min(len - start, static_cast<long long>(limit));
} else {
start = std::min(len, static_cast<long long>(*skip));
forward = std::min(len - start, static_cast<long long>(limit));
}
}
invariant(start + forward >= 0);
invariant(start + forward <= len);
return Value{std::vector<Value>(array.cbegin() + start, array.cbegin() + start + forward)};
}
/**
* Applies a $slice projection to the array at the given 'params.path'. For each array element,
* recursively calls 'applySliceProjectionHelper' if the element is a Document, storing the result
* in the output array, otherwise just stores the element in the output unmodified.
*
* Note we do not expand arrays within arrays this way. For example, {a: [[{b: 1}]]} has no values
* on the path "a.b", but {a: [{b: 1}]} does, so nested arrays are stored within the output array
* as regular values.
*/
Value applyFindSliceProjectionToArray(const std::vector<Value>& array,
const SliceParams& params,
size_t fieldPathIndex) {
std::vector<Value> output;
output.reserve(array.size());
for (const auto& elem : array) {
output.push_back(
elem.getType() == BSONType::Object
? applyFindSliceProjectionHelper(elem.getDocument(), params, fieldPathIndex)
: elem);
}
return Value{output};
}
/**
* This is a helper function which implements the $slice projection. The strategy for applying a
* $slice projection is as follows:
* * Pick the current path component from the current 'params.path' and store the value from the
* 'input' doc at this sub-path in 'val'.
* * If 'val' is an array and we're at the last component in the 'params.path' - slice the array
* and exit recursion, otherwise recursively apply the $slice projection to each element
* in the array, and store the result in 'val'.
* * If the field value is a document, apply the $slice projection to this document, and store
* the result in 'val'.
* * Store the computed 'val' in the 'output' document under the current field name.
*/
Value applyFindSliceProjectionHelper(const Document& input,
const SliceParams& params,
size_t fieldPathIndex) {
invariant(fieldPathIndex < params.path.getPathLength());
auto fieldName = params.path.getFieldName(fieldPathIndex++);
Value val{input[fieldName]};
switch (val.getType()) {
case BSONType::Array:
val = (fieldPathIndex == params.path.getPathLength())
? sliceArray(val.getArray(), params.skip, params.limit)
: applyFindSliceProjectionToArray(val.getArray(), params, fieldPathIndex);
break;
case BSONType::Object:
if (fieldPathIndex < params.path.getPathLength()) {
val = applyFindSliceProjectionHelper(val.getDocument(), params, fieldPathIndex);
}
break;
default:
break;
}
MutableDocument output(input);
output.setField(fieldName, val);
return Value{output.freeze()};
}
} // namespace
Document applyFindPositionalProjection(const Document& preImage,
const Document& postImage,
const MatchExpression& matchExpr,
const FieldPath& path) {
MutableDocument output(postImage);
// Try to find the first matching array element from the 'input' document based on the condition
// specified as 'matchExpr'. If such an element is found, its position within an array will be
// recorded in the 'details' object. Since 'matchExpr' used with the positional projection is
// the very same selection filter expression in the find command, the input document passed to
// this function should have already been matched against this expression, so we'll use an
// invariant to make sure this is the case indeed.
MatchDetails details;
details.requestElemMatchKey();
invariant(matchExpr.matchesBSON(preImage.toBson(), &details));
// At this stage we know that the 'input' document matches against the specified condition,
// but the matching array element may not be found. This can happen if the field, specified
// in the match condition is not an array. For example, if the match condition is {foo: 3}
// and the document is {_id: 1, foo: 3}, then we will match this document but the matching
// array element position won't be recorded. In this case, we don't want to error out but
// to exclude the positional projection path from the output document. So, we will walk the
// 'path' on the 'input' document trying to locate the first array element. If it can be
// found, then we will extract the matching element from this array and will store it as
// the current sub-path in the 'output' document. Otherwise, just leave the 'output'
// document untouched.
for (auto [ind, subDoc] = std::pair{0ULL, postImage}; ind < path.getPathLength(); ind++) {
switch (auto val = subDoc[path.getFieldName(ind)]; val.getType()) {
case BSONType::Array: {
// Raise an error if we found the first array on the 'path', but the matching array
// element index wasn't recorded in the 'details' object. This can happen when the
// match expression doesn't conform to the positional projection requirements. E.g.,
// when it contains multiple conditions on the array field being projected, which
// may override each other, making it impossible to correctly locate the matching
// element.
uassert(51246,
"positional operator '.$' couldn't find a matching element in the array",
details.hasElemMatchKey());
auto elemMatchKey = details.elemMatchKey();
auto matchingElem = extractArrayElement(val, elemMatchKey);
uassert(
51247, "positional operator '.$' element mismatch", !matchingElem.missing());
output.setNestedField(path.getSubpath(ind),
Value{std::vector<Value>{matchingElem}});
return output.freeze();
}
case BSONType::Object:
subDoc = val.getDocument();
break;
default:
break;
}
}
return output.freeze();
}
Value applyFindElemMatchProjection(const Document& input,
const MatchExpression& matchExpr,
const FieldPath& path) {
invariant(path.getPathLength() == 1);
// Try to find the first matching array element from the 'input' document based on the condition
// specified as 'matchExpr'. If such an element is found, its position within an array will be
// recorded in the 'details' object.
MatchDetails details;
details.requestElemMatchKey();
if (!matchExpr.matchesBSON(input.toBson(), &details)) {
return {};
}
auto val = input[path.fullPath()];
invariant(val.getType() == BSONType::Array);
auto elemMatchKey = details.elemMatchKey();
invariant(details.hasElemMatchKey());
auto matchingElem = extractArrayElement(val, elemMatchKey);
invariant(!matchingElem.missing());
return Value{std::vector<Value>{matchingElem}};
}
Document applyFindSliceProjection(const Document& input,
const FieldPath& path,
boost::optional<int> skip,
int limit) {
auto params = SliceParams{path, skip, limit};
auto val = applyFindSliceProjectionHelper(input, params, 0);
invariant(val.getType() == BSONType::Object);
return val.getDocument();
}
} // namespace mongo::projection_executor_utils
|